Noname manuscript No.
(will be inserted by the editor)

Implementing a Graph Transformation Engine in Relational Databases$

Gergely Varro', Katalin Fried! !, Daniel Varr 62

! Department of Computer Science and Information Theory,

Budapest University of Technology and Economics
e-mail: {gervarro|fried| }@cs.bme.hu
Department of Measurement and Information Systems,
Budapest University of Technology and Economics
e-mail:varro@mit.ome.hu

The date of receipt and acceptance will be inserted by the editor

Abstract We present a novel approach to implement astandard for capturing Queries, Views and Transformations
graph transformation engine based on standard relationabithin and between different domains.
database management systems (RDBMSs). The essence of While the QVT is a relatively new initiative for speci-
the approach is to create database views for each rule and fging model transformationgyraph transformation (GT[8]
handle pattern matching by inner join operations while han-already integrates valuable research results of several decades
dling negative application conditions by left outer join oper- both from conceptual and implementation side.
ations. Furthermore, the model manipulation prescribed by From a conceptual point of view, graph transformation
the application of a graph transformation rule is also imple-provides a visual, rule and pattern-based formal paradigm. In-
mented using elementary data manipulation statements (sudbrmally, a graph transformation rule performs local manipu-
as insert, delete). As a result, we obtain a robust and fast tranation on graph models by finding a matching of the pattern
formation engine especially suitable for (i) extending model-prescribed by its left-hand side (LHS) graph in the model, and
ing tools with an underlying RDBMS repository and (ii) em- changing it according to the right-hand side (RHS) graph.
bedding model transformations into large distributed appli- Graph transformation has proved its maturity for pre-
cations where models are frequently persisted in a relationadisely defining (i) the operational semantics of various vi-
database and transaction handling is required to handle larg&ial modeling languages (ii) as well as model transforma-
models consistently. tions within and between such languages on a very high level
of abstraction. Furthermore, there is already a wide range of

Key words Tool support — Graph transformation — Pattern available tools for simulation or verification purposes like
matching — Relational databases AGG [9], ATOM3 [31], Diagen [17], Fujaba [10], GReAT
[1], Groove [23], Progres [27], Viatra [32] and many more.

Surprisingly, all these tools are identical from a specific
aspect, namely, their underlying implementation technology
is related to gprogramming languagée.g. Java in case of
AGG, Fujaba, Groove, and Viatra2).

Relational database management systems (RDBMSSs) that

serve as the storage medium for business critical data for

Wr:j'le now:;dgys model—dr:jvin syst%ms develo?ment IS molrl?arge companies are probably the most successful products
and more being Supporte ' by a wide range o conceptuallyy s fryare engineering. A crucial factor in this success is the
differentmodel transformation toolsiearly all of these tools | < synergy between theory and practice: SQL, the stan-
have to solve a common problem: the efficient query and MaYard data definition, manipulation and query language is built

nipulation of complex graph-based model structures. The 'm'upon precise mathematical foundations.

%ort??cz gf thesc_a 'S;L:es f\r/?rmRig l\/;liAtpers;pE?tl\k/]e hagl\?(e;en In the current paper, we investigate how to exploit power-
identified by issuing the Q [21] to establish an ful RDBMSs to serve as an underlying implementation tech-

* The first and the third author were partially supported by the nplogy for m'odel transformations. Morg precisely, W.e pro-
SEGRAVIS Research Training Network. The first and the secondv'd_e a mapping from graph transformation systems_lnto re-
author were also partially supported by the grant OTKA T42559. lational databases. The essence of the approach is to cre-
The &nos Bolyai Scholarship provided additional support for the ate database views for each rule and to handle graph pat-
third author. tern matching by inner join operations while negative appli-
Correspondence tgervarro@cs.bme.hu cation conditions by left outer join operations. Furthermore,

1 Introduction

the model manipulation prescribed by the application of ametamodels of UML class diagrams and relational database
graph transformation rule is also implemented using elemenschemas (following the CWM standard [20]) are depicted in
tary data manipulation statements (SUCINSERT, DELETE). Fig. 1. In order to avoid complex figures, only the relevant
We extend previous results in [33] by the full formalization parts of the metamodel is presented.
of this mapping with proofs of correctness.

Furthermore, we implemented a prototype graph transr———

formation engine, which uses open, off-the-shelf relational Rer | Mode.w EO
databases (hamely, PostgreSQL [18] or MySQL [28]) as g . .
backend to demonstrate the practical feasibility of our ap- Generalization

proach. For a detailed experimental evaluation, we asses
how the performance of a graph transformation engine base
upon a relational database is influenced by (i) parallel rulg
applications (i) RDBMS-specific query optimization tech-
niques and (iii) the choice of the underlying RDBMS.

