
Generation of Platform-Specific Model Transformation
Plugins for EJB 3.0

András Balogh
Budapest University of

Technology and Economics
Department of Measurement

and Information Systems
H-1117 Budapest, Magyar

tudósok körútja 2.

abalogh@mit.bme.hu

Gergely Varró
Budapest University of

Technology and Economics
Dept. of Computer Science

and Information Theory
H-1117 Budapest, Magyar

tudósok körútja 2.

gervarro@cs.bme.hu

Dániel Varró
András Pataricza

Budapest University of
Technology and Economics

Department of Measurement
and Information Systems

H-1117 Budapest, Magyar
tudósok körútja 2.

{varro,pataric}@mit.bme.hu

ABSTRACT
The current paper presents a technique for generating stand-
alone model transformation plugins for the EJB 3.0 platform
from platform-independent specifications of transformations
given by a combination of graph transformation and abstract
state machine rules (as used within the Viatra2 frame-
work). As a result, the design of transformations can be
separated from the execution of transformations. This also
enables to run platform-independent Viatra2 transforma-
tions on very large models stored in underlying relational
databases or to integrate such transformations into existing
business applications.

Keywords: model transformation, platform-specific trans-
formers, EJB 3.0, graph transformation, abstract state ma-
chines.

1. INTRODUCTION
Nowadays, the immense role of model transformation (MT)

concepts and tools is unquestionable for the success of the
Model Driven Architecture (MDA) [10]. Model transforma-
tions approaches should enable a cost and time efficient de-
sign of (i) manipulations within a single modeling language
(or domain) (ii) mappings and synchronization between dif-
ferent modeling languages and/or source code (iii) semantic
translations into various mathematical domains to carry out
formal model analysis.

As model transformation is becoming an engineering dis-
cipline (transware), conceptual and tool support is neces-
sitated for the entire life-cycle, i.e. the specification, de-
sign, execution, validation and maintenance of transforma-
tions. However, different phases of transformation design
frequently set up conflicting requirements, and it is diffi-
cult to find the best compromise. For instance, the main

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

driver in the execution phase is performance, therefore, a
compiled MT approach (where a transformation is compiled
directly into native source code) is advantageous. On the
other hand, interpreted MT approaches (where transforma-
tions are available as models) have a clear advantage during
the validation (e.g. by interactive simulation) or the main-
tenance phase due to their flexibility.

In the paper, we argue that advanced model transforma-
tion tools should support both interpreted and compiled ap-
proaches to separate the design (validation, maintenance)
of a transformation from its execution. Interpreter-based
platform-independent transformers (PIT) [3,16] ease the test-
ing, debugging and validation of model transformations within
a single transformation framework without relying on a highly
optimized target transformation technology. Platform-specific
transformers (PST) are compiled (in a complex model trans-
formation and/or code generation step) from an already
validated transformation specification into various underly-
ing tools or platform-dependent transformation technologies
(e.g. Java, XSLT, etc.) and integrated into off-the-shelf
CASE tools as stand-alone plugins.

This current paper summarizes our experiments in gen-
erating platform-specific transformer plugins within the Vi-
atra2 model transformation framework.PIT model trans-
formations are captured in Viatra2 by a high-level, rule
and pattern based paradigm offered by the combination of
graph transformation (GT) [5] and abstract state machines
(ASM) [4]. For the first target technology of stand-alone
transformer plugins, we have chosen the evolving Enterprise
Java Beans 3.0 (shortly, EJB3) standard [12] with tool sup-
port provided by JBoss 4.0.1. Our techniques will be demon-
strated on the standard model transformation benchmark of
the object-relational mapping (see e.g. [13]), which gener-
ates a relational database model from UML class diagrams.
Furthermore, we compare the performance of EJB3-based
transformation plugins to pure Java solutions.

2. OVERVIEW OF THE APPROACH
An overview of generating EJB3-specific transformer stand-

alone plugins from Viatra2 PITs is provided in Fig. 1. The
general flow of developing and executing platform-independent
transformations (PIT) in Viatra2 is the following.

Figure 1: Overview of the plugin generation approach

1. Metamodel design. Metamodels of the source and
target modeling languages (or domains) are designed
and stored according to the VPM approach [15].

2. Develop importers. Viatra2 accepts arbitrary tex-
tual source files by offering a flexible way to write
model importers.

3. Model import. These importers build up an internal
VPM representation of the source model which corre-
sponds to its metamodel.

4. Transformation design. Model transformations be-
tween source and target metamodels are captured by
a seamless integration of GT and ASM rules [14].

