
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Style-Based Modeling and Refinement of Service-Oriented
Architectures?

A graph transformation-based approach

Luciano Baresi1, Reiko Heckel2, Sebastian Thöne3, Dániel Varró4

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy – e-mail: baresi@elet.polimi.it
2 University of Leicester, Department of Computer Science, U.K. – e-mail: reiko@upb.de
3 University of Paderborn, International Graduate School Dynamic Intelligent Systems, Germany – e-mail: seb@upb.de
4 Budapest University of Technology and Economics, Department of Measurement and Information Systems, Hungary –

e-mail: varro@mit.bme.hu

Received: date / Revised version: date

Abstract Service-oriented architectures (SOA) pro-
vide a flexible and dynamic platform for implementing
business solutions. In this paper, we address the mod-
eling of such architectures by refining business-oriented
architectures, which abstract from technology aspects,
into service-oriented ones, focusing on the ability of dy-
namic reconfiguration (binding to new services at run-
time) typical for SOA.

The refinement is based on conceptual models of the
platforms involved as architectural styles, formalized by
graph transformation systems. Based on a refinement
relation between abstract and platform-specific styles
we investigate how to realize business-specific scenarios
on the SOA platform by automatically deriving refined,
SOA-specific reconfiguration scenarios.

Key words service-oriented architecture – architec-
tural style – architecture refinement – graph transfor-
mation

1 Introduction

The service-based paradigm to structure and modular-
ize software systems becomes more and more popular for
complex distributed applications with high degree of dy-
namic reconfigurations and interactions among system
components. This article focuses on the architectural
aspect of service-based software engineering and intro-
duces a methodology for deriving service-oriented archi-
tectures (SOA) from high-level business-oriented archi-
tecture descriptions.

? Research partially supported by the European Research
Training Network SegraVis (on Syntactic and Semantic In-
tegration of Visual Modelling Techniques)

Software architectures play an important role in soft-
ware development [42]. As abstract models of the run-
time structure they help to bridge the gap between user
requirements and implementation. In the context of e-
business, self-healing, or mobile systems, dynamic archi-
tectures gain more and more importance. They represent
systems that do not simply consist of a fixed, static struc-
ture, but can react to certain requirements or events by
run-time reconfiguration of its components and connec-
tions. Thus, models of dynamic architectures do not only
have to consider component structure and interactions,
but also dynamic changes of that structure.

Service-oriented architectures are one import kind of
dynamic architectures. They allow for automated ser-
vice publication and discovery at run-time. For instance,
whenever a service cannot be provided with the required
quality-of-service any longer, the service requester could
dynamically search for and change to a new service.

Designing such dynamic architectures is a complex
task because one has to cope with both business-driven
and platform-driven requirements: The business require-
ments prescribe certain component structures, interac-
tions, and reconfigurations which have to conform to the
interaction and reconfiguration mechanisms provided by
the underlying middleware platform.

We propose to deal with this complexity by a step-
wise refinement approach that covers various degrees
of platform abstraction. At first, the software architect
derives an abstract model of the architecture from the
user and business requirements. This model roughly cor-
responds to the conceptual architecture view proposed
in [23]. It mainly covers the functional aspects encapsu-
lated in business-related components. Such a business-
level architecture description abstracts from the concrete
middleware and run-time platform of the system, and it



2 Luciano Baresi et al.

omits elements that are needed to use platform-specific
communication and reconfiguration mechanisms.

For instance, a business-level architecture model de-
scribes business components and their interfaces but ne-
glects the distinction between ordinary components and
published service components. Consequently, it does not
contain any SOA-specific elements like service descrip-
tions and discovery services, either. Also, it elaborates
on the various use cases of the system by business-
oriented scenarios of component interactions, but it ne-
glects SOA-specific interactions and reconfiguration op-
erations required for service publication and discovery.

Only later in the design process, when the decision for
a service-oriented middleware platform has been made,
more and more non-functional requirements and SOA-
specific aspects are integrated into the core functionality.
This leads to a SOA-specific model of the application
architecture which refines both the structural and the
behavioral parts of the business-level model according
to the service-oriented paradigm.

A recent example of this general modeling principle is
the Model-Driven Architecture (MDA)1 [30] put forward
by the OMG. Here, platform-specific details are initially
ignored at the model-level to allow for maximum porta-
bility. Then, these platform-independent models are re-
fined by adding details required to map to a given tar-
get platform. Thus, at each refinement level, one imposes
more assumptions on the resources, constraints, and ser-
vices of the chosen platform.

In software architecture research, architectural styles
are used to describe families of architectures by com-
mon resource types, configuration patterns and con-
straints [2]. As Di Nitto and Rosenblum argue in [32],
the restrictions imposed by a certain choice of platform
can be considered as an architectural style, too. More-
over, to account for component interactions and plat-
forms that support dynamic reconfigurations like SOA,
we suggest in [4] to extend the classical notion of archi-
tectural style by defining not only structural constraints
but also platform-specific communication and reconfig-
uration mechanisms.

As described in [4], we formally define architectural
styles as graph transformation systems including type
graph, constraints, and transformation rules. Based on
that, we investigate refinement relationships between ab-
stract and concrete styles in [5]. They enable us to check
if a given architecture is a refinement of another one with
a special focus on the refinement of business-level scenar-
ios of communication and reconfigurations into platform-
specific scenarios.

Our refinement criteria guarantee both semantic cor-
rectness and platform consistency. This means that the
platform-specific scenario comprises the same functional
behavior as the business-level scenario, and that it is

1 www.omg.org/mda/

consistent with constraints and mechanisms imposed by
the chosen target platform.

In this article, we apply the approach to service-based
architectures and extend the SOA case study sketched
in [4]. We present a complete definition of the architec-
tural style for service-oriented architectures including all
relevant mechanisms for service publication, discovery
and connectivity. We also define an abstract, business-
level style and a refinement relationship between the ab-
stract and the SOA-specific style. Moreover, we show
how this relationship can be used to check for correct
architecture refinements and to derive SOA-specific sce-
narios from given business-level scenarios.

Since refinements can be tedious and error-prone, we
show how the behavior refinement problem can be for-
mulated as a reachability problem which can be solved
by classical graph transformation and model checking
tools. This allows, within the usual limitations, an au-
tomated refinement of business-level architectures into
SOA-specific architectures.

In order to account for user-friendly models, we also
discuss how to combine the formal, graph-based rep-
resentation of architectures with the Unified Modeling
Language (UML)2. For this purpose, we introduce an
extension of the UML meta-model, proposed as a UML
profile for service-oriented architectures in [19], and de-
fine a mapping between the profile and the elements of
the architectural style. This mapping can be used by ed-
itors and other tools to provide a user-friendly syntax
for complex architectural descriptions.

The rest of the article is organized as follows. In
Sect. 2, we introduce a typical service-based application
as running example for this article. In Sect. 3, we explain
how architectural styles can be used as conceptual plat-
form models for different levels of platform abstraction
and how they can be formalized by graph transformation
systems. We define an abstract style for business-level
architectures and a specific style for service-oriented ar-
chitectures. In Sect. 4, we discuss the use of UML and
UML profiles as concrete notation for the presented SOA
models. In Sect. 5, we define refinement relationships
between architectural styles and show how they can be
used in order to derive SOA-specific architectural models
from business-oriented models. We survey related work
in Sect. 7, and Sect. 8 concludes the article.

2 The SmartCar example

Throughout this article, we use a simple scenario, taken
from the automotive domain, to demonstrate the main
features of our approach. The scenario foresees how the
availability of special-purpose and context-sensitive ser-
vices will change our way of planning trips with our car.

While driving our car, we can inquire a map service
to get the best (cheapest) map of the area. Another ser-

2 www.uml.org



Style-Based Modeling and Refinement of Service-Oriented Architectures 3

vices computes the best itinerary to reach the final des-
tination. The computation is not only based on static
information, like the cheapest route (i.e., no fees) or the
fastest one (i.e., always on highways), but also uses ac-
tual traffic conditions to better plan the itinerary.

The first step towards design leads to a platform-
independent architecture that can be informally depicted
by means of the UML component diagrams of Fig. 1.

The scenario can be enacted by means of the four
special-purpose components of Fig. 1, which specify their
interaction ports in terms of required and supplied in-
terfaces. The Vehicle is the only active component which
starts the scenario and acts as coordinator of any dy-
namic interaction. The MapRequest component provides
both the best (highest resolution) or cheapest map. Since
we do not aim at discussing the way services and their
parameters can be negotiated, it is the service itself that
supplies the best option without negotiating parameters.
The ItineraryDefinition component complements bought
maps with the itineraries we choose. Again, we allow for
the cheapest and fastest itineraries. This component in-
teracts with the TrafficInformation system to identify the
fastest trip with respect to the actual traffic conditions.

1

v:Vehicle m:MapRequestp2:Map-
Provider

p3:Itinerary-
Requester

Configuration
(UML Communication Diagram):

p1:Map-
Requester

MapConnector
{new}

i:ItineraryDefinition t:TrafficInformation

p4:ItineraryProvider

p7:Info-
Requester

p8:Info-
Provider

TrafficInfoConnector
{transient}

ItineraryConnector {new}

Fig. 1 Component diagram of the SmartCar system

Since the vehicle moves around a region, the actual
components must be identified and used while the system
is executed in a fully dynamic fashion. This means that
the actual links among the components change while the
scenario evolves. These changes are constrained by avail-
able reconfiguration mechanisms.

In the component diagram, those reconfigurations are
indicated by attachments to affected elements: {new} for
newly created connections and {transient} for connec-
tions that are created and then removed after a while.

System requirements also include certain scenarios of
component interaction. For instance, as shown in Fig. 2,
Vehicle (i.e., the driver) asks the MapRequest for the best
map of the area. It also selects the itinerary to reach its
final destination. For this purpose, it queries Itinerary-
Definition, which in turn queries the TrafficInformation
service to select the fastest offer.

After the platform-independent model, the next de-
velopment phase requires the selection of a specific plat-
form the system should be deployed on. Similar to the

1

v :Vehicle

inquireMap()

maps

selectMap()

getTrafficInfo()
info

itineraries

m :Map-
Request

i :Itinerary-
Definition

t :Traffic-
Information

askForItineraries()

sd plan trip

Fig. 2 Simple scenario of the SmartCar system

intentions of MDA [30], the platform-independent model
is in principle portable to different platforms. In this
case, the development team decides to implement the
SmartCar system based on a service-oriented architec-
ture (SOA), e.g., Web Services. This means that the
business components expose their functionality as ser-
vices over a network to vehicles. A service is equipped
with a description of the provided functionality including
information where and how to access it.

As shown in Fig. 3, SOA involves three different roles:
service providers, service requesters and discovery agen-
cies. The service provider runs and exposes the service.
Also, the provider has to publish the service description,
in order to enable dynamic service discovery and to allow
requesters to access the service.

Since providers and requesters usually do not know
each other in advance, the service descriptions are pub-
lished via third-party discovery agencies. They catego-
rize the descriptions and deliver them in response to
queries issued by service requesters. As soon as the ser-
vice requester retrieves a service description that meets
its requirements, it can use it to interact with the service.

1

Discovery
Agency

Discovery
Agency

Service
Requestor
Service

Requestor
Service
Provider
Service
Provider

Service
Description

Service
Description

Interact

PublishQuery

Service
Requirements

Fig. 3 Roles in a service-oriented architecture, cf. [9]

Service-oriented architectures are highly dynamic
and flexible: Components and services are only loosely
coupled and communicate according to standardized



4 Luciano Baresi et al.

protocols; service descriptions with interface specifica-
tions are exchanged at runtime; thus, service requesters
can dynamically replace unsatisfactory services if other
services provide a better alternative concerning function-
ality or quality. This might also become necessary for
self-healing purposes, e.g., if a service is not reachable
any longer due to some network problems.