Structure of the paper. Our main intention in Sec. 2 is to
briefly and informally summarize the essence of our approacifid- 1 Metamodel of the problem domain
on an example prior to going into deep mathematical details.
For that purpose, we assume the reader’s familiarity with the
basics of relational databasks. Nodes (e.gSchema, Table) of the metamodel are called
Readers also interested in the precise mathematical treatlasses A class may havattributes(e.g. the edge labelled
ment of our approach should continue with Sec. 3, which pro-by name) that define some kind of properties of the specific
vides formal definitions for modeling languages and graphclass. Inheritancemay be defined between classes, which
transformation to capture model transformations betweemmeans that the inherited class has all the properties its par-
these languages. In Sec. 4, an overview is provided to thent has, but it may further contain some extra attributes. Note
main concepts of relational databases together with formaithat the CWM standard derives database notions like tables,
definitions. Sec. 5 presents the formalization of our approacltolumns, etc. from UML notions by inheritance (see Fig. 1).
to encode graph transformation rules into relational databases Associationdike EO, CF, SFT, CE, PE, KRF andUF de-
(with formal proofs of correctness listed in Appendix A). fine connections between classes. Both ends of an association
Then Sec. 6 discusses implementation issues of our exnay have amultiplicity constraint attached to them, which
perimental graph transformation engine built upon an off-the-declares the number of objects that, at run-time, may partic-
shelf RDBMS. We also investigate how the performance ofipate in an association. We consider the most typical multi-
graph transformation over a RDBMS is dependent on dif-plicity constraints, which are (i) the at most one (denoted by
ferent design decisions, and tool or graph transformationarrows or diamonds), and (ii) the arbitrary (denoted by line
specific heuristics. Finally, an overview of related work is ends without arrows and diamonds). Furthermore, weafse
presented in Sec. 7, while Sec. 8 concludes our paper. erence edges (denoted by dashed lines in instance models)
connecting source and target model nodes.
Theinstance modealescribes concrete systems defined in
2 Overview of the approach a modeling language and it is a well-formed instance of the
metamodel. Nodes and edges are catlbjg:ctsandlinks, re-
We first demonstrate how model transformations betweerspectively. Objects and links are the instances of metamodel
modeling languages (metamodels) can be specified by grapvel classes and associations, respectively. Attributes in the
transformation. An informal overview is provided on how metamodel appear atotsin the instance model. Inheritance
graph transformation rules can be implemented by using tram the instance model imposes that instances of the subclass

ditional relational database tEChniqueS. Our ConceptS are prean be used in every situation where instances of the super-
sented on a widely used benchmark model transformatior|ass are required.

problem: the object-relational mapping [30], which serves as
a running examp|e for the paper. Example 1A well-formed instance model of this domain

(shown in Fig. 2(a)) has a UML packageimal, > which con-

tains a UML classat named ascat. A UML classcat has
2.1 Metamodels, models and graph transformation: An a UML attributecolor. We assume for the paper that UML
informal overview packageanimal and UML classcat have already been trans-

formed by the object-relational mapping algorithm, which
Metamodels and models.The metamodeldescribes the means that schenwand table_cat with a namecat’ are at-
abstract syntax of a modeling language (or domain). Thaached to UML packaganimal and UML classcat, respec-

1 If this is not the case, we recommend to read Sec. 4 for an 2 To prevent confusion between metamodeling terms and class
overview on relational database concepts diagram notions we use the UML prefix for the latter.

tively, via edges of typ®ef. Tablet_cat has a single column Example ZThe object relational mapping can be described
cat_id and a primary key constrainat_pk referring to the col- by 6 graph transformation rules as presented in Fig. 3.

umncat.id. (@) SchemaRule (Fig. 3(a)) simply generates a database

schema for a UML package.

ED CF (b) ClassRule (Fig. 3(b)) searches for a UML class in the
‘a“'m':'?ad‘age‘ cat:Class ‘ colorAtiribute UML package, for which there does not exist a corre-
— 14/""'"" . sponding table in the database schema, and creates the
Rel | 'catString| el corresponding table that has a single colurith for
v Npame_y which a primary keyp is defined.
‘ s:Schema H icat Table ‘ (c) The inheritance relation in the UML model is handled
EO T CF by appropriate foreign key constraints in the database
|cat_pk:PKey | (cat_id:Cohimn| schema. This is expressed by tiBneralizationRule
(Fig. 3(c)), which creates a foreign key constraint on the
(@) Modell identifier columncb of the subclass table for any un-
handled generalization node. The constraint will refer to
‘anlnal:Package‘:Eo catClass ‘E{ color.AtIrimte‘ the columrcp of the superclass tabip that has a primary
L mame i key pp.
Ref 'cafString’ Ref | e (d) A new column is created in the table assigned to the UML
e R ame i class that includes the unhandled UML attribute. This is
‘ s:Schema }.—{ 1 cat:Table ‘.—{c cdcm"n‘ performed by theittributeRule (Fig. 3(d)). The applica-
0 oF tion of this rule is restricted to tables not having a name
) . table. A further negative application condition prohibits
‘cau*'PKey }F{caud'cmm‘ the attribute to have a UML class as its type.
(b) Model2 (e) AssociationRule (Fig. 3(e)) creates a new table in the
database, if there has not been any table assigned yet. This
Fig. 2 Sample instance models new table has again a single colurmel with a primary
key prel.