5. Transformation execution. These transformations
are executed on the source model by a transformation
engine to derive the target model.

6. Model export. Finally, the target model can be post-
processed by special model transformations generating
code and code formatters to be printed in the required
output format.

The main goal of the paper is to show how stand-alone
platform-specific transformers can be generated for EJB3
from platform-independent Viatra2 models and transfor-
mations. We propose a solution for the following tasks.

• From PIM to PSM models. EJB3 entity bean
classes will be generated from the source and target
metamodels including the reference objects represent-
ing the mapping between them. The persistent storage
of EJB3 entity beans will then be handled by the EJB3
application server.

• From PIT to PST transformations. EJB3 session
beans will be generated from the PIT specification (i.e.
from ASM and GT rules) in the form of fully func-
tional EJB business methods. Transaction handling
will be provided by the JBoss execution environment
to prevent complex transformations from introducing
conflicts when manipulating the model in parallel.

• Reuse of model importers and exporters. Our
experience shows that the development of a model im-
porter also requires significant work1. As a conse-
quence, the reuse of Viatra2 importers (exporters)
implemented for building up (extracting) an internal
(VPM) model representation from (to) a textual source
(target) file in the EJB3-specific transformation plu-
gin is also an important goal. This will be achieved
by providing an alternative, EJB3-specific implemen-
tation of the model manipulation interface of the Via-
tra2 metamodeling core, that will redirect and trans-
late Viatra2 -specific calls to EJB3-specific calls.

In the rest of the paper, we first provide a brief overview
on the platform-independent modeling and transformation
techniques of Viatra2 (in Sec. 3). Then, the main part
of the paper (in Sec. 4) discusses how to generate EJB-
specific model transformation plugins from Viatra2 (PIT-
level) transformation specifications. A comparison with re-
lated approaches is given in Sec. 5, finally Sec. 6 concludes
the paper.

3. MODELS AND TRANSFORMATIONS IN
VIATRA2

We first briefly introduce the main notions of models and
metamodels (as used in Viatra2), and then how these mod-
els can be manipulated by using graph transformation (GT)
and abstract state machine (ASM) rules.

3.1 Metamodels and models
In order to present the concepts of models, metamodels

and transformations, a standard object relational mapping
(see e.g. [13]) will be used throughout this paper as a running
example, which generates a relational database schema from
a UML class diagram.

Figure 2: An extended metamodel for the object relational
mapping

1Viatra2 has importers for several industrial UML and
BPM modeling tools.

A metamodel describes the abstract syntax of a modeling
language. The metamodels of UML class diagrams and rela-
tional database schemas (following the CWM standard [9])
are depicted in Fig. 2 with minor simplifications. For the
purpose of the current paper, we group elements of tra-
ditional MOF metamodels into three main categories: (i)
classes (e.g. Schema, Table), (ii) attributes and many-to-
one associations (like EO – elementOwnership, CF – classi-
fier feature), and (iii) many-to-many associations (such as
KRF – key relation feature) between two classes. For the pa-
per, we assume that associations are navigable along both
directions to make the discussion simpler.

Models are abstract representations of specific systems,
and formally, they are instances of the metamodel. Model-
level model elements in MOF are called objects, slots and
links, which are instances of classes, attributes and associa-
tions, respectively.

3.1.0.1 Overview of VPM metamodeling..
Viatra2 uses the non-standard VPM metamodeling ap-

proach [15] for uniformly representing models and metamod-
els. VPM is very succinct but more expressive than MOF; in
fact, models taken from different technological spaces (and
thus using different approaches for language design includ-
ing, e.g. MOF, EMF, XML Schemas) can be integrated
smoothly into the model space.

VPM uses a graph representation for storing models and
metamodels, thus both classes and objects appear as VPM
entities (nodes), while attributes and associations (as well as
links and slots on the model-level) are represented as VPM
relations (edges). Naturally, multiplicities, aggregation, etc.
can be associated to VPM relations (used on the meta-level).

Inheritance may be defined between two entities (classes)
as well as relations (associations), which denotes that the
child model element can be used wherever the parent model
element is expected.

The main essential difference between VPM and MOF
metamodeling approach is the handling of instantiation. VPM
uses a more flexible representation of metalevels than MOF
by introducing explicit instance-of relations. Model-level
constructs of MOF such as objects, links and slots are han-
dled in VPM as ordinary entities and relations with an ex-
plicit instance-of relation between the metamodel and model
constructs.

3.2 Graph transformation
Graph transformation [5] provides a pattern and rule based

manipulation of graph models. Each rule application trans-
forms a graph by replacing a part of it by another graph.