To integrate SOA-specific features like service dis-
covery into system design, we refine the business-level
architecture into a SOA-specific architecture. This does
not only involve structural refinements like introducing
discovery services and service descriptions but also be-
havioral refinement of the reconfiguration scenarios. For
instance, the creation of a new connection to a service
might require service discovery operations beforehand.

In the following sections, we show how our refine-
ment approach can be applied to this sample application.
We explain the use of architectural styles as conceptual
platform models and how the architectural models can
be expressed in terms of these styles. Then, we exem-
plify our notion of behavioral refinement between a style
for platform-independent architectures and a style for
service-oriented architectures.

3 Architectural styles as platform models

In this section, we revisit our approach from [4] to
use architectural styles as conceptual platform models
which are formalized as typed graph transformation sys-
tems [11]. After a brief introduction to graph transforma-
tions, we present a platform-independent architectural
style for business-level architectures and a platform-
specific architectural style for service-oriented architec-
tures.

As we want to model software architectures in re-
lation to their computational infrastructure at differ-
ent levels of platform abstraction, we need a conceptual
model for each of these infrastructures. For such a con-
ceptual platform model, we consider the following four
requirements:

1. It has to define the vocabulary of elements that are
to be considered in an architecture description for
the chosen platform. In an architecture description,
the engineer can then use this vocabulary to define
application-specific types as well as runtime configu-
rations of these types.

2. It has to define and constrain the relationships that
are allowed among the various architectural elements
of the vocabulary.

3. It has to define the communication mechanisms that
are provided by the platform to let the architec-
tural elements interact. An architect who wants to
design interaction scenarios among software compo-
nents can then use these communication mechanisms
in the scenarios.

4. It has to define the reconfiguration mechanisms that
are provided by that platform to let a dynamic ar-
chitecture evolve at runtime and to change its cur-
rent configuration. An architect who wants to design
scenarios of architectural behavior can then include
reconfigurations that conform to these mechanisms
in the scenarios.
Since a platform model constrains the possible appli-

cation architectures according to the assumptions about
the underlying platform, it can also be considered as an
architectural style that characterizes the family of archi-
tectures which conform to the platform-specific restric-
tions and mechanisms.

While the classical notion of architectural style covers
structural constraints only like common vocabulary and
topological patterns [2], we extend this notion by also
taking into account the communication and reconfigura-
tion mechanisms as required above. For this purpose, we
represent architectural styles as typed graph transforma-
tion systems.

A typed graph transformation system G =
〈TG, C,R〉 consists of a type graph TG to define the
architectural elements and their relationships, a set of
constraints C to further restrict the valid models, and a
set R of graph transformation rules.

Nodes of the type graph define the architectural el-
ements, i.e., the vocabulary of the architectural style.
Edges define the possible links and relationships among
these elements. A type graph can be depicted as a UML
class diagram as shown in Fig. 4. We can also define sub-
types, which inherit all the associations of its supertype,
and attributes, which describe additional properties of
the respective element.

We use the vocabulary in a concrete application ar-
chitecture by representing system configurations as in-
stance graphs of the type graph. According to [11], a
valid instance graph G ∈ GraphTG has to be equipped
with a structure-preserving mapping to the fixed type
graph TG, formally expressed as a graph homomorphism
tpG : G → TG. In combination with the UML class dia-
gram for the type graph, we use UML object diagrams to
depict instance graphs. One can assign attribute values
to the instances in an object diagram in order to add
information about their current state.

Along with the type graph comes the set C of con-
straints that further restrict the set of valid instance
graphs. Simple constraints already included in the class
diagrams are cardinalities that restrict the multiplicity of
links between the elements (omitted cardinality means
0..n by default). More complex restrictions can be de-
fined, e.g., using expressions of the Object Constraint
Language (OCL) [33], which is part of the UML. To-
gether, the type graph and the constraints satisfy the
first two requirements stated above for platform models.

The third and fourth requirement are handled by
graph transformation rules. They represent both com-
munication and reconfiguration mechanisms provided by



Style-Based Modeling and Refinement of Service-Oriented Architectures 5

the considered platform. Examples for such rules can be
found in Table 1.

The application of a transformation rule to an in-
stance graph results in rewriting a certain part of that
graph. Since, in our case, instance graphs represent sys-
tem configurations, the transformation rules are well-
suited to model reconfiguration mechanisms that can be
applied to change the system configuration.

In order to treat communication mechanisms in the
same way, we have to encode communication-related in-
formation into the instance graphs. For this reason, we
add dedicated nodes to the type graph which represent,
e.g., messages with edges to their sender, receiver, and
current position. Then, special transformation rules can
be defined to create and transmit messages.

Altogether, the consecutive applications of transfor-
mation rules to a given instance graph, also called a
transformation sequence, can be used to model a certain
scenario of both reconfiguration and communication op-
erations.

Formalization: Formally, a graph transformation rule
r : L ; R consists of a pair of TG-typed instance graphs
L,R such that the intersection L∩R is well-defined (this
means that, e.g., edges which appear in both L and R are
connected to the same vertices in both graphs, or that
vertices with the same name have to have the same type,
etc.). The left-hand side L represents the pre-conditions
of the rule while the right-hand side R describes the
post-conditions.

According to the Double-Pushout semantics [14], the
application of a transformation rule r to a host graph
G, yielding a direct transformation step G

r,oL=⇒ H, is
performed in three steps:

1. Find an occurrence oL of the left-hand side L in the
current host graph G, formally a structure-preserving
graph morphism oL : L → G.

2. Remove all the vertices and edges from G which are
matched by L \ R. We must also be sure that the
remaining structure D := G\oL(L\R) is still a legal
graph, i.e., that no edges are left dangling because of
the deletion of their source or target vertices. In this
case, the dangling condition [14] is violated and the
application of the rule is prohibited.

3. Glue D with a copy of R \ L to obtain the derived
graph H. We assume that all newly created nodes
and edges get fresh identities, so that G ∩H is well-
defined and equal to the intermediate graph D.

A transformation sequence s = (G0
r1,o1=⇒ · · · rn,on=⇒

Gn) in G, briefly G0 ⇒∗
G Gn, is a sequence of consecutive

transformations using the rules of G such that all graphs
G0, . . . , Gn satisfy the constraints C. As above, we as-
sume that fresh identifiers are given to newly created el-
ements, i.e., ones that have not been used before in the
transformation sequence. In this case, for any i < j ≤ n
the intersection Gi ∩ Gj is well-defined and represents

that part of the structure which has been preserved in
the transformation from Gi to Gj .

After this introduction to graph transformation the-
ory, we now illustrate the concepts by two sample
graph transformation systems that represent architec-
tural styles for business-level and service-oriented archi-
tectures. Later in the article, these styles are used to
demonstrate the stepwise refinement approach for de-
veloping complex, service-oriented architectures.

3.1 A style for business-level architectures

The first architectural style we define represents a
high level of platform abstraction and can be used for
business-level architecture descriptions. At the business
level, we do not want to consider platform-specific as-
pects but concentrate on core functionalities. Therefore,
we avoid as many assumptions as possible about the
underlying platform and assume a basic computational
infrastructure for component-based, distributed systems
only.

As usual in architecture descriptions [42], the style
prescribes to use components and connectors as first-
class entities to configure a system architecture. Compo-
nents are considered as encapsulated black boxes which
can communicate with their environment through ded-
icated ports only. Ports are characterized by provided
and required interfaces. Two components can only in-
teract with each other if their ports are connected by a
connector.

1

Component-
Type

PortTypeInterface
provides
requires

Connector-
Type Connector

Component

connects
2

allows

1

1

1

1
ownssupports

isInstanceOf

isInstanceOf

isInstanceOf

Operation

Type graph:

defines

1 2

Port
used:Boolean

0..1

0..1

sentVia0..1

respondsTo
1

receives
sends

Request Response

0..1

calls 0..1

Message

Fig. 4 Type graph of the business-level style

Type graph: The type graph of the style is shown in
Fig. 4. It can be subdivided into two parts: The left half
contains elements to define application-specific types,
i.e., the ComponenTypes, the supported PortTypes (in-
cluding provided and required Interfaces), and the Con-
nectorTypes. The right half of the diagram contains el-
ements to define the runtime configuration of a system
with Components, Ports, and Connectors, i.e., concrete
instances of the aforementioned types respectively.



6 Luciano Baresi et al.

Consequently, instance graphs of the type graph de-
scribe both application-specific types as well as runtime
configurations of concrete instances thereof. The type in-
formation allows, e. g., to determine the interfaces pro-
vided or required by a certain component. Moreover, the
transformation rules presented below need to access the
type information in order to check type compatibility
when creating new instances. Note that the same tech-
nique of including elements for both application types
and runtime instances in a single type graph is also used
in the UML meta-model [34].

Attributes can be used to store additional informa-
tion in a node. For example, we add the boolean at-
tribute used to the Port node in order to distinguish be-
tween free and already used ports. The current value of
the attribute can be queried, e.g., before a transforma-
tion rule is applied. For instance, the rule openPort in
Tab. 1 can only be applied to open a new port for a
component if there is no other free port left.

As mentioned before, we have to include special com-
munication elements in the type graph in order to ex-
press communication mechanisms by graph transforma-
tion rules. For this reason, the type graph contains a
Message node which is specialized into subtypes Request
and Response.

Constraints: Besides the cardinalities given in the class
diagram, there is a set of additional OCL constraints
which further exclude undesired instance graphs. For ex-
ample, the following expression ensures that a Connector
only connects those Ports whose PortTypes are allowed
by its ConnectorType:

context Connector inv:

self.port.portType -> forAll(pt|

self.connectorType.portType -> includes(pt))

With the help of the type graph and the constraints,
we can now model system configurations as instance
graphs that conform to the business-level style. Figure 5
shows an example which models the initial configuration
of the SmartCar system.

1

isInstanceOf
m:Component MapRequest

:ComponentType
MapProvider

:PortType
supports

t:Component

v:Component

i:Component

Vehicle
:ComponentType

ItineraryDefinition
:ComponentType

TrafficInformation
:ComponentType

MapRequester
:PortType

ItineraryRequester
:PortType

ItineraryProvider
:PortType

InfoRequester
:PortType

InfoProvider
:PortType

isInstanceOf
supports

supports

isInstanceOf
supports

supports

isInstanceOf supports

MapConnector
:ConnectorType

TrafficInfo-
Connector

:ConnectorType

Itinerary-
Connector

:ConnectorType

allows

allows

allows

allows

allows

allows

Fig. 5 Instance graph for the SmartCar application

Although such instance graphs may easily become
large and unreadable, they are still suitable as formal
representation inside tools. In order to facilitate the han-
dling of larger models by end users, we recommend to ap-
ply the UML as concrete notation as discussed in Sect. 4.

Transformation rules: The architectural behavior of
our models depends on the communication and recon-
figuration mechanisms provided by the infrastructure or
the platform. For the business-level style, we assume that
ports can be opened or closed and that connectors can
be created or removed, but we abstract from mechanisms
for finding the right partner components and defer this
question to the platform-specific style. Moreover, we as-
sume a basic communication mechanism which is based
on message exchange via established connectors.

These mechanisms are defined by the graph transfor-
mation rules listed in Table 1. As an example, consider
the first rule openPort which creates a new port for a
component. The pre-condition on the left-hand side de-
mands that the type of the component supports the type
of the port to be created.