(f) The AssocEndRule (Fig. 3(f)) selects an unhandled UML
association end, and generates an additional coltrain
and a corresponding primary keyel in the tablerel that
has been created for the UML association itself. More-
over, a foreign key constraint is added to the table,
which refers to the columec of the tabletc that is asso-
ciated with the UML class.

Since our technique is applicable for models appearing
on any MOF metamodel layer, we use tenmsdelandmeta-
modelin a generalized sense by not restricting them only to
M1 and M2 layer, respectively. According to the terminology
of this paper, thenetamodeis always one MOF level above
themodelindependently of the position ofiodelin the MOF To continue our previous example, one can notice that the
metamodel hierarchy. attributeRule (Fig. 3(d)) is applicable if there is a UML class

Graph transformation. Graph transformation [8, 24] inthe model that has been transformed to a table with a name
provides a pattern and rule based manipulation of graph modaot equal totable’ and this UML class has an untransformed
els. Each rule application transforms a graph by replacing &JML attribute of a type not being a UML clasilodel 1 of
part of it by another graph. Fig. 2(a) presents a situation where this rule is applicable,

A graph transformation rulecontains a left—hand side since UML clasgat, tablet_cat and UML attributecolor fulfil
graphLH S, a right-hand side grapRH S, and negative ap- all the necessary criteria.
plication condition graph#&vV AC' (depicted by crosses). The In this specific case, rule application means that a new
LHS and theN AC graphs are together called the precondi- column is added to the selected table and a reference edge is
tion of the rule. set from the UML attribute to the new column. The derived

Rule application. The application of a rule to an instance instance modeVlodel 2 is presented in Fig. 2(b).
model replaces a matching of tiig4.S in the model by an
image of theRH S. Informally, this is performed by (i) find-
ing a matching ofLH .S in the model, (i) checking the neg-
ative application conditions (which prohibit the presence o
certain objects and links) (iii) removing a part of the model
that can be mapped tbH S but not to RH S yielding the
context model, and (iv) gluing the context model with an im-
age of theRH S by adding new objects and links (that can
be mapped to thé& H .S but not to theL HS) obtaining the — Each class withk outgoing many-to-one associations and
derived model. attributes is mapped to a table witht- 1 columns. Col-

2.2 Graph transformation in relational databases: An
finformal overview

Mapping metamodels to database tablesWe use a stan-
dard mapping (for more details see [22, 30]) to generate the
schema of the database from the metamodel.

. " . " umn id will store the |dent|f|ers_ of obJ(_ects of_ the Spe-
cific class. All other columns will contain the identifiers
e e of target objects of such outgoing many-to-one links that
| s:Sg%emal s:5chema have the corresponding association as their direct type.

If no such outgoing link exists in the model, the unde-
fined (NuLL) value is used in the corresponding column.
Additional foreign key constraints, whose role is to guar-
antee the consistency of the database have to be defined
for columns representing many-to-many associations re-
ferring to the table assigned to the corresponding target
class.

— A table with 2 columns storing the identifiers of source
and target objects is assigned to each many-to-many as-
sociation.

— Inheritance is handled by a foreign key constraint defined
for the identifier columnid of the table assigned to the
subclass. This foreign key constraint maintains reference
to the identifier columrid of the superclass table.

Database representation of instance model$nstance
models representing the system under design are stored in
these database tables.

— A unique identifier is assigned to each object of the in-
stance model.

(c) GeneralizationRule — The identifier of each object has to appear in the column
. eor id of all tables that correspond to ancestors of the object’s
| c:Class a:A'IIlIimIe| ‘ c:Class am}i:me‘ directtype.
IR aser[R ri:Ret '2Ref' — The database representation of a many-to-one link is a
| tTable | [cmn:Cuomn]| | tTavle Jo—"Zcorcotumn| row in the table that corresponds to the source class of
the link’s type. This row should contain the identifiers of
source and target objects in the identifier coluidrand

the column representing the many-to-one association, re-
spectively.

— Each many-to-many link is represented in the database by
a pair of source and target object identifiers appearing in
the table that corresponds to the direct type of the link.