A graph transformation rule contains a left–hand side
graph LHS, a right–hand side graph RHS, and negative ap-
plication condition graph NAC. The LHS and the NAC
graphs are together called the precondition PRE of the rule.

In the paper, we use the graphical representation initially
introduced in [6] where the union of these graphs is pre-
sented. Elements to be deleted are marked by the del key-
word, elements to be created are labelled by the add, while
elements in the NAC graph are denoted by the neg keyword.

The application of a GT rule to anhost model M replaces
a matching of the LHS in M by an image of the RHS. This
is performed by (i) finding a matching of LHS in M (by
graph pattern matching), (ii) checking the negative appli-
cation conditions NAC (which prohibit the presence of cer-

tain objects and links) (iii) removing a part of the model
M that can be mapped to LHS but not to RHS yielding the
context model, and (iv) gluing the context model with an
image of the RHS by adding new objects and links (that can
be mapped to the RHS but not to the LHS) obtaining the
derived model M′. The pattern matching phase consists of
Steps (i) and (ii), while the manipulation phase is consti-
tuted by steps (iii) and (iv).

Example 1. In Fig. 3, a graph transformation rule classR
is depicted which carries out the transformation of UML
classes to database tables.

Figure 3: A sample graph transformation rule classR

As precondition for the rule application, the LHS pre-
scribes that there exists a class c located in such a package
p, which is already transformed into a corresponding schema
s, while NAC prescribes that this class c is not allowed to
be related to any table t. The rule manipulation part pre-
scribes that a new table t is generated with a column tid and
primary key constraint tpk as result of the rule application.
Note also that package p and class c is passed to the GT rule
as parameters to allow the same GT rule to be executed in
different modes.

The entire object-relational mapping formalized as graph
transformation rules can be found in [17].

3.3 Abstract state machines
While the elementary steps of complex model transforma-

tion is captured by GT rules, these GT rules are assembled
into a complex transformation program by abstract state ma-
chine rules [4]. In order to semantically integrate the two
paradigms, GT rules are treated as traditional ASM rules
(called by the apply construct), and graph patterns (used
in the LHS and NAC graphs) can be used as existentially
quantified Boolean formulae in ASM conditions (find con-
struct). More information on the semantic integration be-
tween graph transformation and abstract state machines can
be found in [14].

ASMs provide complex model transformations with all the
necessary control structures including the sequencing op-
erator (seq), rule calls to other ASM rules (call), variable
declarations and updates (let and update constructs) and
if-then-else structures, non-deterministic selected (random)
and executed rules (choose), iterative execution (applying a
rule as long as possible), and the deterministic parallel rule
application at all possible matchings (locations) satisfying a
condition (forall).

Example 2. An extract from the ASM program driving
the GT rules of the object-relational mappings is listed in
Fig. 4 using a simplified Viatra2 notation.

rule obj2rel() =
iterate seq {

choose P with packageR.pre(P) do
seq {
apply packageR(P);
forall C with classR.pre(P,C) do
seq {

apply classR(P,C);
/* other rules applied here */

}
}

}
Figure 4: ASM program of the object-relational mapping

1. The transformation obj2rel first iterates over a sequence
of steps. When the application any rules within the
sequence fails, the execution of the iterate construct
terminates.

2. The first step in this sequence non-deterministically
selects a package P which is not yet processed and
transforms it to a corresponding schema (packageR).
The selection criteria for binding variable is prescribed
by the precondition (LHS and NAC) of the GT rule.

3. Then classR is applied to all classes C within that pack-
age P as defined by (the precondition of) the rule classR
(see Fig. 3).

4. Then the transformation proceeds with the handling
of attributes, associations, generalizations, etc.

4. GENERATION OF EJB3-SPECIFIC MODEL
TRANSFORMER PLUGINS

Now we discuss how to generate platform-specific trans-
formation plugins from PIT transformations for the selected
EJB3 platform.

4.1 From VIATRA2 models to EJB3 models

4.1.1 From platform-independent to platform-specific
model representations

As discussed earlier, Viatra2 uses a simple, generic repre-
sentation for metamodels and models. While this formalism
is suitable for the simultaneous, design-time representation
of metamodels and models taken from multiple domains, it
is not optimal from a performance perspective for the rep-
resentation of a single (domain-specific) metamodel and its
instance models.

Although Viatra2 supports the definition of multiple meta
levels, we restrict the PIT generation to two neighboring
meta levels (e.g. the model-level and the meta-level). This
is suitable for most practical MDA transformations such as
PIM-to-PSM mappings, model analysis or code generation.
We assume that the metamodels are fixed, and model ma-
nipulations are only carried out on model level.