As we want to avoid that the rule is applied again
and again to the same component creating an unbounded
number of ports, we add a negative application condition
to the rule. Such a negative condition is depicted by
crossed-out elements like, e.g., the Port node p in rule
openPort. It prevents the application of the rule to any
occurrence of the left-hand side which can be extended
by the crossed-out elements. In the case of openPort, this
means that the rule is only applicable if the component
does not already own a free port of the selected port
type.

According to the right-hand side of openPort, a rule
application results in the creation of a new port for the
component. While on the left-hand side one can query
attribute values, at the right-hand side one can assign
attribute values. In this case, the value of the used at-
tribute of the new port is initially set to false.

With these remarks, we believe that the rest of Tab. 1
should be self-explanatory. It contains further rules to
create or remove connections, to send or receive requests
and responses, and to remove finished messages.

Table 1 Transformation rules of the generic style

1

openPort

c:Component

pt:PortTypesupportsct:Component-
Type

isInstanceOf

owns

isInstanceOf

p:Port
used==false

closePort

c:Component owns p:Port
used==true

pt:PortType

isInstanceOf

c:Connector

connects

c:Component

pt:PortType

c:Component

pt:PortTypesupportsct:Component-
Type

isInstanceOf

owns p:Port
used:=false

isInstanceOf

openPort:
If a component does not own a free port of a supported
port type, this rule creates one.



Style-Based Modeling and Refinement of Service-Oriented Architectures 7

1

openPort

c:Component

pt:PortTypesupportsct:Component-
Type

isInstanceOf

owns

isInstanceOf

p:Port
used==false

closePort

c:Component owns p:Port
used==true

pt:PortType

isInstanceOf

c:Connector

connects

c:Component

pt:PortType

c:Component

pt:PortTypesupportsct:Component-
Type

isInstanceOf

owns p:Port
used:=false

isInstanceOf

closePort:
If a used port is not any longer connected to a connector,
this rule deletes the port.

1

connect

c1
:Component

owns

pt1:PortType
isInstanceOf

supports

ct1
:ComponentType

isInstanceOf

c2
:Component

owns

pt2:PortType
isInstanceOf

supports

ct2
:ComponentType

isInstanceOf

conT
:ConnectorType

allows

allows

con:Connector

connects

connects

isInstanceOf

port1:Port
used:=true

port2:Port
used:=true

c1
:Component

owns

pt1:PortType
isInstanceOf

supports

ct1
:ComponentType

isInstanceOf

c2
:Component

owns

pt2:PortType
isInstanceOf

supports

ct2
:ComponentType

isInstanceOf

conT
:ConnectorType

allows

allows

port1:Port
used==false

port2:Port
used==false

connect:
If two components own a free port each and there is a com-
patible connector type, this rule creates a new connector
between the two ports.

1

disconnect

port1:Port

port2:Port

conT
:ConnectorType

c
:Connector

connects

connects

isInstanceOf

port1:Port

port2:Port

conT
:ConnectorType

m:Message
sentVia

disconnect:
If a connector between two ports does currently not trans-
port any message, it can be removed by this rule.

1

callOperation

receiveCall

receives

r:Request
sends

sentVia
calls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation

defines

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation

defines

r:Request

sends

sentViacalls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation
defines

receives

r:Request

sends

sentViacalls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation
defines

callOperation:
If a port is connected to another port that provides a
certain operation, then the port can send a request calling
that operation.

1

callOperation

receiveCall

receives

r:Request
sends

sentVia
calls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation

defines

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation

defines

r:Request

sends

sentViacalls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation
defines

receives

r:Request

sends

sentViacalls

to:Port

con:Connector

from:Port

connects

connects

pt:PortType
isInstanceOf

i:Interface

provides

op:Operation
defines

receiveCall:
The port providing an operation can receive new incoming
calls from connected ports by this rule.

1

sendResponse

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends respondsTo

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends

respondsTo

receiveResponse

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
receives respondsTo

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
respondsToreceives

finishRequestResponse

port1:Port

con:Connector

connects

r:Request

sends

sentVia resp
:Response

sentVia

receives

respondsTo

port2:Port

connects

sends receives

op:Operation

calls

port1:Port

con:Connector

connects

port2:Port

connects

op:Operation

sendResponse:
If a port has received a request, this rule sends a response.

1

sendResponse

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends respondsTo

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends

respondsTo

receiveResponse

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
receives respondsTo

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
respondsToreceives

finishRequestResponse

port1:Port

con:Connector

connects

r:Request

sends

sentVia resp
:Response

sentVia

receives

respondsTo

port2:Port

connects

sends receives

op:Operation

calls

port1:Port

con:Connector

connects

port2:Port

connects

op:Operation

receiveResponse:
The port sending a request can receive a corresponding
response by this rule.

1

sendResponse

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends respondsTo

port1:Port con:Connector
connects

r:Request
receives

sentVia

resp:Response

sentVia
sends

respondsTo

receiveResponse

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
receives respondsTo

port1:Port con:Connector
connects

r:Request
sends

sentVia

resp:Response

sentVia
respondsToreceives

finishRequestResponse

port1:Port

con:Connector

connects

r:Request

sends

sentVia resp
:Response

sentVia

receives

respondsTo

port2:Port

connects

sends receives

op:Operation

calls

port1:Port

con:Connector

connects

port2:Port

connects

op:Operation

finishRequestResponse:
This rule removes finished request and response messages.

1

finishRequest
port1:Port

con:Connector

connects

r:Request sentVia

resp
:Response

receives

respondsTo

port2:Port

connects

sends

op:Operation

calls

port1:Port

con:Connector

connects

port2:Port

connects

op:Operation

finishRequest:
This rule removes a finished request message which did
not get a response.



8 Luciano Baresi et al.

After having introduced the transformation rules, we
can apply them to the initial configuration of the Smart-
Car system shown in Fig. 5. This way, we can formally
model the SmartCar scenario from Sect. 2 as a transfor-
mation sequence. The beginning of the transformation
sequence is partially shown in Fig. 6.

1

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==true
owns

isInstanceOf

p2:Port

used==true
owns

isInstanceOf

con
:Connector

connectsconnects

isInstanceOf

openPort

openPort

connect

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

p1:Port

used==false
owns

isInstanceOf

isInstanceOf

m:Component

MapRequest
:ComponentType

MapProvider
:PortType

supports

v:Component

Vehicle
:ComponentType

MapRequester
:PortType

isInstanceOf

supports MapConnector
:ConnectorType

allowsallows

Fig. 6 Transformation sequence for the SmartCar scenario
in the business style

3.2 A style for service-oriented architectures

While the above presented architectural style can be
used for modeling at the platform-independent level, the
following subsection presents a style for service-oriented
architectures as introduced in Sect. 2. It extends the
platform-independent style by SOA-specific concepts like
service publication and discovery. In Sect. 5, we then ex-
plain how business-level architecture models and scenar-
ios can be refined to the SOA style.

The SOA style does not model any vendor-specific
platform. It rather represents the general SOA-specific
mechanisms for service publication and service discov-
ery. Other aspects that go beyond like quality-of-service,
security, or mobility can be represented by even more
specific styles which form a refinement hierarchy down
to vendor-specific platform models. Our stepwise refine-
ment approach can then be extended to this hierarchy.

Type graph: Figures 7 and 8 show the type graph of the
SOA style. Due to the increased complexity, the class di-
agram is subdivided into two separate packages, Struc-
ture and Communication. They contain the same types

as the platform-independent type graph from Fig. 4 but
specialize some of them by subtyping and add further
types for SOA.

1

ComponentType

PortTypeInterface
provides
requires

Connector
Type Connector

Component

DiscoveryService

Service

connects

2
allows

1

1

1

1

owns
supports

isInstanceOf

isInstanceOf

isInstanceOf

Operation

ServiceType

Type graph (part I: Package Structure):

Discovery-
ServiceTypedefines

1

FindPT
PublishPT

RequesterPT

ProviderPT
2

Port
used:Boolean

Fig. 7 Type graph of SOA style (package Structure)

1

Port
(from Structure)

Service-
Description

Connector
(from Structure)

connects
2

Message

Service-
Query

Service-
Publication

0..1

0..1

sentVia0..1

1
1

requires-
ServiceForpublishes

respondsTo
1

sends
receives

Query-
Result

contains

Type graph (part II: Package Messages):

Request Response

Operation
(from Structure)

0..1

calls

PortType
(from Structure)

1
Service

(from Structure)

Component
(from Structure)

knows

describes

0..1

1

satisfies

resultOf
1 0..1

Fig. 8 Type graph of SOA style (package Communication)

The first package Structure (Fig. 7) contains sub-
types of Component which can be used to declare soft-
ware components as Service or, if functioning as discov-
ery agency, as DiscoveryService. ComponentType is spe-
cialized accordingly. Also, there are special subtypes of
PortType which are used to define dedicated port types
for interactions with discovery services.

The second package Communication (Fig. 8) extends
the elements for message-based communication known
from the business style. The central SOA element here
is ServiceDescription which describes a specific Service (in
SOA, descriptions refer to deployed, addressable services
rather than to service types only). The knows relation-
ship indicates which components have access to a de-
scription. The existence of such a knows relationship is



Style-Based Modeling and Refinement of Service-Oriented Architectures 9

a precondition for connecting to a service as shown by
the transformation rule connect in Table 2.

Besides the already known Request and Response
messages, there are three special SOA message types for
interactions with discovery services, namely ServicePubli-
cation, ServiceQuery, and QueryResult. The first one sub-
mits a service description to a discovery service for pub-
lication, the second one refers to a port type which the
service requester requires a suitable service for, and the
third one is returned by the discovery service containing
a description that satisfies the query.

Constraints: Along with the extended type graph
comes an extended set of constraints which we do not
present in detail here. For instance, they ensure that
a DiscoveryServiceType always supports port types of
kind PublishPT and FindPT. Also, they restrict possi-
ble sender and receiver ports for SOA-specific messages;
e.g., a ServicePublication message can only be sent from
ProviderPT ports to PublishPT ports.

We can now model the initial configuration of the
SmartCar system in the SOA style. We take the business-
level instance graph from Fig. 5 and change all compo-
nents except for Vehicle into the new SOA types Service
and ServiceType. We attach a ServiceDescription to all
services. Furthermore, we add a DiscoveryService which
is used to dynamically discover services. Additional port
types are inserted to enable communication with the Dis-
coveryService. The result is shown in Fig. 9.

1

isInstanceOf
m:Service MapRequest

:ServiceType
MapProvider

:PortType
supports

t:Service

v:Component

i:Service

Vehicle
:ComponentType

ItineraryDefinition
:ServiceType

TrafficInformation
:ServiceType

MapRequester
:PortType

ItineraryRequester
:PortType

ItineraryProvider
:PortType

InfoRequester
:PortType

InfoProvider
:PortType

isInstanceOf

isInstanceOf

supports

isInstanceOf

supports

MapConnector
:ConnectorType

TrafficInfo-
Connector

:ConnectorType

Itinerary-
Connector

:ConnectorType

allows

allows

allows

allows

allows

allows

d:Discovery-
Service

Discovery-
Engine

:Discovery-
ServiceType

QueryPort
:FindPT

isInstanceOf
supports PublicationPort

:PublishPT

supports

mapDesc:
ServiceDescriptiondescribes

itineraryDesc:
ServiceDescription

describes

trafficDesc:
ServiceDescriptiondescribes

discoveryDesc:
ServiceDescription

describes

knows

knows

knows

knows

ServiceRequester
:RequesterPT

ServiceProvider
:ProviderPT

QueryConnector
:ConnectorType

allows
allows

Publication-
Connector

:ConnectorType

allows

supports

supports

allows

supports

supports

Fig. 9 SOA-specific instance graph for the SmartCar system

Since SOA-specific instance graphs become larger
and more complex than the platform-independent ones,

their readability decreases. In Sect. 4, we explain how
to define a mapping between the type graph and a cus-
tomized version of the UML meta-model in order to al-
low for a better concrete notation.