: ‘ 7 ‘ M:m . .
s:Schema [mcygvie] | [s:schema ‘ﬁ@ Example 3The database representation of the instance model
— i Model 1 is depicted in Fig. 4.
‘ prel:PKey }?{ueﬂmlum
A iationR
. .
.. ModelElement Package Class Feature Attribute UniqueKey
(e) AssociationRule | Ref | EO [i@ [name][14 [cF [|
animal s NULL animal cat ‘cat’ color | cat color |caL pkl
cat t cat |animal s t cat | ‘cat' ||cat id | t cat cat_id
color | NULL | NULL
s NULL | NULL Schema Table UF Column PrimaryKey
tcat |[NULL| s | d | | id | | sc | trg | | id | [id |
cat_id | NULL | NULL | s | [tcat] |cat pk|cat id| |cat id] [cat_pk]

cat_pk| NULL | t cat

SFT

Fig. 4 Database representation of the instance model

(i) Model 1 contains a UML classat, which is identified

(f) AssocEndRule by the keycat in the database. AdodelElement, Namespace
andClass are ancestors dflass, all their corresponding ta-
Fig. 3 Rules describing the object relational mapping bles should have the ket in their identifier columnid. (ii)

UML classcat is contained by UML packagenimal. This
containment is a many-to-one link of tyge going from

UML classcat to UML packageanimal. The database rep-
resentation of this link is a row in thelodelElement table,
which has valuesat andanimal in columnsid and EO, re-
spectively. (iii) Model 1 has a single many-to-many link of
type UF connecting objectsat_pk andcat_id, which is repre-
sented by a corresponding row in table.

Views for LHS and NAC. The matching patterns of
a graph transformation rule are calculated by using views
which contain all matchings of the rule. More specifically, we
introduce a separate view for eaElf/ S and N AC' graph.

1. The view generated for rule graphsi{ .S and N AC) ex-
ecutes afinner join operationon tables that represent ei-
ther a node or an edge of the rule graph.

. The joined table idiltered by injectivity and edge con-
straints Injectivity constraints express the injective map-

ping of rule graph nodes and edges on the database level,|

Edge constraints define restrictions imposed by the grap

column id of table Feature can participate in a matching
that can also be found in tabketribute as expressed by the
edge constraird.id=a _anc.id . A similar edge constraint
a_anc.CF=c.id requires possible target object identifiers
of columnCF in tableFeature to be equal to a value from the
identifier column of tableClass. A similar pair of equalities
express the edge constraints for the reference eddpue to
inheritance relations defined in the metamodel, every table is
a UML class at the same time. Thus, mappings arfidc to

the same object has to be avoided. On the database level, this
(injectivity) constraint is expressed by the inequatitjd

<> t.id

AttributeR_lhs
La | ¢
| color | cat

AttributeR_nac1 AttributeR_nac2 AttributeR_nac3
a | cn I a | o | t [name |

tl

t cat |

AttributeR_left_join AttributeR
a | c | t [cn | cn [name]] a | ¢ | t]
h [Lcolor | cat | tcat | NULL | NULL | NULL || color | cat | tcat |

structure, which means that the source (target) node ideq:ig_ 5 Database representation of matchings
tifier of the given edge should be found in tables repre-
senting the type of the edge and the type of the source

(target) node.
. Finally, aprojectionselects only those columns of the fil-

The upper part of Fig. 5 shows the contents of views that

tered joined table that represent node identifiers. Infor-have been defined for thedS and theV AC' parts of rule

mation about the source and target nodes of edges is digitributeR. _ .
carded during projection. This information is unnecessary As color is a UML attribute of the UML classat and this

in the sequel, since requirements imposed by the grap
structure have already been checked and fulfilled.

ML class is connected to tablecat by a reference edge
in Model 1, a matching for theLHS of rule AttributeR is
found, which is represented by a row in the corresponding

Example 4We introduce the essence of this approach by anj.e., the leftmost) view of Fig. 5. The view generated for the

example listing the view generated for thé.S and N AC
graph of the ruléttributeR (see Fig. 3(d)).

CREATE VIEW AttributeR_Ihs AS -- an LHS view
SELECT a.id AS a, tid AS t, c.id AS ¢ -- with 3 columns
FROM Attribute AS a, Feature AS a_anc, Class AS c,
ModelElement AS c_anc, Table AS t
WHERE a.id = a_anc.id AND a_anc.CF = c.id
AND c.id = c_anc.id AND c_anc.Ref = t.id --
AND c.id <> tid -- injectivity constraint
-- for nodes c and t

-- CF edge cfl
Ref edge rl

CREATE VIEW AttributeR_nacl AS
SELECT a.id AS a, cIn.id AS cIn
FROM Attribute AS a, ModelElement AS a_anc2, Column AS cin
WHERE a.id = a_anc2.id AND a_anc2.Ref = cln.id
-- Ref edge refn
-- injectivity constraint
-- for nodes a and cin

AND a.id <> cIn.id

CREATE VIEW AttributeR_nac2 AS

SELECT a.id AS a, cn.id AS cn

FROM Attribute AS a, SFT as sft, Class AS cn

WHERE a.id = sft.src AND sft.trg = cn.id -- SFT edge sft

CREATE VIEW AttributeR_nac3 AS

SELECT t.id AS t

FROM Table AS t, Class AS t_anc

WHERE t.id = t_anc.id AND t_anc.name = ’table’
-- for name edge n

The LH S of rule AttributeR requires the presence oft&

edge that connects a UML attribute to a UML class. Since 3.