This enables the generation of a static class structure in
the target implementation platform (i.e. classes, methods,
and attributes) from the meta-level elements to structures
of the target implementation platform . The model-level
elements will be instances (objects) of these classes as in
any object-oriented language. This results in a more user-
friendly structure tailored to the concepts of the specific
metamodel, which allows also the easy integration of the

generated class structure to existing user programs (e.g. by
postprocessing the results of the transformation).

4.1.2 Enterprise Java Beans 3.0.
Enterprise Java Beans (EJB) is one of the most funda-

mental parts — the main business data layer and business
functionality — of the Java 2 Enterprise Edition (J2EE)
platform, which defines a layered architecture for scalable,
distributed application development including several Java
standards and APIs. After deployment, EJB beans are exe-
cuted by an application server (also called container), which
is responsible for efficiently providing many high-level ser-
vices (such as transactions, security, persistence, etc.).

The main types of EJBs used in the current paper are the
following.

• Entity beans are application-level, persistent data ob-
jects which are kept synchronized with an underlying
relational database by means of an object-relational
mapping. Entity beans can be in relationship with
other entity beans referring to each other by direct
references (many-to-one or one-to-one relationships)
or typed collections (many-to-many, or one-to-many
relationships). Relationships are also mapped auto-
matically to relational database tables while providing
a high-level, object-oriented API form manipulating
models.

• Session beans implement the business logic of the ap-
plication. There are two types of session beans: state-
ful and stateless. Stateless session beans can be consid-
ered as simple collections of business methods. State-
less session beans are typically pooled (i.e. the pre-
instantiated objects are redistributed to client calls) by
the application server to enhance performance. State-
ful session beans contain an internal state that is main-
tained between method calls. This can be used for
storing session-specific data on the server side.

Selecting an underlying technology as EJB 3.0 which has
not yet reached the standard-level seems to be a risky choice
at first sight. As a compensation, (i) the underlying EJB3
application server offers a robust solution for persisting mod-
els, handling transformations as transactions, and clustering
for increasing performance, (ii) there is already a powerful
open-source implementation as provided by JBoss 4.0.1 for
EJB3, and (iii) the Java interfaces of EJB3 beans are very
close to that of pure Java models (generated with the pop-
ular Eclipse Modeling Framework (EMF) [1] or similar). In
fact, in our experiments (see Sec. 4.4), we compare the same
transformation algorithm using an underlying EJB3 frame-
work and a pure Java solution.

Finally, the reason for selecting EJB3 as the underlying
platform instead of the currently industry-leading EJB 2.0
is merely the convenience as offered by (i) the introduction
of annotations and templates in Java 1.5 and (ii) getting
rid of the hard-to-maintain interfaces (local, remote, home,
etc.) of EJB beans.

4.1.3 Mapping metamodels and transformations to
EJBs.

As described earlier, the basic constructs of the meta-
models has to be transformed to constructs of the target
platform. In the case of EJB 3.0, these constructs are entity

beans and their relations. The mapping between metamodel
elements and EJBs is the following:

• Metamodel classes (formally, VPM entities) are mapped
to entity bean classes. The inheritance relations be-
tween entities are maintained.

• Metamodel associations and attributes (formally, VPM
relations) with at most one multiplicities are mapped
to scalar-type Java attributes in the entity bean that
corresponds to the source of the relation. If the tar-
get of the function is a primitive type (for example,
datatypes.String) the Java attribute will be the cor-
responding Java primitive type (java.lang.String). If
the target of the function is a metamodel element, the
mapping will create a one-to-one EJB relationship and
the type of the attribute will be the target EJB class.

• Metamodel associations (formally, VPM relations) with
arbitrary (*) multiplicities are mapped to one-to-many
EJB relationships that are represented by a Collection
attribute. For optimization purposes we also create
an inverse, many-to-one relationship from the target
of the VPM relation to the source.

Example 3. Below we show an extract of an EJB3 bean
generated from the metamodels of Fig. 2.

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class Package extends UMLElement

implements Serializable{
// Attributes
private String name;
private SchemaElement schema;
private Collection<Class> ownedElements;
// Accessors
@OneToOne
public SchemaElement getSchema() {
return schema;

}
@OneToMany
public Collection<Class> getOwnedElements() {
return ownedElements;

}}

Example 3 illustrates the mapping with the Table class
that corresponds to the CWM Table metaclass in the tar-
get metamodel of our transformation. The schema attribute
is the inverse relationship of the elementOwnership relation,
the foreignKeys collection is the representation of the keyRe-
lationFeature relation. Name represents the simple name
function of the table.