Transformation rules: Similarly to the type graph, the
SOA style also inherits the transformation rules defined
for the business style in Table 1. The only rule that is
modified is the rule connect. Its SOA-specific variant,
shown at the beginning of Table 2, has a stronger pre-
condition demanding that a Component knows the Ser-
viceDescription of a requested Service before a Connector
to the service can be created.

In order to establish the required knows relationship,
a number of other SOA-specific rules have to be applied
first, which model the mechanisms for service publication
and query. These additional rules are found in Table 2
after the connect rule.

There are three rules dealing with service publica-
tions and six rules dealing with service queries. After
a query has been submitted (sendServiceQuery) and re-
ceived by the discovery service (receiveServiceQuery), the

Table 2 Transformation rules of the SOA style

1

connect

c
:Component

owns

pt1:PortType
isInstanceOf

supports

ct
:ComponentType

isInstanceOf

s:Service

owns

pt2:PortType
isInstanceOf

supports

st:ServiceType
isInstanceOf

conT
:ConnectorType

allows

allows

port1:Port
used:=true

port2:Port
used:=true

sd:Service
Description

knows

describes

con:Connector

connects

connects

isInstanceOf

c
:Component

owns

pt1:PortType
isInstanceOf

supports

ct
:ComponentType

isInstanceOf

s:Service

owns

pt2:PortType
isInstanceOf

supports

st:ServiceType
isInstanceOf

conT
:ConnectorType

allows

allows

port1:Port
used==false

port2:Port
used==false

sd:Service
Description

knows

describes

connect:
With this rule, a component is connected to a service only
if the service description is known.

1

s:Service

sendServicePublication

port1:Port

con:Connector

owns

connects

pt1:ProviderPT
isInstanceOf

sd:Service-
Description

describes

sp:Service-
Publication

sends

sentVia

publishes

port2:Port pt2:PublishPT
isInstanceOf

connects

s:Service

port1:Port

con:Connector

owns

connects

pt1:ProviderPT
isInstanceOf

sd:Service-
Description

describes

port2:Port pt2:PublishPT
isInstanceOf

connects

sendServicePublication:
A service submits its description to a discovery service.



10 Luciano Baresi et al.

1

receiveServicePublication

receives

sp:Service-
Publication

sends

sentVia

port1:Port

con:Connector

owns

connects

pt1:ProviderPT
isInstanceOf

d:Discovery-
Service

port2:Port pt2:PublishPT
isInstanceOf

connects
receives

sp:Service-
Publication

sends

sentVia

port1:Port

con:Connector

owns

connects

pt1:ProviderPT
isInstanceOf

d:Discovery-
Service

port2:Port pt2:PublishPT
isInstanceOf

connects

receiveServicePublication:
A discovery service receives a new request for publication.

1

publishServiceDescription

sd:Service-
Description

publishes

knows

receives

sp:Service-
Publication

sends

sentVia

port1:Port

con:Connector

owns

connects

di:Discovery-
Service

port2:Port

connects

sd:Service-
Descriptionport1:Port

con:Connector

owns

connects

di:Discovery-
Service

port2:Port

connects

publishServiceDescription:
The discovery service stores the description of the service
to be published.

1

sendServiceQuery

sq:Service-
Query

sentVia

sends

requires-
Service-
For

supports

pt:PortType

supports

c:Component

port1:Port

con:Connector

owns

connects

pt1:Re-
questerPT

isInstanceOf

comp:
ComponentType

port2:Port pt2:FindPT
isInstanceOf

connects

isInstanceOf

supports

pt:PortType

supports

c:Component

port1:Port

con:Connector

owns

connects

pt1:Re-
questerPT

isInstanceOf

comp:
ComponentType

port2:Port pt2:FindPT
isInstanceOf

connects

isInstanceOf

sendServiceQuery:
A component sends a service query to a discovery service.

1

receiveServiceQuery

sq:Service-
Query

sentVia

receives

d:Discovery-
Service

port1:Port

con:Connector

owns

connects

pt:FindPT
isInstanceOf

port2:Port

connects
sends

sq:Service-
Query

sentVia

receives

d:Discovery-
Service

port1:Port

con:Connector

owns

connects

pt:FindPT
isInstanceOf

port2:Port

connects
sends

receiveServiceQuery:
A discovery service receives a service query.

1

findService

pt1:PortType

requires-
ServiceFor

sd:Service-
Description

knows

s:Service

isInstanceOf

describes

st:Service-
Type

pt2:PortType

supports

conT
:ConnectorType

allows allows

satisfies

sq:Service-
Query

receives

d:Discovery-
Service

port1:Port

owns

pt1:PortType

requires-
ServiceFor

sd:Service-
Description

knows

s:Service

isInstanceOf

describes

st:Service-
Type

pt2:PortType

supports

conT
:ConnectorType

allows allows

satisfies

sq:Service-
Query

receives

d:Discovery-
Service

port1:Port

owns

findService:
The discovery service selects an appropriate service de-
scription which satisfies the service query. This is the case
if there is a compatible connector type for the port types
of requester and provider.

1

sendQueryResult

qr:Query-
Result

sentVia
sends

contains

resultOf

sd:Service-
Description

knows

satisfies

sq:Service-
Query

sentVia
receives

d:Discovery-
Service

p:Port con:Connectôr

owns

connects

sd:Service-
Description

knows

satisfies

sq:Service-
Query

sentVia

receives

d:Discovery-
Service

p:Port con:Connector

owns

connects

sendQueryResult:
The discovery service sends a response with a satisfying
service description.

1

receiveQueryResult

p:Port con:Connector
connects

sq:Service-
Query

sentVia
sends

qr:Query-
Result

sentVia
receives

resultOf

p:Port con:Connector
connects

sq:Service-
Query

sentVia
sends

qr:Query-
Result

sentVia
receives

resultOf

receiveQueryResult:
The service requester receives the result of a query.

1

saveQueryResult

c:Component

owns

sd:Service-
Description

contains

knows

p:Port con:Connectorconnects

sq:Service-
Query

sentVia
sends

qr:Query-
Result

sentVia
receives

resultOf

satisfies
c:Component

owns

sd:Service-
Description

p:Port con:Connectorconnects

saveQueryResult:
The service requester finishes the query communication
and stores the description of the found service.



Style-Based Modeling and Refinement of Service-Oriented Architectures 11

rule findService is applied to decide which service descrip-
tion satisfies the query. A necessary condition is that
there exists a ConnectorType which allows the connec-
tion of the requester port type and the port type of
the service. If there are several candidates, the rule is
applied non-deterministically since we abstract from de-
tailed specification matchings in this style.

4 UML Notation for SOA-specific models

Graph transformation is a powerful formalism but, at the
same time, rather difficult to use in practice because in-
stance graphs easily grow very large. Also, the proposed
notation for instance graphs does not provide a symbolic
distinction between different element types which makes
it difficult to read the diagram.

To address these problems, we propose to use the
graph representations as underlying formalism, which
can internally be handled by tools, and to place a user-
friendly notation layer like the Unified Modeling Lan-
guage (UML) on top. UML is a well-known modeling
language and the de-facto standard for object-oriented
modeling in industry.

Another advantage of UML is its built-in extension
mechanism [34]. In our case, this mechanism can be used
to provide a distinguished notation for style-specific ele-
ments that are not represented by the UML core. For this
purpose, one defines a UML profile that consists of so-
called stereotypes. Each stereotype extends and adapts
classes of the UML meta-model by defining refined se-
mantics, additional attributes, constraints, and, option-
ally, a new distinguished notation.

While the standard UML might be sufficient to model
platform-independent architectures (cf. [29]), we propose
to define dedicated UML profiles for platform-specific
models. Following the tradition of [39,29], we choose an
existing meta-class from the UML meta-model that is se-
mantically close to a construct from the platform-specific
architectural style and define a stereotype that can be
applied to instances of that meta-class to constrain its
semantics to that of the architectural style.

The correspondence between the resulting UML
models and their equivalent graph-based representation
can be maintained by special conversion tools as de-
scribed in Sect. 6. Based on a mapping between the (ex-
tended) UML meta-model and the type graph of the cor-
responding architectural style, such tools can translate
between the UML models exported from a CASE-tool
and the corresponding graph-based representation.

Below, we apply the concept to our service-oriented
style. At first, we define a UML profile for SOA as a set of
stereotypes that extend selected classes of the UML 2.0
meta-model. Then, we provide a notation guide for these
new stereotypes. Eventually, we define the mapping be-
tween the SOA type graph and the extended UML meta-
model as conceptual basis for conversions between the
two representations.

Stereotypes: Figure 10 defines the SOA-specific stereo-
types for the UML 2.0 meta-model. The extended UML
meta-classes are shown at the top of the diagram, the
corresponding stereotypes below the dashed line. The
extension relationship is indicated by arrows with small,
filled arrow-head. Stereotypes can be specialized by sub-
types.

1

«profile» SOA

«metaclass»
Class

«stereotype»
PortType

«metaclass»
Association

«stereotype»
Connector

«metaclass»
Component

«metaclass»
Instance-

Specification

«stereotype»
Service

«stereotype»
Discovery-

Service

«metaclass»
Port

«stereotype»
PublishPort

«stereotype»
FindPort

«metaclass»
Dependency

«stereotype»
Knows-

Dependency

«stereotype»
Describes-

Dependency

«stereotype»
PublishPT

«stereotype»
FindPT

«stereotype»
RequesterPT

«stereotype»
ProviderPT

«metaclass»
Artifact

«stereotype»
Service-

Description

Fig. 10 Stereotypes of the UML profile for SOA

Port types and connector types can be modeled with
class diagrams. Thus, we introduce the stereotype Port-
Type and its sub-stereotypes as extensions of the UML
meta-class Class. Associations between these port type
classes model connector types and are marked by the
stereotype Connector. In the same class diagram, one can
also specify the interfaces that a port type provides and
requires (cf. Fig. 11).

With the help of the two stereotypes Service and Dis-
coveryService, we can label components that are to be
exposed as services. Since services occur as both types
and instances thereof, these stereotypes can be attached
to the meta-classes Component as well as InstanceSpecifi-
cation. These constructs are used in component diagrams
(cf. Fig. 12), where we can also specify which port types
from the aforementioned class diagram are supported by
a component or service type, and in communication or
sequence diagrams modeling interactions between vari-
ous (instances of) components and services.

UML 2.0 knows the notion of Port as an interaction
point to a component instance. Thus, we do not need a
separate stereotype for ports in general. But, in order to
highlight those ports that are used for service publication
and query, we introduce the stereotypes PublishPort and
FindPort.

The stereotype for service descriptions is based on the
meta-class Artifact. The relationships to these descrip-
tions are modeled by the stereotypes KnowsDependency
and DescribesDependency.