CF edges are stored in theature table, it must also be in-
cluded in the inner join operation in addition to tabkss
tribute and Class. Since the source node ofl has to be

a UML attribute, only such source object identifiers of the

first N AC is empty, since there is no matching for tihisAC'

as no reference edges leave any UML attributesiadel 1.
Since tableSFT is empty, the view representing the second
N AC has no rows. The last view is again empty, since there
are no UML classes with namible’.

Left joins for preconditions of rules. When the view
for the precondition graph is calculated, views of all its pos-
itive and negative application conditions are available. If the
precondition has no negative application conditions then the
view defined for thel. H .S contains the database representa-
tion of all matchings of the precondition graph.

1. EachlVAC view isleft outer joinedo the LH S view one
by one. Thgoin conditionof this operation expresses that
columns representing the same shared node i ftié&
and theN AC graphs should be equal.
. For a matching of the precondition graph, we require (in
the null condition) that columns ofN AC(s), which are
shared with thed.H S part, are filled with undefined val-
ues. This means that there are no possible extensions of
a matching of thel H S that is also a matching of (any)
N AC graph.
Then gorojectionis performed, which displays only those
columns that originate fromH S.

Example 5To continue our running example, we present the
view definition for the precondition graph of rudgtributeR.

CREATE VIEW AttributeR AS
SELECT Ihs.*
FROM AttributeR_lhs AS |hs
LEFT JOIN AttributeR_nacl AS nacl ON lhs.a = nacl.a
LEFT JOIN AttributeR_nac2 AS nac2 ON lhs.a = nac2.a
LEFT JOIN AttributeR_nac3 AS nac3 ON lhs.t = nac3.t
WHERE nacl.a IS NULL AND nac2.a IS NULL AND nac3.t IS NULL

The upper part of Fig. 5 shows the contents of views that

determined, whose source or target is the class, which is
just being traversed by the iteration. Then we should per-
form the above mentioned edge deletion procedure on all
links that (i) have the object to be deleted as their source
or target node and that (ii) are instances of associations
collected in the previous step. The final step of the it-

eration is the deletion of the object itself from the table

that corresponds to the class being traversed. This is per-
formed by deleting the row of this table, which contains
the identifier of the given object in its colunid.

have been defined for thHeH S, the N AC's of ruleAttributeR,
respectively. The first table in the bottom of Fig. 5 presents
the result of the left outer join operation, while the last table
corresponds to the precondition of ridaributeR. Note that For handling node and edge insertions on the database
columns representing UML attribute are shared between |evel in the graph manipulation phase, we can use exactly the
LHS, NAC; and N AC; graphs, and columns showing ta- same procedures as for the initial table filling phase.
blet are shared betwednH S and N AC3, so these columns We state that the new content of database tables always
appear both in the join and in the filtering condition. corresponds to the derived model, thus it can be proven that
Since views generated fé¥ AC' graphs are empty, such our approach performs graph transformation over an under-
column sets of the left outer joined table that originate fromlying relational database.
the N AC views are filled withhuLL values (meaning unsuc- i .
cessful matchings for th& AC' graphs), while column sets EXample 8/Ve continue our sample graph transformation rule
from the LHS view contain the database representation ofAtiributeR with the model manipulation parts. This rule pre-
the single matching of thH S. As this row is not filtered out scribes the insertion of anew column, wh|ch.|s contained by
by the null conditions, it can also be found in the view gen- € table being selected in the pattern matching phase. More-
erated for the whole precondition graph, which means thaPVver: the origin of this column has to be marked by inserting

a matching has been found for the rlgributeR, and as a anew reference link. .
consequence the rule is applicable on that matching. On the database level, the same effect can be achieved by

generating a new identifier_col for this new column and

Model manipulation in relational databases.Opera- by inserting this identifier into all tables that represent the an-
tions in the graph manipulation phase can be implementedestors ofcolumn. In order to respect foreign key constraints,
by issuing several data manipulation commang&skERT, insertions are executed in a top-down order starting at the ta-
DELETE, and UPDATE) in a single transaction block. The ble corresponding to the most general ancestor. Insertion of
transaction block is needed to ensure that a graph transfothe 2 new many-to-one links appears as the 2 update opera-
mation step is atomic, i.e., either all commands or none oftions presented in the listing below.
them are executed to result in a consistent model after rul§serr iNTo ModelElement (id) VALUES (c_col):
application. INSERT INTO Feature (id) VALUES (c_col);