4.2 Reusing model importers
Model importers are used to import models from various

file formats of modeling tools into the Viatra2 framework.
The implementation of an importer for a given format re-
quires significant work, hence the reusability of importers in
PST programs was a strong requirement.

The Viatra2 importers operate on VPM models that
contain entities and relations, which is a platform-independent
but low-level model representation in contrast to the EJB-
based solution introduced in Sec. 4.1. This semantic gap
between the two representations has to be bridged, thus we
implemented a special wrapper that converts the low-level
model space calls to EJB object creations and method calls.

The Viatra2 model space provides a single Java interface
for importing modules to query and update the content of
the model space. The operations of this interface manipu-
late basic VPM constructs (for example, method newEntity()
creates an entity, setName() renames a model element, and
newInstanceOf() creates a new type-instance relationship be-
tween two model elements).

The model space wrapper offers the same interface for
the input module as the original implementation in the Vi-
atra2 framework, and contains a special facility to map
the method calls to EJB operations. However, the native
transformation plugin contains only two meta-levels, a static
meta-level and a dynamic model-level, which implies the fol-
lowing considerations.

• The model space wrapper generates read-only entity
wrapper objects if the importer queries the model space
for the meta-level elements.

• If a new model-level element is created, the wrapper
generates a dynamic proxy object. This object stores
the VPM level properties of the created model element
as long as the type of the element is undefined. If the
model importer creates an explicit instanceOf relation
between the model element and a metamodel element,
the type of the given element can be determined, and
a corresponding entity bean can be generated. The
cached properties are propagated to the entity bean.

As a result, the model space wrapper facility hides the
implementation platform from the model importer; therefore
it eases the porting of importers to various platforms.

Note that we neglected the treatment of model exporters
in this section due to the fact that they are typically im-
plemented using the transformation based code generation
features of Viatra2 . Therefore, their reuse in PSTs will
be covered essentially in Sec. 4.3.

4.3 From PIT to PST transformations
Now we generate EJB3-specific transformations from PIT

descriptions using the metamodel-specific model manipula-
tion API derived in Sec. 4.1. Due to space considerations,
we primarily focus on the handling of GT rules, which is the
most critical and complex part of generating EJB-specific
transformer plugins since ASM programs already provide a
close correspondance with object-oriented Java technology.
More specifically, we show

1. how to handle input and output rule parameters;

2. how to perform graph pattern matching differently in
case of parallel (forall) and single (choose) rule appli-
cations;

3. how to check the success or failure of pattern matching

4. how to manipulate models in a persistent and trans-
actional way.

Our concepts will be demonstrated using our ongoing ex-
ample by processing ClassR of Fig. 3 and the ASM program
of Fig. 4.

4.3.1 Binding input and output rule parameters.
While typically input parameters of a rule are mapped

to input parameters of a method, and the output param-
eter of a rule is mapped to the return value, this solution

is unfeasible, since there can be several output parameter,
moreover, an inout parameter can be considered as both in-
put and output. Therefore, a Java Map is used for passing
rule parameters in each directions.

public Map classR_forall(Map in) { // Input parameters
HashMap result = new HashMap(); // Output parameters
...
Package p = (Package) in.get("p");
result.put("p",p);

}

4.3.2 Graph pattern matching (in Forall and Choose
mode).

It is well-known that the most critical step for the perfor-
mance of graph transformation is the graph pattern match-
ing phase. For this purpose, the generation of search plans is
a frequently used and efficient strategy. Informally, a search
plan defines the order of traversal for the nodes of the in-
stance model to check whether the pattern can be matched.
Complex model-specific optimization steps can be carried
out for generating efficient search plan as reported in [18].
Here, we assume that a search plan is available for the pre-
condition of the GT rule.

Furthermore, we need to distinguish whether a graph trans-
formation rule is called from the context of a choose or a
forall ASM rule, which prescribes different behavior. As a
result, for each GT rule, several methods may be generated
that quantifying different rule parameters universally (with
forall) or existentially (by default, or using the choose con-
struct).

Now, we investigate the execution of classR in forall mode
(as prescribed in Fig. 4). Let the ordering of pattern nodes
for the derived search plan be p, s, c.

This search plan first selects an initial package p from
which the pattern matching should start. In case of calling
classR in ASM program of Fig. 4, this node is passed as a
parameter, which can be determined by a compile-time anal-
ysis. Then all other pattern nodes and edges are traversed
one by one according to the search plan.

• When an edge with at-most-one multiplicity (one-to-
one or many-to-one in EJB3 terminology) is traversed,
a single object is navigated, which is retrieved directly
by reference.