12 Luciano Baresi et al.

Table 3 Notation guide for SOA stereotypes

1

«publishPT»PublishPT

«findPT»FindPT

«portType»PortType

«providerPT»ProviderPT

DescribesDependency

KnowsDependency

FindPort

PublishPort

ServiceDescription

DiscoveryService

Service

«connector» NameConnector

«requesterPT»RequesterPT

Notation:Stereotype from SOA 
profile:

Name D

F

P

«describe»

«know»

ServiceName
«service»

Name
«discovery»

Notation: The default convention for the notation of
stereotyped diagram elements is to attach the stereo-
type name within a pair of guillemets to the symbol of
its meta-class. Nevertheless, one can also define more
customized notations. The notation of the SOA stereo-
types is summarized in Table 3.

Relating style and UML meta-model: The relationship
between the UML notation and the formal architectural
style is defined by a bi-directional mapping between the
type graph of the style and the extended UML meta-
model. With the help of such mapping, we can render
a given instance graph as UML diagrams, and, in the
opposite direction, we can provide the semantics for a
given UML model in terms of the architectural style.

Table 4 shows the mapping for the SOA style and
the UML profile for SOA. The left column contains the
nodes (and some of the edges) of the SOA type graph
(cf. Fig. 7 and 8). The right column contains the cor-
responding meta-classes and stereotypes that should be
used in UML diagrams to depict the various concepts of
the SOA style.

Edges in the type graph represent relationships be-
tween nodes. If there are similar relationships in the
UML meta-model (e.g., for the operations defined by an
interface), then we can omit the mapping of edges. Two
exceptions are the knows and describes edges because
their counterparts on the UML side are real meta-classes
and stereotypes.

Table 4 Mapping between SOA style and UML

SOA type graph UML meta-model and profile elements

elements (package name::class name)

ComponentType BasicComponents::Component

Component Kernel::InstanceSpecification

ServiceType BasicComponents::Component

stereotyped by SOA::Service

Service Kernel::InstanceSpecification

stereotyped by SOA::Service

DiscoveryService- BasicComponents::Component

Type stereotyped by SOA::DiscoveryService

DiscoveryService Kernel::InstanceSpecification

stereotyped by SOA::DiscoveryService

PortType Kernel::Class

stereotyped by SOA::PortType

ProviderPT Kernel::Class

stereotyped by SOA::ProviderPT

PublishPT Kernel::Class

stereotyped by SOA::PublishPT

FindPT Kernel::Class

stereotyped by SOA::FindPT

RequesterPT Kernel::Class

stereotyped by SOA::RequesterPT

Port [If self.portType.oclIsTypeOf(PortType)]

Ports::Port

[If self.portType.oclIsTypeOf(PublishPT)

or self.portType.oclIsTypeOf(ProviderPT)]

Ports::Port

stereotyped by SOA::PublishPT

[If self.portType.oclIsTypeOf(FindPT) or

self.portType.oclIsTypeOf(RequesterPT)]

Ports::Port

stereotyped by SOA::FindPT

ConnectorType Kernel::Assocication

stereotyped by SOA::Connector

Connector Kernel::InstanceSpecification

Interface Interfaces::Interface

Operation Kernel::Operation

ServiceDescription Artifacts::Artifact

stereotyped by SOA::ServiceDescription

knows Dependencies::Dependency

stereotyped by SOA::KnowsDependency

describes Dependencies::Dependency

stereotyped by

SOA::DescribesDependency



Style-Based Modeling and Refinement of Service-Oriented Architectures 13

If there are several notation options for the same type
graph element, then we can distinguish these options by
additional OCL constraints as shown in Table 4 for Port.

Since, we restrict the UML profile to visualizing the
structure of a system only, we omit a mapping of the
various message types for communication.

Example diagrams: Figures 11 and 12 give an impres-
sion, how the model layout is improved when the SOA
profile is applied. They visualize the SOA instance graph
of the SmartCar system shown in Fig. 9.

Figure 11 presents a class diagram which defines all
port types together with their provided (triangle arrow-
head) and required (use dependency) interfaces. The
component diagram in Fig. 12 reveals which service or
component supports which port type and which service
descriptions are known by which components at the be-
ginning.

1

«interface»
MapSelection

inquireMap(..) 
selectMap(..)

«portType»
MapProvider

«portType»
MapRequester

«use»

«connector»
MapConnector

«interface»
ItinerarySelection
askForItineraries(..) 
selectItinerary(..)

«portType»
ItineraryProvider

«portType»
ItineraryRequester

«use»

«connector»
ItineraryConnector

«interface»
TrafficInfo

getTrafficInfo(..) 

«portType»
InfoProvider

«portType»
InfoRequester

«use»

«connector»
TrafficInfoConnector

«interface»
ServicePublication

publish(..) 

«publishPT»
PublicationPort

«providerPT»
ServiceProvider

«use»

«connector»
PublicationConnector

«interface»
Payment

findService(..) 

«findPT»
QueryPort

«requesterPT»
ServiceRequester

«use»

«connector»
QueryConnector

Fig. 11 SOA-specific class diagram for SmartCar

1

v:Vehicle
m:MapRequest

:MapProvider

:ItineraryRequester

:MapRequester

i:ItineraryDefinition t:TrafficInformation

:Itinerary-
Provider

:InfoRequester :InfoProvider

«service» «service»

«service»

d:DiscoveryEngine

:QueryPortF
«discovery»

:PublicationPortP

P
:ServiceProvider

F

:Service-
Requester

P

:Service-
Provider

F:Service-
Requester P

:ServiceProvider

map-
Desc

D

traffic-
Desc

D

itinerary-
Desc

D

discovery-
Desc

D
«describe»

«describe»

«describe»

«describe»

«know»

«know»

«know»

«know»

Fig. 12 SOA-specific component diagram for SmartCar

5 Behavior-preserving architecture refinement

Based on the architectural styles defined in Sect. 3 and
the UML profile defined in Sect. 4, we can now model
system architectures at the business-level as well as for
service-oriented platforms, and we can provide an opera-
tional semantics for communication and reconfiguration
scenarios in terms of graph transformations. The under-
lying conceptual platform model, in our case the archi-
tectural style for SOA, ensures that the architecture is
consistent with the provided platform mechanisms.

The remaining problem we want to address in this
section is how to ensure the consistency between archi-
tecture models in the abstract, business-oriented and the
platform-specific, service-oriented style. Since these two
styles represent different levels of platform abstraction,
the desired consistency relationship can be defined by an
appropriate notion of architecture refinement.

To be a valid refinement of a business-level architec-
ture, a platform-specific or, in our case, service-oriented
architecture has to realize the same functionality. This
requirement can be subdivided into
1. Structural refinement: The platform-specific ar-

chitecture has to preserve all business-relevant, func-
tional entities and all required connections between
these entities.

2. Behavior-preserving refinement: The platform-
specific architecture has to enable all communication
and reconfiguration scenarios which can also occur at
the business level.
Our notion of refinement should be style-based, i. e.,

based on a relationship between the abstract, platform-
independent style and the SOA-specific style which can
be reused for refining any instances of these styles. For
this purpose, a mapping between the two type graphs
is used to induce an abstraction function that projects
instance graphs from the concrete style to the abstract
style. The rationale behind using an abstraction func-
tion rather than a refinement function is the fact that
abstraction is in general simpler and more deterministic
than refinement.

Based on the abstraction function, we can check if
a given instance graph in the SOA style is a refinement
of a given business-level instance graph. A similar cri-
terion applies to transformation sequences representing
reconfiguration and communication scenarios.

In order to derive refined, SOA-specific scenarios
from given business-level scenarios including operations
for service publication and discovery, we reformulate
this problem as a reachability problem which can auto-
matically be solved by graph transformation or model-
checking tools as described in Sect. 6.

5.1 Refinement criterion for instance graphs

As mentioned above, we use an abstraction function
as refinement criterion which is induced by a map-



14 Luciano Baresi et al.

ping at the style level. For the case of service-oriented
architectures, let the platform-independent (pi) style
from Sect. 3.1 be Gpi = 〈TGpi, Cpi, Rpi〉 and the
service-oriented (so) style from Sect. 3.2 be Gso =
〈TGso, Cso, Rso〉. Then, we introduce a type mapping
t : TGso → TGpi, formally a partial surjective graph
homomorphism, which maps elements of the SOA type
graph TGso to the elements of the platform-independent
type graph TGpi.

The concrete definition of t is driven by semantic
correspondences between the elements of the two styles.
We distinguish three different cases which are illustrated
in Fig. 13:

1. Since the SOA-specific type graph is an extension of
the platform-independent type graph, all nodes and
edges of the latter also occur in the former. In these
cases, the SOA elements are mapped to their equiv-
alent in the platform-independent type graph. This
way, the abstraction mapping t becomes surjective.
For instance, as shown in Fig. 13, t maps the SOA
type Component to the platform-independent type
Component, and similarly with ComponentType.

2. Since services are a SOA-specific interpretation of
components, t maps Service and ServiceType to the
platform-independent types Component and Compo-
nentType, too.

3. All other types (and adjacent edges) like Discov-
eryService, ServiceDescription, or the SOA-specific
port types and messages represent purely platform-
specific concepts which do not occur at the business
level. Therefore, these elements are not mapped to
the platform-independent type graph.

1

ComponentType Component

DiscoveryService

Service

1 isInstanceOf

ServiceType

Abstraction mapping:

DiscoveryServiceType

ComponentType ComponentisInstanceOfTGpi

TGso

t

t t

t

t

1

Fig. 13 Part of the type graph mapping t

The type mapping t induces the desired abstraction
function abst : GraphTGso → GraphTGpi which ab-
stracts instance graphs typed over TGso to those typed
over TGpi. This abstraction informally consists of (1)
renaming the types of all elements whose type has an
image in TGpi according to the definition of t, (2) delet-
ing all nodes and edges which, due to the partiality of t,
have a type in TGso but not in TGpi, and (3) deleting all
dangling edges and those adjacent nodes whose number
of connected neighbor nodes falls below the lower bound
of the relevant cardinality constraint.

Figure 14 illustrates the effect of the abstraction
function abst for an instance graph fragment which de-
fines the MapRequest service in the SOA style. First, we
apply the type mapping t and rename the types of the
Service and ServiceInstance nodes into Component and
ComponentInstance (1). Then, we delete the ProviderPT
and ServiceDescription nodes and the describes edge be-
cause they have no mapping to TGpi under t (2). The
deletion of the ProviderPT node leads to the deletion of
the adjacent Port node in the third step, because other-
wise the cardinality constraint would be violated which
says that every Port requires a PortType. Eventually, all
dangling edges are removed (3).

1

abstraction of instance graphs

(1)

(3)

(2)

abstractionabs
t

isInstanceOf
m:Service MapRequest

:ServiceType

p1:PortmapDesc
:Service-

Description owns

describes

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns

ServiceProvider
:ProviderPT

supports

isInstanceOf

isInstanceOf
m:Component MapRequest

:ComponentType

p1:PortmapDesc
:Service-

Description owns

describes

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns

ServiceProvider
:ProviderPT

supports

isInstanceOf

isInstanceOf
m:Component MapRequest

:ComponentType

p1:Port
owns

MapProvider
:PortType

supports

isInstanceOf

p2:Port

owns supports

isInstanceOf

isInstanceOf
m:Component MapRequest

:ComponentType

p1:Port
owns

MapProvider
:PortType

supports

isInstanceOf

Fig. 14 Abstraction of an instance graph

Since we defined the cardinalities and constraints Cso

in Gso stronger or as strong as the constraints Cpi in Gpi,
the abstraction of instance graphs is compatible with the
constraints, that is, if Gso satisfies Cso, then abst(Gso)
satisfies Cpi, too.

A service-oriented instance graph Gso is called a re-
finement of a platform-independent graph Gpi, if its ab-
straction into the platform-independent style reflects ex-
actly the elements of Gpi, i.e., if abst(Gso) = Gpi. This
definition ensures that the SOA-specific refinement pre-
serves all functional, business-relevant entities occurring
in the abstract, business-oriented architecture.