In the graph manipulation phase, deletions are followed\SERT INTO Cotmn (6 VALUES. (& capr

by insertions. UPDATE ModelElement SET Ref = c_col WHERE id = color;
. . . UPDATE Feature SET CF = t cat WHERE id = c_col;
— We further restrict the order of delete operations in such

away that edge deletions precede node deletions. When the execution of these graph manipulation com-

— It a many-to-one link has to be deleted from the mands terminates, the new content of database tables corre-
model, then the table that represents the source clas

of the direct type association of the given link has to §ponds tothe derived moddbdel 2.
be updated. Specifically, the value of the column cor-
responding to the many-to-one association has to b&g Metamodels, models and graph transformation
set toNULL in the row that contains the source node
identifier of the link in its columnid. Now the formalization of concepts related to metamodels,
— In case of a deletion of a many-to-many link, the row models and graph transformation is presented.
consisting of the source and the target node identifiers
of the link has to be removed from the table that cor-
responds to the direct type of the given link.
— Asthe ner identifier to be deleted can b,e fqund n tablesI’he metamodebescribes the abstract syntax of a modeling
representing the ancestors of the object’s direct type, thTanguage
deletion should proceed in a bottom-up order (to respec '
foreign key constraints) by starting at the class, which isDefinition 1 A directed graph (denoted by G =
the direct type of the object. (Ve, Eg, srca,trge)) is a 4-tuple, whereV; and Eg
During this iteration, additional attention is needed to denote nodes and edges of the graph, respectively. Functions
consistently handle the removal of dangling edges fromsrcg : Eq — Vg andirge : Eq — Vg map edges to
the database. As a first step, all associations have to béaeir source and target node, respectively.

3.1 Metamodels and models

Definition 2 A metamodel(denoted byM M) is a directed
graph, where

—Varar and Eprps denote nodes and edges of the meta-

model;

—classes ('ls) and datatypes 0T ypes) form a (distinct
and complete) partition of nodes, formallyy;n, =
Cls U DTypes, Cls N\ DTypes = (;

—aclassC is a node of the type graph that represents a

user-defined and domain-specific type, formally:
Cls;

—a datatypeD is a node of the type graph that repre-
sents a built-in type of a programming language (e.g.

int , String), formally, D € DTypes;
—associations {ssoc) and generalization (inheritance)
edges [nher) constitute a partition of edges, formally,
Eyy = Assoc U Inher, Assoc N Inher = (;
—associations can be further partitioned
tributes Attr, ’'many-to-many’ fAssocprops) and
'many-to-one’ (Assocpr20) associations, formally,
Assoc = Assocyron U Assocyroo U Attr, Assocyron N
Assocyoo = 0, Attr N Assocpyroy = 0, Attr N
Assocyrao = 0;
— amany-to-many associatiod from source clas<’;

to target classC; (denoted byC A C,) is an edge
from the setdssocpron, Wheresrey i (A) = Cs €
Cls, trgpm(A) = Cy € Cls;

— amany-to-one associatiod from source clas€’; to
target clas<’; (denoted by, it C,) is an edge from
the setAssocyra0, Wheresrcepy(A) = Cs € Cls,
tTg]uM(A) = C,; € Cls;

—an attribute A in a classC of a datatypeD (de-
noted byC et D) is an edge from the setttr, for-
maIIy, STC]\,{M(A) = C € Cls, tng\/U\,{(A) =D €
DTypes, andC A D € Attr;

—ageneralization (inheritance) edgé leading from class
C; to classC; (denoted as in UML by's «— C}) is an
edge from the seknher, formally, srepp (1) = Cp €
Cls, trgpa(I) = Cs € Cls, andCy «— Cy € Inher.

In the above definition, associations define binary rela-

into at-

Definition 4 Given a metamodell M, classC, is a (direct)
superclasf classC, (or, equivalently, clas€’; is a (direct)
subclassof classCh) as denoted by'; «— Cs, if and only if

—there is a generalization eddge, « Cs € Inher;

—there are no other classes in the inheritance hierarchy
betweenC; and Cs, formally, AC € Vj;as such that
Cy — C «— Cs.

Note that this definition does not imply that a clagshas
a single superclass;, as multiple inheritance is allowed in
the inheritance graph. Since the superclass of a class may also
have its own superclass, it is useful to define the transitive
closure of the superclass relation.

Definition 5 Given a metamodé&l/ M, classC; is anances-
tor (class)of classC- (or, equivalently, clas§’s is adescen-

dantof classC) (denoted by < Cs), if eitherC; = Cs,
or 3C € Vs such thatC; «— C < Cs.

Capital letters from the beginning of the alphabet (e.g.,

C,D, 4 D,) will be used for meta-level graph elements
(classes, associations).