• In case of arbitrary multiplicity in the traversed di-
rection (one-to-many or many-to-many), an iterator is
generated to investigate all possible continuations.

Example 4. The principle of generating while or if-then
constructs according to multiplicities is demonstrated below
when applying classR (in forall mode).

public Map classR_PRE_forall(Map in) {
HashMap result = new HashMap();
// Matching Package node
Package p = (Package) in.get("p");
if (p != null) {
result.put("p",p); // Copy to output params
// Matching Schema node
Schema s = p.getTargetRef();
if (s != null) {
// Iterating over all Class nodes
Iterator iter_c = p.getOwnedElement().iterator();
while (iter_c.hasNext()) {

Class c = (Class) iter_c.next();

result.put("c", c);
// Check negative conditions ->
// Apply model manipulations ->

} } } }

When an ASM machine prescribes that a GT rule should
be applied on at most one matching (using the choose con-
struct), further optimization is possible, namely, one can
immediately terminate the execution of loops (and if-then
constructs) as soon as the rule finds the first matching. For
this purpose, we introduce a new Boolean variable success
and inject an additional condition (!success) into all guards
of loops and if-then-else constructs. Finally, a RuleFailedEx-
ception exception is thrown if the pattern matching failed.

Example 5. For instance, the implementation of a NAC
(see classR NAC choose below), it is sufficient to find a single
matching of the NAC graph to refute a matching of the LHS.

public Map classR_NAC_choose(Map in) {
HashMap result = new HashMap();
boolean success = false;
Class c = (Class) in.get("c");
result.put("c",c);
Table t = c.getTargetRef();
if(t != null && !success) { // Additional condition
success = true;

}
if (success)
return result;

else throw new RuleFailedException();
}

4.3.3 Checking the success of pattern matching.
Viatra2 patterns may contain calls to other (positive or

negative) patterns, which means that as soon as the pattern
matching of the local pattern is successfully completed, it
should continue with matching additional positive and/or
refuting all negative patterns. The call environment needs
to be set up by passing the appropriate common parameters
between such patterns (e.g. class c in case of the LHS and
NAC patterns of rule classR). The fact that the matching of
a pattern failed is denoted by catching a RuleFailedException.

// Check negative conditions (in classR)
HashMap nacIn = (new HashMap()).put("c",c);
try {
classR_NAC_choose(nacIn);
// Process next potential matching

}
catch (RuleFailedException e) {

// Apply model manipulations ->
}

In addition to checking positive and negative conditions,
the result of this success attribute is frequently used later to
drive the iterate and if-then-else ASM constructs constructs.
For instance, the iterate construct in the ASM program of
Fig. 4 can be implemented as follows.

HashMap in1 = new HashMap();
try {
while (true) {
packageR_choose(in1);
// Other rules inside seq{}

}
}
catch (RuleFailedException e) {...}

4.3.4 Model manipulations.
Model elements are manipulated according to the EJB3-

specific Java API. For instance, in case of creating a new
entity bean, the traditional new construct is used first, then
the fields of the entity bean are set, finally, the database
manager is called to persist the new object.

// Model manipulation for ClassR
t = new Table();
tpk = new PrimaryKey();
tid = new Column();
t.setSchema(s);
c.setReference(t);
tid.setTable(t);
tpk.setTable(t);
tpk.setColumns((new HashSet()).add(tid));
// Persisting objects
manager.persist(t);
manager.persist(tpk);
manager.persist(tid);

If a method implementing a transformation terminates
successfully, then model changes are committed automat-
ically due to the default transaction handling facilities of
EJB3. Furthermore, if inconsistencies (i.e. exceptions) arise
during EJB3 method calls, the transaction manager initiates
rollback to restore a consistent model state. This automati-
cally prevents inconsistencies introduced by applying a GT
rule in forall mode in case of conflicting rule applications.

4.4 Performance evaluation
To evaluate the performance of EJB3-based transforma-

tion plugins, we carried out experiments based on the object-
relational performance benchmark selected from [17]. Our
main goal was to assess the overhead caused by an applica-
tion server and the underlying relational database required
to run EJB3 applications. Therefore, we executed the same
algorithm (generated according to the guidelines of the pa-
per) once as Enterprise Java Beans and then as pure Java
objects (without application server and database)2

The results of our experiments are shown in Table 1 where
the average time of finding a single matching (match) and
then executing a rule (update) on this match is depicted for
three different rules of the transformation.