As an example, consider the graph in the upper left
of Fig. 14 which is obviously a refinement of graph (3)
in the lower right of the figure. Another example is
the SOA-specific configuration for SmartCar, shown in
Fig. 9, which refines the platform-independent configu-
ration shown in Fig. 5 because the application of the
abstraction function to the former yields the latter.

The above defined refinement criterion helps to check
for refinements of individual system configurations as
instance graphs. In order to actually construct the re-
fined configurations, we refer to existing work on struc-
tural refinements such as [1,31]. Since our focus is on
the refinement of scenarios, we assume that the archi-
tect uses heuristics or one of the available techniques



Style-Based Modeling and Refinement of Service-Oriented Architectures 15

in order to derive correct SOA-specific configurations
(with, e.g., discovery service and service descriptions)
from platform-independent ones according to the above
refinement criterion. Nevertheless, plain structural re-
finement is not sufficient to refine the behavioral aspects
of a scenario as described below.

5.2 Refinement criterion for transformations

According to Sect. 3, a reconfiguration and communica-
tion scenario is represented as a transformation sequence
in the architectural style. For this reason, we extend
the correctness criterion for the refinement of instance
graphs to the refinement of transformation steps and fur-
ther on to the refinement of transformation sequences.

For a transformation step spi = (Gpi ⇒ Hpi) in the
platform-independent graph transformation system Gpi,
the transformation sequence sso = (Gso ⇒∗

Gso Hso) in
the service-oriented transformation system Gso is a cor-
rect refinement, if Gso refines Gpi and Hso refines Hpi

(formally, abst(Gso) = Gpi ∧ abst(Hso) = Hpi).
The refinement sso is a transformation sequence

rather than a single step because, at the platform-specific
level, it might be necessary to perform a number of con-
secutive steps to realize the platform-independent step.

1

Gso Hsosend-
Service-
Query

receive-
Service-
Query

find-
Service

connect

connect

abst abst

spi =

sso =

Gpi Hpi

send-
Query-
Result

receive-
Query-
Result

save-
Query-
Result

Fig. 15 Refinement of a transformation step

As an example, consider the transformation step spi

of Fig. 15 which contains the application of the platform-
independent rule connect (cf. Table 1). For the service-
oriented refinement of this step, we have to use the SOA
variant of the connect rule (cf. Table 2) which requires
as precondition that the service description is known to
the service requester. Therefore, it becomes necessary to
submit a service query to a discovery service before the
connect operation can be applied. Thus, we add corre-
sponding rule application to the service-oriented refine-
ment sso shown at the bottom of Fig. 15.

The criterion for transformation steps is easily ex-
tended to sequences spi = (Gpi

0 ⇒∗
Gpi Gpi

n ) of length
greater than one: A sequence sso = (Gso

0 ⇒∗
Gso Gso

n )
over the SOA style is a valid refinement of spi, if sso can
be partitioned into consecutive subsequences that are re-
finements of the individual transformation steps of spi.

5.3 Construction of refined transformation sequences

To actually construct the refined transformation se-
quence, we stick to the stepwise view and decompose

the abstract sequence spi into its individual steps spi
k =

(Gpi
k ⇒ Gpi

k+1). Each step is then transformed into a
reachability problem which can be solved by analysis
tools.

Consider the first step spi
0 = (Gpi

0 ⇒ Gpi
1 ). We assume

that there is a correctly refined start graph Gso
0 in the

SOA style with abst(Gso
0 ) = Gpi

0 . Then, the first reach-
ability problem is to find the shortest transformation
sequence of SOA-specific rule applications which leads
from Gso

0 to an instance graph Gso
1 that refines the tar-

get graph Gpi
1 .

The length of the SOA-specific transformation se-
quence is required to be minimal, because we want to
reach the target configuration without any superfluous
steps that could have additional effects on business-
relevant elements like, for instance, creating any extra
connector that is not required by the target graph Gpi

1 .
If the search within the service-oriented transforma-

tion system is successful, the reached instance graph can
be taken as new start graph for the second step spi

1 , and
so on. If we repeat the procedure for all steps of the trans-
formation sequence and concatenate the resulting SOA-
specific transformation sequences, we receive a complete
refinement of the platform-independent scenario spi.

If the search fails and at least one of the steps to
be refined cannot be expressed as a transformation se-
quence at the SOA level, then this might be caused by
some missing elements in the initial configuration of the
service-oriented architecture. For example, if one of the
components that needs to use a service does not know
the description of the responsible discovery service and,
thus, cannot connect to it for submitting a service query,
then this component cannot connect to the required ser-
vice, either. This way, the solution of the reachability
problems can also be used to validate the correctness
and completeness of the initial SOA configuration.

Example: We illustrate the refinement of scenarios for
the SmartCar scenario which is partially depicted in
Fig. 6 as a transformation sequence in the platform-
independent style. The depicted part represents the cre-
ation of a new connector between the Vehicle component
and the MapRequest component and consists of four in-
stance graphs, which we now name Gpi

0 , Gpi
1 , Gpi

2 , and
Gpi

3 , and the three transformation steps

Gpi
0

openPort
=⇒ Gpi

1

openPort
=⇒ Gpi

2
connect=⇒ Gpi

3

The refinement of this transformation sequence is de-
picted in Fig. 16. The individual steps of the refined
transformation sequence are labeled by the applied SOA-
specific rules. We do not highlight to which part of the
graph a rule has been applied since this can be derived
from the outcome of a rule application, and, for the sake
of brevity, we have summarized some consecutive trans-
formations into single steps. For the definition of the
individual rules please refer to Table 2.



16 Luciano Baresi et al.

Fig. 16 Refined, SOA-specific transformation sequence for
the SmartCar scenario

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

openPort (4x)

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

knows

QueryConnector
:ConnectorType

allows

allows

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

connect

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==false

owns

isInstanceOf

p3:Port

used==false

owns

isInstanceOf

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf
supports

MapConnector
:ConnectorType

allowsall
ow

s

sendServiceQuery +

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsisI
ns

tan
ce

Of

receiveServiceQuery

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

findService

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives
connectsisI

ns
tan

ce
Of

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

sendQueryResult +
receiveQueryResult

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives

satisfies

connectsisI
ns

tan
ce

Of

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

saveQueryResult

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

sq:Service-
Query

sends

sentVia

requires-
ServiceFor

receives

satisfies

rq:Query-
Result

sends

re
su

ltO
f

contains

receives

sentVia
connectsisI

ns
tan

ce
Of

1

isInstanceOf

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

connect

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==false
owns

isInstanceOf

p2:Port

used==false
owns

isInstanceOf

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsisI
ns

tan
ce

Of

knows

1

m:Service

MapRequest
:ServiceType

Map-Provider
:PortType su

pp
or

ts

v:Component

Vehicle
:ComponentType

Map-Requester
:PortType

isInstanceOf

supports

MapConnector
:ConnectorType

allowsall
ow

s

d:DiscoveryService

DiscoveryEngine
:DiscoveryServiceType

isInstanceOf

QueryPort
:FindPT

discoveryDesc
:ServiceDescpription

describes

Service-
Requester

:RequesterPT su
pp

or
ts

mapDesc
:Service-

Descpription

describes

supports

knows

p1:Port

used==true
owns

isInstanceOf

p2:Port

used==true
owns

knows

QueryConnector
:ConnectorType

allows

allows

p4:Port

used==true

owns

isInstanceOf

p3:Port

used==true

owns

isInstanceOf

c1:Connector

connects

connectsisI
ns

tan
ce

Of

knows

c2
:Connector

connectsco
nn

ec
ts

isInstanceOf isInstanceOfisInstanceOf



Style-Based Modeling and Refinement of Service-Oriented Architectures 17

The start graph of the refined sequence in Fig. 16
equals the SOA instance graph from Fig. 9 which is a
valid refinement of the platform-independent start graph
Gpi

0 from Fig. 6. It contains all relevant parts for the Ve-
hicle component, the MapRequest service and the Discov-
eryEngine discovery service. In order to shorten the ex-
ample, we assume that the service description mapDesc
of the MapRequest service has already been published to
the discovery service (as indicated by the knows edge).

The refinement of the transformation sequence starts
with the first two transformation steps representing two
invocations of the openPort operation. Their refinement
into a SOA-specific scenario is quite trivial as we can
simply apply the equivalent openPort operations of the
SOA style.

More difficult is the refinement of the business-level
connect operation. In this case, we cannot simply apply
the corresponding SOA variant to the last intermediate
result because the SOA variant of the connect rule re-
quires a knows link to the service description mapDesc
which is not yet existent. For this reason, we have to try
the application of other rules in order to find a transfor-
mation sequence to a valid refinement of Gpi

3 .
The minimal solution to this reachability problem

can be found in Fig. 16 after the first two openPort
operations. In summary, it comprises two further open-
Port operations that “prepare” a connect operation to
the discovery service, sending and receiving a query to
the discovery service, finding an appropriate service, and
submitting the query response with the required service
description. Eventually, the desired connect operation is
applicable after the knows links has been created by save-
QueryResult (cf. also Fig. 15).

If we continue the refinement procedure until the
entire business-level scenario of the SmartCar appli-
cation is refined to the SOA-specific level, we receive
a platform-specific reconfiguration and communication
scenario which can then be rendered as a UML diagram
again. Figure 17, for instance, shows the interactions of
the refined scenario as a UML sequence diagram.

We do not have to perform the described reachability
searches manually. As discussed in the next section, ex-
isting analysis and graph transformation tools can auto-
matically select applicable transformation rules and test
the effect of their application in order to automate the
presented refinement approach.

6 Tool support

While conceiving the approach presented so far, we did
not concentrate on designing a brand-new tool, but de-
cided to exploit existing tools as components of a tool
chain. Even if this paper concentrates on describing the
concepts of the approach, we briefly discuss the tool sup-
port required and how we can reuse existing tools.

Roughly, we can split the task into the creation of
UML models and graph transformation systems and the

1

v :Vehicle

inquireMap()
maps

selectMap()

getTrafficInfo()
info

itineraries

«service»
m :Map-
Request

«service»
i :Itinerary-
Definition

«service»
t :Traffic-

Information

askForItineraries()

sd plan trip «SOA»
«discovery»
d :Discovery-

Engine

sendServicePublication()

sendServicePublication()

sendServicePublication()
sendServiceQuery()

query result

sendServiceQuery()
query result

sendServiceQuery()
query result

Fig. 17 UML sequence diagram of SOA-specific scenario

support for model refinement. The latter, involving the
reachability analysis for a target configuration from a
given initial configuration, is critical for the proposed
refinement technique. This analysis can be performed
using both model checking techniques and simulation
features of graph transformation tools. In both cases,
the solution to the reachability problem has to be in-
tegrated with the tools to create graph transformation
systems and UML models.

6.1 Modeling tools

The creation of UML models is a standard task and does
not require special attention. Here, we can use off-the-
shelf UML CASE tools, like Poseidon3, to define models
and add suitable annotations (stereotypes) to decorate
them with additional information. All UML tools sup-
port the XML Metadata Interchange (XMI) format [35]
as a standard and vendor-independent way to store and
exchange user models.

The creation of graph transformation systems is sup-
ported by tools, like AGG4, PROGRES [41], and Fu-
jaba5, which allow the specification of rules in various
notations as well as their application to a given graph.
As a common XML format for graph transformation
systems, the Graph Transformation eXchange Language
(GTXL)6 is being developed. It is based on the Graph
eXchange Language (GXL)7 [47] and will shortly be sup-
ported by several graph transformation tools.