The instance model describes concrete systems defined in
a modeling language and it is always a well-formed instance
of the metamodel, which means that typing morphisms for
nodes and edges of the model can be defined. Type functions
map model nodes and edges to metamodel level classes and
associations, respectively.

Definition 6 Given a metamodelM M, a well-formed in-
stance model (graph)\/ of the metamodelM M is a di-
rected graph together with direct type function (graph
morphism)t : M — M M, which maps model{ to meta-
modelM M according to the following rules

— Unambiguous mapping of objects and valuemodel
nodes are mapped to metamodel nodes, formetlye
Vi t(c) € Vi,

—a model node is called as abject if its direct type
is a class;

—a model node is called as\alug, if its direct type is
a datatype;

tions between classes. In the current paper, we do not handle~ Ynambiguous mapping of linksmodel edges (called as
association classes. Note that we use the same notation for lInks) are mapped to associations, formalty; € Fy;

many-to-one associations and attributes as they differ only in

t(e) € Enrrs

the categorization of their target nodes. In the following, the — TYP€ conformance of source objectthe direct type of

. A . ..
notationC, — C; is used for a general association of any

kind that isA € (Assocyran U Assocprao U Attr).

Inheritance graph. The inheritance hierarchy forms a
lattice, which implies that the inheritance graph is a directed
acyclic graph (DAG), and there is a common root ancestor

class for all classes.

Definition 3 The inheritance graph M Mj,per =
(Cls, Inher, srcaar, trgaa) IS the type graph restricted to
generalization (inheritance) edges, which forms a lattice.

the source object of a link is a descendant of the source
of the direct type of the same link, formalg € E),
srean(t(e)) < t(srear(e));

— Type conformance of target objectshe direct type of
the target object of a link is a descendant of the target
of the direct type of the same link, formalg € E,;
trgai (t(e)) < t(trgn(e));

— Multiplicity criterion for many-to-one associations and
attributes: each object can have at most one link of a
given direct type originating from the same many-to-
one association. Formall\fA € Assocy20, Ve, es €

Ey o osrep(er) = a Atrgpy(er) = b A srep(es) =
aANtrgy(es) = cNA =t(er) = tles) = e1 = ea;
and

— Non-existence of parallel edgedNo parallel edges are o]
allowed, which means that there cannot be any pair of P€finition 10 Given a metamoded/ M, a graph transfor-

links of the same type leading between the same pair Or,natipn r.uler con.s'ists of a basic rule,, and a set of negative
objects in a given direction. Formallyje,, e, € Ey, : 2pPplication condition NAC; }.
srepr(er) = srep(e) A trgu(er) = srea(ez) A
t(er) =t(ea) = e1 = ea.

ourselves to equalities in case of attribute constraints. A slot
in an RH S graph is called amttribute assignmentin the
sequel.

Definition 11 Theprecondition of ruler (denoted by prr)
is the LH S graph together with the set of negative applica-

Small letters from the beginning of the alphabet (e.g.tlon conditions.

¢,a = b) will be used for objects and links of the instance
model.
In the following, we use termmany-to-many link (de-

The LH S graph and theth negative application condi-
tion graph/V AC; of aruler are denoted by, ;s andry ac;
) _ e respectively. For the graph objects (nodes and edges) of rules
noted bya = b), many-to-one link (denoted by: = b)and we always use small letters from the end of the alphabet (e.g.
slot (denoted again by — b), if the direct type of the given z,u >).
link is a many-to-many association, a many-to-one associa- |n this paper we use notatidr. s \ Vas for the nodes
tion and an attribute, respectively. of LHS that do not have images iRH S according to mor-

Type definition can be generalized in such way that a”phismp. The notational shortharid, 7 s N Vi s will denote
ancestors of a direct type are also implied. those nodes of.H S that are mapped by the morphigm
Finally, Vrs \ Vous marks those nodes diH S that do
not have an origin inLH.S. We will use the same notation
for negative application conditions (€. s \ Vv ac,) and
edges (e.9ELus \ Erus)-

For the application of a rule we follow the single pushout

_ o)) approach [24] with injective morphisms. However, the defi-
Alternatives for handling inheritance in graph-based nitions are slightly adapted to our proof technique.
models can be found in [15] (graph schema) and in [29]

(typed graphs).

Definition 7 Given a metamodelM M, a well-formed in-
stance modeM with a direct type function, thetype of an
objectc (denoted byt*(c)) consists of all ancestors ofc).