Class
match update match update

msec msec msec msec
10 0,10 0,06 0,14 1,69

100 0,03 0,02 0,14 1,84
250 0,02 0,02 0,14 1,77

1000 - - 0,15 3,66
10 0,27 0,12 0,15 1,65

100 0,04 0,03 0,15 1,81
250 0,27 0,02 0,14 1,91

1000 - - 0,15 2,16
10 0,15 0,07 0,67 1,95

100 0,03 0,02 0,51 1,90
250 0,02 0,02 0,71 2,37

1000 - - 0,62 2,69

as
so

cR
as

so
cE

nd
R

Pure Java Obj MySQL - EJB3

cl
as

sR

Table 1: Performance evaluation of EJB3 plugins

2For our experiments, we used an Intel Pentium-M 1600
MHz processor with 2GB RAM and 60 GB HDD machine
running on Windows XP SP1, Java SDK 1.5, MySQL 4.1
database, and JBoss 4.0.1 application server.

In order to fix a a complete, deterministic, but parametric
test set, the structure of the initial model and the transfor-
mation sequence was fixed up to a numerical parameters, i.e.
the number of Classes in the initial instance model (denoted
by N). The initial model has a single Package that con-
tains N classes. An Association and two AssociationEnds are
added to the model for each pair of Classes, thus initially, we
have N(N−1)/2 Associations and N(N−1) AssociationEnds
connected appropriately. This way, parameter N = 1000
denotes a model with around 1.5 million elements, which is
already a very large model.

Our experiments show a trade-off between performance
and model size as stated in the following observations:

• Performance. On a given model size, the pure Java
solution runs one order of magnitude faster during the
pattern matching phase and two orders of magnitude
faster in the manipulation phase. Most probably, in
the pattern matching phase this is caused by the over-
head of the database connection, while in the manipu-
lation phase this is a joint effect of database connection
and transaction handling. In addition to that there is
significant amount of initial overhead when connecting
the database for the first time.

• Model size. On the other hand, the EJB3 plugin was
able to handle very large models (>1 million elements)
since the models are persisted in a relational database,
while pure Java programs ran out of memory.

In addition, it is worth pointing out that a significant
amount of time was required initially with database and
application server overhead when executing the first rule of
the model transformation. On the other hand, as soon as
the database and the application server is already running,
we did not experience significant overhead.

5. RELATED WORK
While there is already a large set of model transformation

tools available in the literature using graph rewriting, below
we focus on providing a brief comparison with the most pop-
ular compiled approaches that show conceptual similarities
with our work.3

Fujaba [8] compiles visual specifications of transforma-
tions [6] into executable Java code based on an optimization
technique using search graphs with a breadth-first traversal
strategy penalizing many-to-many multiplicity constraints.
Our approach is different from Fujaba in the use of EJB3
beans instead of pure Java classes and the model-sensitive
generation of search plans (see [18] for details).

PROGRES [11] supports both interpreted and compiled
execution (generating C code) of programmed graph trans-
formation systems. It uses a sophisticated cost model for
defining a priori costs of basic operations (like the enumera-
tion of nodes of a type and navigation along edges) for gen-
erating search plans. Our solution was, in fact, influenced
by PROGRES in the use of a cost function. However, our
model-specific cost function provides a better estimation for
the complexity of matching graph transformation rules.

The pattern matching engine of compiled GReAT [19]
(generating C++ code) uses a breadth-first traversal strat-
egy starting from a set of nodes that are initially matched.

3A more detailed comparison on the difference in the applied
graph transformation strategies can be found in [18].

Such a C++ solution typically provides an efficient solution
for compiled transformations when integrated into embed-
ded systems. In contrast, our transformation plugins pri-
marily target web-based target platforms and achieve high
performance as being deployed on application servers.

OPTIMIX [2] is a tool for generating algorithms in C
or Java which construct and tranform directed relational
graphs with a special focus on tasks in program compila-
tion and optimization. OPTIMIX supports edge addition
rewrite systems (EARS) and exhaustive graph rewrite sys-
tems (XGRS) using an input language equivalent to a subset
of Datalog.

The idea of separating transformation design from trans-
formation execution also appears in the MOLA environ-
ment [7] by providing an Eclipse EMF-based execution envi-
ronment. While EMF-based models and EJB3 models show
conceptual similarities concerning their structure, EJB3 pro-
vides additional support for important dynamic features such
as e.g. transaction handling.

6. CONCLUSIONS
We presented a technique for generating stand-alone model

transformation plugins for the EJB 3.0 platform from platform-
independent specifications of transformations given by a com-
bination of graph transformation and abstract state machine
rules as used within the Viatra2 framework. As a result,
the design of transformations can be separated from the ex-
ecution of transformations.