3 www.gentleware.com
4 tfs.cs.tu-berlin.de/agg
5 www.fujaba.de
6 tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
7 www.gupro.de/GXL



18 Luciano Baresi et al.

6.2 Reachability analysis by model-checking

Model checking of graph transformation systems has al-
ready been investigated by Varró with the CheckVML
tool [44]. This subsection gives a brief overview how the
technique can be applied to solve reachability problems.
The interested reader is referred to [4,45] for more tech-
nical details.

The model checking problem consists in deciding
by exhaustive simulation whether a certain correctness
property holds in a given transition system. That re-
quires a systematic traversal of all possible execution
paths of the system, i.e., all enabled transitions must be
taken in all reachable states. The properties are typically
formalized as temporal logic formulae.

From graph transformation systems to transition sys-
tems: The system specification languages of most
model checkers are based on transition systems, where
the structure of a state consists of (a subset of) proposi-
tions over an a priori finite universe. When translating
graph transformation systems into transition systems (as
done by the CheckVML tool, mapping graph transfor-
mation systems to Promela, the input language of the
SPIN model checker [24]) a graph is interpreted as a
state, while the application of a rule for a certain oc-
currence of the left hand side in such a graph yields a
transition in the transition system. Traversing all en-
abled transitions then means applying all rules with all
possible occurrences.

The main challenge consists in bridging the gap in
the abstraction levels: Graph transformation rules define
how an arbitrary instance of a type graph should behave,
while transition system specifications in, e. g., Promela
are given for specific instances. That requires to generate
Promela transitions for all the potential applications of
a graph transformation rule during a compile-time pre-
processing phase.

Moreover, sophisticated optimization techniques are
needed in order to reduce the state space. For exam-
ple, one can distinguish static and dynamic model ele-
ments in the type graph (only the latter are modified by
graph transformation rules), representing only the dy-
namic parts of instance graphs as states of the target
transition system. The occurrences of the rules in the
static parts, instead, yield additional constraints on the
potential execution paths.

A drawback of the model checking approach is its a
priori restriction to finite state systems. Therefore, one
has to fix an upper bound for the number of dynamic
model elements that can be created by the transforma-
tion rules. If the analysis is not successful, one can in-
crease the bound and repeat the analysis within certain
limits.

From graph patterns to logic properties: The reacha-
bility problem of a certain target configuration can be
expressed by safety and reachability properties.

– A safety property defines a desired property that
should always hold on every execution path or (equiv-
alently) an undesired situation which should never
hold on any execution paths.

– A reachability property describes, on the contrary, a
desired situation which should be reached on at least
one execution path.

From a model checking point of view, safety and
reachability properties are dual: the refutation of a safety
property is a counter-example which satisfies the reach-
ability property obtained as the negation of the safety
property. On the other hand, if a safety property holds
(or a reachability property is refuted) the model checker
has to traverse the entire state space.

A safety or reachability property can be interpreted
as a special graph pattern (called property graph) which
immediately terminates the verification process if it is
matched successfully. As shown in [37], the properties
expressible in this way are equivalent to the ∃¬∃ frag-
ment of (∀-free) first order logic with binary predicates.

An alternative solution for model checking graph
transformation systems has been proposed by Rensink
in the GROOVE system [36]. The essence of the ap-
proach is to use the core concepts of graphs and graph
transformations all the way through during model check-
ing. This means that states are explicitly represented
and stored as graphs, and transitions as applications of
graph transformation rules. Furthermore, graph-specific
model checking algorithms are applied for traversing the
state space. This solution exploits the symmetric nature
of problems by intensive graph isomorphism checks.

A comparison on the two approaches for model check-
ing graph transformation systems can be found in [38].

6.3 Reachability analysis by simulation

In order to avoid the complete generation of the state
space of a model, and thus allow the refinement of in-
finite state systems, we may use graph transformation
tools for the interactive simulation. The PROGRES [41]
tool is especially suitable for this purpose since it sup-
ports, besides the mere execution, depth-first search and
backtracking. In PROGRES, we can define a type graph,
the set of transformation rules, the start graph, and con-
straints for safety invariants. The reachability property
is represented by a so-called test graph which models the
target pattern.

The interpreter simulates the execution of the trans-
formation rules by non-deterministically choosing appli-
cable rules. If the system runs into a dead end, back-
tracking is used to roll back the current state. As soon
as an occurrence of the test graph is found in the current
host graph, the search successfully terminates.

Since the tool performs depth-first search in an infi-
nite state space, it might run into an infinite path. For



Style-Based Modeling and Refinement of Service-Oriented Architectures 19

this reason, one can define PROLOG-like cuts that in-
terrupt the backtracking at certain points and guarantee
termination by limiting the search depth.

6.4 Tool integration

The integration of all these components can be carried
out through suitable XML data: XMI representations of
class and communication diagrams can be transformed
into GXL documents, e.g., using XSLT scripts or simple
tools.

GXL is the format supported by both AGG and
CheckVML. The former exploits GXL for type and start
graphs, while the latter uses GXL graphs for the ini-
tial configuration and the encoding of properties (i.e.,
scenarios). AGG and CheckVML can also exchange
graph transformation rules encoded in GTXL, the Graph
Transformation eXchange Language.

A data flow, which is still missing, but nevertheless
important, is the propagation of analysis results pro-
duced by the model checker back to the UML case tool.
This flow does not only require a suitable data format,
but also a rigorous transformation of traces and counter
examples into meaningful decorations of UML elements.

6.5 User roles

The tools and artifacts discussed above imply two kinds
of users, namely style architects and application archi-
tects.

If the presented styles for business- and service-
oriented architectures are to be modified or adapted to
other platforms, then users who are proficient in both
graph transformation and architectural styles can serve
as style architects to design the graph transformation
systems that specify platform-specific concepts and re-
configuration mechanisms. The style architect also de-
fines the mapping between the type graph and parts
of the UML meta-model (possibly extended by style-
specific stereotypes) which can be used to convert UML
diagrams into the graph representations. Eventually, the
style architect has to relate the styles for different levels
of platform abstraction by suitable refinement relations.

While specific rules and mappings are required for
each architectural style, several architectures can exploit
the same style. As soon as rules and UML mapping are
defined, application architects can model their architec-
tures using conventional UML diagrams (suitably stereo-
typed for the chosen style) and validate and refine them
by means of our approach.

7 Related work

The work presented in this paper is rooted in four main
research directions: architecture description languages,

model checking of software architectures, graph trans-
formations, and architectural refinement.

Besides the many proposals for Architecture Descrip-
tion Languages (ADLs), like Rapide [27], Wright [3], or
Darwin [28], we must mention those approaches that
exploit graph transformation [21,22,25,43,46] to reason
on the consistency of reconfiguration operations and in-
teraction of components with respect to structural con-
straints. Our work is in this tradition, but it combines
the formal approach with the notion of style-based re-
finement.

Le Métayer [25] describes architectures by graphs and
the valid graphs of an architectural style by a graph
grammar. Reconfiguration is described by conditional
graph rewriting rules. He uses static type checking to
prove that the rewriting rules are consistent with the re-
spective style. In comparison to our work, his graphs rep-
resent computational entities but no connectors, speci-
fications, or other resources. And, instead of a graph
grammar, we use a declarative type graph to define the
valid graphs of the architectural style.

Wermelinger and Fiadeiro [46] provide an algebraic
framework based on Category theory where architec-
tures are represented as graphs of CommUnity programs
and superpositions. The architectural style, given as a
type graph, restricts the ways connectors can be ap-
plied to components. Dynamic reconfigurations are spec-
ified by graph transformation rules over architecture in-
stances. Both, styles and rules are used for modeling
domain-specific restrictions rather than the underlying
platform as we do. Consequently, they do not deal with
refinement relationships between different levels of plat-
form abstraction.

In his Ph.D. thesis [21], Hirsch uses hypergraphs
to represent architectures and hyperedge replacement
grammars to define the valid architectures of an archi-
tectural style. Furthermore, he uses graph transforma-
tion rules to specify run-time interactions among compo-
nents, reconfigurations, and mobility. Hypergraphs and
rules are textually represented using the concept of syn-
tactic judgements which enables formal type checking
proofs. Similar to the other approaches, refinement rela-
tionships are not discussed.

The use of graph transformation techniques to cap-
ture dynamic semantics of models has also been inspired
by work proposed by Engels et al. in [15] under the name
of dynamic meta modeling. That approach extends meta-
models defining the abstract syntax of a modeling lan-
guage like UML by graph transformation rules for de-
scribing changes to object graphs representing the states
of a model.

The use of model checking techniques for verifying
software architectures has been thoroughly studied by
several proposals. vUML [26], veriUML [10], JACK [17],
and HUGO [40] support the validation of distributed sys-
tems, where each statechart describes a component, but
do not support any complex communication paradigm.



20 Luciano Baresi et al.

JACK and HUGO only support communication based on
brodcasting, where the events produced by a component
are notified to all the others. vUML and veriUML sup-
port the concept of a channel, that is, each component
writes and reads messages on/from a channel. These pro-
posals aim at general-purpose applications and can cover
different domains, but are not always suitable when we
need a specific communication paradigm.

They study static systems whose topology cannot
vary at run-time. Similarly, Garlan et al. [12] and the
researchers involved in the Cadena project [18] applied
model-checking techniques to analyze specific architec-
tures based on the publish/subscribe paradigm. The
fixed topology distinguishes these approaches from our
work. In fact, we propose the study of the dynamic evo-
lution of architectures with almost no attention to the in-
ternals of components. Given our interest, we treat com-
ponents as black-box entities, while all these approaches
analyze the behaviors of such components. They con-
sider a given system (architecture) as if it were a com-
plex and fixed automaton, but neglect the possibility
that such automaton changes while the system evolves.
Even if different, these approaches can also be seen as
the natural complement of our approach: We study what
they do not address and they analyze what we neglect,
mainly because of the size of resulting models. So far, no
proposal attempts to address the whole picture.

There are also different notions of software refine-
ment. For instance, Batory et. al. [6] consider feature
refinement which is modifying models, code, and other
artifacts in order to integrate additional features. For ev-
ery new artifact type, they require a special refinement
definition in order to compose software by generators.
In our case, we concentrate on the refinement of archi-
tectural models and derive platform-specific models from
abstract ones without adding any extra-functionality.

Such a refinement of architectures has first been dis-
cussed by Moriconi et al. in [31]. Building on a formal-
ization in first-order logic, the authors describe a general
approach of rule-based refinement replacing a structural
pattern in the more abstract style by its realization in
the concrete style. The approach is complementary to
ours because it focuses on refinement of structure rather
than behavior and does not capture reconfiguration. The
general idea of rule-based refinement, however, could be
applicable in our context, too.

Garlan [16] stresses the fact that it is more power-
ful to have rules operating on styles rather than on style
instances. He formalizes refinements as abstraction func-
tions from the concrete to the abstract style. We use a
similar approach to define the refinement relations (see
Sect. 5). Also, he argues that no single definition of re-
finement can be provided, but that one should state what
properties are preserved. In our case, we concentrate on
the preservation of the dynamic semantics of reconfigu-
ration and communication scenarios.

Other proposals on architecture refinement like [1,8,
13] concentrate on structural refinements only, which is
complementary to our work. The only formal approach
we are aware of that considers refinement of dynamic
reconfiguration can be found in [7]. But, the paper pro-
vides only a sketch of the ideas without any concrete
definition. Moreover, the approach is targeted on the
translation from one ADL to another rather than on
the refinement between architectural styles that repre-
sent different levels of platform abstraction.

8 Conclusions and future work

In this paper, we have given a formal definition of
service-oriented architectures, seen as an architectural
style. We have defined a refinement relation from a
generic style of component-based systems to the SOA
style that can be used to study the specialization of
platform-independent scenarios, and we have discussed
the use of model checking techniques and tools to auto-
mate this task. The results are based on the use of graph
transformation systems as models of architectural styles
at different levels of platform abstraction, representing
reconfiguration and communication scenarios as graph
transformation sequences.

While we demonstrated the approach for service-
oriented architectures in this article, it should also
be applicable to other kinds of middleware infrastruc-
tures modeled by corresponding architectural styles as
sketched in Sect. 6.5.

As stated in Sect. 7, a current challenge is to combine
descriptions and analysis of component behavior with
runtime changes of component configurations. In a paral-
lel paper [20], we elaborate on this problem and propose
an extension of the architectural styles presented in this
article. These extensions allow to equip active entities
like components, services, and connectors with process
definitions that prescribe the order in which communi-
cation and reconfiguration operations can be applied.

All applications of communication and reconfigura-
tion rules have to respect the process definitions. This
way, we integrate descriptions of component behavior
and of topological changes which are required to realize
the desired business processes. In [20], we demonstrate
how this integration can be achieved without any new
formal concepts. Consequently, we are still able to apply
the aforementioned model checking-based analysis tech-
niques. The restricted architectural behavior even facili-
tates the analysis due to the smaller overall state space.
We also discuss in [20] how the behavior-preserving re-
finement can be guaranteed in face of the new process
descriptions.

Our future work addresses the development of an in-
tegrated CASE environment for the analysis and step-
wise refinement of software architectures which is a
prerequisite for validating the approach on other non-



Style-Based Modeling and Refinement of Service-Oriented Architectures 21

trivial examples. We are proficiently conducting exper-
iments with existing graph transformation tools and
model checkers in isolation, but the final objective is a
tool chain that seamlessly integrates the different com-
ponents. The problem is largely one of incompatible in-
put formats. Only the backward translations of analysis
results into user models poses conceptual questions.

References

1. M. Abi-Antoun and N. Medvidovic. Enabling the refine-
ment of a software architecture into a design. In Proc.
UML 99 - The Unified Modeling Language, volume 1723
of LNCS, pages 17–31. Springer, 1999.

2. G. D. Abowd, R. Allen, and D. Garlan. Using style to
understand descriptions of software architectures. ACM
Software Engineering Notes, 18(5):9–20, 1993.

3. R. Allen. A Formal Approach to Software Architecture.
PhD thesis, School of Computer Science, Carnegie Mel-
lon University, 1997.

4. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modeling
and validation of service-oriented architectures: Applica-
tion vs. style. In Proc. ESEC/FSE 03 European Software
Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 68–
77. ACM Press, 2003.

5. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-
based refinement of dynamic software architectures. In
Proc. WICSA4 – 4th Working IEEE/IFIP Conference on
Software Architecture, pages 155–164. IEEE Computer
Society, 2004.

6. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In Proc. ICSE 2003 – Int. Con-
ference on Software Engineering, pages 187–197. IEEE,
2003.

7. T. Bolusset and F. Oquendo. Formal refinement of soft-
ware architectures based on rewriting logic. In Proc.
RCS 02 Int. Workshop on Refinement of Critical Sys-
tems, 2002. www-lsr.imag.fr/zb2002/.

8. C. Canal, E. Pimentel, and J. M. Troya. Specification
and refinement of dynamic software architectures. In
Proc. WICSA1, First Working IFIP Conference on Soft-
ware Architecture, volume 140 of IFIP Conference Pro-
ceedings, pages 107–126. Kluwer, 1999.

9. M. Champion, C. Ferris, E. Newcomer, and D. Orchard.
Web Service Architecture, W3C Working Draft, 2002.
http://www.w3.org/TR/2002/WD-ws-arch-20021114/.

10. K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An
automatic verification tool for UML. Technical Report
CSE-TR-423-00, University of Michigan, EECS Depart-
ment, 2000.

11. A. Corradini, U. Montanari, and F. Rossi. Graph pro-
cesses. Fundamenta Informaticae, 26(3,4):241–265, 1996.

12. D. Garlan and S.Khersonsky and J.S. Kim. Model check-
ing publish-subscribe systems. In Proceedings of the 10th

SPIN Workshop, volume 2648 of LNCS, May 2003.

13. M. Denford, T. O’Neill, and J. Leaney. Architecture-
based design of computer based systems. In Proc.
StraW03, Int. Workshop From Software Requirements to
Architectures, 2003. se.uwaterloo.ca/~straw03/.

14. H. Ehrig, M. Pfender, and H.J. Schneider. Graph gram-
mars: an algebraic approach. In 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

15. G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer.
Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML.
In Proc. UML 2000 - The Unified Modeling Language,
volume 1939 of LNCS, pages 323–337. Springer, 2000.

16. D. Garlan. Style-based refinement for software architec-
ture. In Proc. ISAW-2, 2nd Int. Software Architecture
Workshop on SIGSOFT ’96, pages 72–75. ACM Press,
1996.

17. S. Gnesi, D. Latella, and M. Massink. Model check-
ing UML statecharts diagrams using JACK. In Proceed-
ings of the 4th IEEE International Symposium on High
Assuarance Systems Enginering (HASE), pages 46–55.
IEEE Press, 1999.

18. J. Hatcliff, W. Deng, M.B. Dwyer, G. Jung, and V. Ran-
ganath. Cadena: An integrated development, analysys,
and verification environment for component-based sys-
tems. In Proceedings of the 25th International Confer-
ence on Software Engineering, pages 160–172, May 2003.

19. R. Heckel, M. Lohmann, and S. Thöne. Towards a
UML profile for service-oriented architectures. In Proc.
of Workshop on Model Driven Architecture: Founda-
tions and Applications (MDAFA), CTIT Technical Re-
port TR-CTIT-03-27. University of Twente, Enschede,
The Netherlands, 2003.

20. R. Heckel and S. Thöne. Behavior-preserving refinement
relations between dynamic software architectures. In
Proc. of the 17th Int. Workshop on Algebraic Develop-
ment Techniques, WADT 2004, LNCS. Springer, 2004.
to appear.

21. D. Hirsch. Graph transformation models for software ar-
chitecture styles. PhD thesis, Departamento de Com-
putación, Universidad de Buenos Aires, 2003.

22. D. Hirsch and U. Montanari. Synchronized hyperedge re-
placement with name mobility. In Proc. CONCUR 2001
- Concurrency Theory, volume 2154 of LNCS, pages 121–
136. Springer, 2001.

23. C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley, 2000.

24. G. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279–295, 1997.

25. D. Le Métayer. Software architecture styles as graph
grammars. In Proc. 4th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, volume 216 of
ACM Software Engineering Notes, pages 15–23. ACM
Press, 1996.

26. J. Lilius and I.P. Paltor. vUML: a tool for verifying UML
models. In Proceedings of the 14th IEEE International
Conference on Automated Software Engineering (ASE),
pages 255–258, October 1999.

27. D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
and W. Mann. Specification and analysis of system ar-
chitecture using rapide. IEEE Transactions on Software
Engineering, 21(4):336–355, 1995.

28. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Speci-
fying Distributed Software Architectures. In Proc. ESEC
95 - 5th European Software Engineering Conference, vol-
ume 989 of LNCS, pages 137–153. Springer, 1995.



22 Luciano Baresi et al.

29. N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and
J.E. Robbins. Modeling software architectures in the
Unified Modeling Language. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 11(1):2–
57, January 2002.

30. J. Miller and J. Mukerji. MDA Guide Version 1.0.1.
Object Management Group, 2003. www.omg.org/docs/

omg/03-06-01.pdf.

31. M. Moriconi, X. Qian, and R. A. Riemenschneider. Cor-
rect architecture refinement. IEEE Transactions on Soft-
ware Engineering, 21(4):356–372, 1995.

32. E. Di Nitto and D. Rosenblum. Exploiting ADLs to spec-
ify architectural styles induced by middleware infrastruc-
tures. In Proc. of the 21st International Conference on
Software Engineering, ICSE 99, pages 13–22. IEEE Com-
puter Society Press, 1999.

33. Object Management Group. UML 2.0 OCL Final
Adopted Specification, 2003. www.omg.org/cgi-bin/doc?
ptc/2003-10-14.

34. Object Management Group. UML 2.0 Superstructure Fi-
nal Adopted specification, 2003. http://www.omg.org/

cgi-bin/doc?ptc/2003-08-02.

35. Object Management Group. XMI: XML Metadata Inter-
change, v2.0, 2003. http://www.omg.org/cgi-bin/doc?
formal/2003-05-02.

36. A. Rensink. The GROOVE simulator: A tool for state
space generation. In M. Nagl, J. Pfalz, and B. Böhlen,
editors, Proc. Application of Graph Transformations with
Industrial Relevance (AGTIVE ’03), volume 3062 of
LNCS, pages 479–485. Springer, 2003.

37. A. Rensink. Canonical graph shapes. In D. A. Schmidt,
editor, Programming Languages and Systems — Euro-
pean Symposium on Programming (ESOP), volume 2986
of LNCS, pages 401–415. Springer, 2004.

38. A. Rensink, Á. Schmidt, and D. Varró. Model check-
ing graph transformations: A comparison of two ap-
proaches. In H. Ehrig, G. Engels, F. Parisi-Presicce, and
G. Rozenberg, editors, Proc. 2nd International Confer-
ence on Graph Transformation, ICGT 2004, volume 3256
of LNCS, pages 226–241. Springer, 2004.

39. J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum. Integrating architecture description lan-
guages with a standard design method. In Proc. of the
20 th International Conference on Software Engineering,
ICSE 98, pages 209–218. IEEE Computer Society, 1998.

40. T. Schäfer, A. Knapp, and S. Merz. Model checking UML
state machines and collaborations. Electronic Notes in
Theoretical Computer Science, 55(3):13 pages, 2001.

41. A. Schürr, A.J. Winter, and A. Zündorf. The PROGRES
approach: Language and environment. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook on Graph Grammars and Computing by Graph
Transformation, volume 2: Applications, Languages and
Tools. World Scientific, 1999.

42. M. Shaw and D. Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice-Hall, 1996.

43. G. Taentzer, M. Goedicke, and T. Meyer. Dynamic
change management by distributed graph transforma-
tion: Towards configurable distributed systems. In Proc.
TAGT’98 - Theory and Application of Graph Transfor-
mations, volume 1764 of LNCS, pages 179–193. Springer,
2000.

44. D. Varró. Towards symbolic analysis of visual modeling
languages. In Proc. GT-VMT 2002 - Int. Workshop on
Graph Transformation and Visual Modeling Techniques,
volume 72 of ENTCS, pages 57–70. Elsevier, 2002.

45. D. Varró. Automated formal verification of visual mod-
eling languages by model checking. Journal of Software
and Systems Modeling, 3(2):85–113, 2004.

46. M. Wermelinger and J. L. Fiadeiro. A graph transforma-
tion approach to software architecture reconfiguration.
Science of Computer Programming, 44(2):133–155, 2002.

47. A. Winter, B. Kullbach, and V. Riediger. An overview of
the GXL graph exchange language. In S. Diehl, editor,
Software Visualization: International Seminar, Dagstuhl
Castle, Germany, May 20-25, 2001. Revised Papers, vol-
ume 2269 of LNCS, pages 324–336. Springer, 2002.