We assessed the performance of our EJB3-based plugin-
generator on a graph transformation benchmark selected
from [17] by comparing it to pure Java-based solutions. Our
experiments showed that while pure Java-based solutions
are (unsurprisingly) faster for models of the same size, very
large models can only be handled by EJB3-based plugins
as pure Java solutions run out of memory. This way, EJB3
transformer plugins can be integrated into existing business
(J2EE) applications manipulating industrial size models.

In the future, we intend to extend our approach to bet-
ter exploit the use of the underlying EJB 3.0 technology
by using (i) message-driven beans for long running trans-
formations, (ii) stateful session beans for user-guided model
transformations, and (iii) the query language of EJB-QL to
further optimize pattern matching on models.

7. REFERENCES
[1] Eclipse Modeling Framework.

http://www.eclipse.org/emf.

[2] U. Assmann. In [5], chap. OPTIMIX: A Tool for
Rewriting and Optimizing Programs, pp. 307–318.
World Scientific, 1999.

[3] J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois, and
D. Pollet. Reflective model driven engineering. In
P. Stevens, J. Whittle, and G. Booch (eds.), Proc.
UML 2003: 6th International Conference on the
Unified Modeling Language, vol. 2863 of LNCS, pp.
175–189. Springer, San Francisco, CA, USA, 2003.

[4] E. Börger and R. Stärk. Abstract State Machines. A
method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg (eds.). Handbook on Graph Grammars
and Computing by Graph Transformation, vol. 2:

Applications, Languages and Tools. World Scientific,
1999.

[6] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph transformation language
based on UML and Java. In H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg (eds.), Proc. Theory and
Application to Graph Transformations (TAGT’98),
vol. 1764 of LNCS. Springer, 2000.

[7] A. Kalnins, J. Barzdins, and E. Celms. Model
transformation language MOLA. In Proceedings of
MDAFA 2004 (Model-Driven Architecture:
Foundations and Applications 2004), pp. 14–28.
Linköping, Sweden, 2004.

[8] U. Nickel, J. Niere, and A. Zündorf. Tool
demonstration: The FUJABA environment. In The
22nd International Conference on Software
Engineering (ICSE). ACM Press, Limerick, Ireland,
2000.

[9] Object Management Group. CWM: Common
Warehouse Metamodel. http://www.omg.org.

[10] Object Management Group. Model Driven
Architecture — A Technical Perspective, 2001.
http://www.omg.org.

[11] A. Schürr, A. J. Winter, and A. Zündorf. In [5], chap.
The PROGRES Approach: Language and
Environment, pp. 487–550. World Scientific, 1999.

[12] Sun Microsystems. Enterprise Java Beans 3.0.

[13] J. D. Ullman, J. Widom, and H. Garcia-Molina.
Database Systems: The Complete Book. Prentice Hall,
2001.

[14] D. Varró. Automated Model Transformations for the
Analysis of IT Systems. Ph.D. thesis, Budapest
University of Technology and Economics, Department
of Measurement and Information Systems, 2004.

[15] D. Varró and A. Pataricza. VPM: A visual, precise
and multilevel metamodeling framework for describing
mathematical domains and UML. Journal of Software
and Systems Modeling, vol. 2(3):pp. 187–210, 2003.

[16] D. Varró and A. Pataricza. Generic and
meta-transformations for model transformation
engineering. In T. Baar, A. Strohmeier, A. Moreira,
and S. Mellor (eds.), Proc. UML 2004: 7th
International Conference on the Unified Modeling
Language, vol. 3273 of LNCS, pp. 290–304. Springer,
Lisbon, Portugal, 2004.

[17] G. Varró, A. Schürr, and D. Varró. Benchmarking for
graph transformation. Tech. rep., Budapest University
of Technology and Economics, 2005.
http://www.cs.bme.hu/~gervarro/publication/

TUB-TR-05-EE17.pdf.

[18] G. Varró, D. Varró, and K. Friedl. Adaptive graph
pattern matching for model transformations using
model-sensitive search plans. In G. Karsai and
G. Taentzer (eds.), GraMot 2005, International
Workshop on Graph and Model Transformations,
ENTCS. In press.

[19] A. Vizhanyo, A. Agrawal, and F. Shi. Towards
generation of efficient transformations. In G. Karsai
and E. Visser (eds.), Proc. of 3rd Int. Conf. on
Generative Programming and Component Engineering
(GPCE 2004), vol. 3286 of LNCS, pp. 298–316.
Springer-Verlag, Vancouver, Canada, 2004.