Formally, t*(c) = { C|C € Varar AC < t(c) }

Definition 12 A matchingm for a graph G in a model M
(denoted byn(,) is a type conformant total morphism¢ :
G — M, which means that

3.2 Graph transformation *
—Vz € Vg, Ie € Vas = t(x) « t(c) Amg(x) = ¢, and
Graph transformation [8] provides a pattern and rule based —Vu = v € Eg, 3a % b € Ey : t(u) « t(a) A t(v) «
manipulation of graph models. Each rule application trans- #(b) A t(z) = t(e) Amg(u = v) = a > b.

forms a graph by replacing a part of it by another graph.
graph by rep gap Y grap Definition 13 A matchingm for a rule » in a model M (de-

Definition 8 Given a metamodel/ M, a basic ruler, con- noted bym,) is
sists of a left—-hand side graphH .S and a right-hand side
graph RH S and an injective partial morphism : LHS —

RHS where LHS and RH S are well-formed instances of
the metamodeM M. One further criteria has to be fulfilled,

namely,

—a matchingn for the LH S in modelM, provided that
—no matching exists for any NAC graph, formally,
VYNAC; #m’ : NAC; — M, for whichVz € Vigs N
VNac, = m/(x) = m(z) and Yu 2 v e EpgsnN

Enac, : m'(u > v) =m(u > v).

— Preservation of valuestf a value appears on one side of
a basic rule, then it must also exist on the other side. For-
mally,Vx € Vigs : t(x) = D = D € DTypes =
x € VrusAp(z) =z, andVa € Vyys : t(x) =D =
D € DTypes = = € Vs A p(x) = x.

Definition 14 Given a matchingn for a rule r in modelM,,
the deletion phaseof a rule application of the rule is exe-
cuted on a matchingr in the modelM yielding the context
model}M., when

—we delete all objects, to which nodes appearing only in

Definition 9 Given a metamodel/ M and a basic rulery,

a negative application conditiorj13] consists of theL H S
graph ofry, a directed graphVAC' (depicted by crosses in
figures) and an injective partial morphispyyac : LHS —
NAC. The NAC graph also has to be a well-formed in-
stance of the metamod&! M.

In the following, we use the ter@attribute constraint for
a slot appearing in ahH.S or aN AC graph, and we restrict

the LHS are mapped byn, formally, Vi;. = Vi \
{C | dr € Vigs \ VraS N m(m) = C}; and

—we delete all links, to which edges appearing only in the
LHS are mapped byn, formally,

By, ZE]\4\{ai>b|Hui’UEELHS\ERHs/\

m(uiv):aib};

— all dangling (i.e., incident) edges are deleted as well, for- a table cannot have columns sharing the same nameitiihe

mally, column of the table may contain values from thegetynde-
fined (or null) values (denoted hy are also allowed in any
Eum. = Ewy \ { a->b| 3z e Vins \ VausA columns. FormallyJ(A4;,...,4,) € (C1U{e}) x ... x
. . (Cru{e}).
(m(z) = aV m(z) = b) }
Definition 15 Gi hi ; lori el Definition 20 Since database tables are n-ary relations, their
efinition lven a matchingn for a rule in modell, elements are n-tuples = (z1,...,z,), which are called

theinsertion phaseof a rule application of the rule is exe-

rowsin database terminology.
cuted on a matchingn in the context model/, yielding the gy

modelM/’, if While the traditional relational DBMSs use multi-set se-
—a new objectn(z) is added to modeM for each node ~Mantics, we can simplify to set semantics in the paper, since
of RHS that is not contained by. H S, formally, Vy; = unigueness of rows can be guaranteed by the algorithm that
Vi, U{m(z) | 2 € Vans \ Vous }, and will be presented in Sec. 5.

—a new linkm(u = v) is added to modeM for each
edge of RH S that cannot be found in th& HS graph.
Note that in this case source and target objeefs:) and
m(v) already exist in the model/. Formally, Ey; =

Definition 21 A direct column reference for a tablg@ (de-
noted byT. A; or simply byA; (if the table to which it refers
can unambiguously be determined)) identifies the column of
i . T that has a namel;.
EMCU{m(uHU) |u—>’UEERH5\ELHs}
Definition 22 Given a tableT with a column called4;, a di-
Definition 16 Given a matChingﬂ for a rule r in modelM, rect column reference for a rowt € T (denoted b)t[AZ])
rule r is applied to the matchingr in the model)M yielding identifies the element dfthat can be found in the column
the derived model/’, (denoted byl/ =2 M) if deletion ~ T.A4;.
and insertion phases are executed in this order.
Definition 23 A primary key constraint for columns
When modeling complex systems, naturally, more thanay, ,A; of table T(4,,..., A,) guarantees the unique-

single graph transformation rule is required. A graph transmegs of values in the selected set of columns. Fornvally, €
formation system encapsulates a set of rules, which can bg . (r =5 «— i, 1 <i<j : r[4] = s[4)]).

applied during the evolution of the system model. ’

Foreign key constraints are integrity constraints provided
by the most RDBMSs. Their role is to ensure that columns
in different tables never contain inconsistent data. In our ap-
proach, these constraints are (mainly) used to guarantee that
Definition 18 Given a graph transformation syste®.; = the database r_eprese_zntation of an edge can never appear in
(MM, R), agraph transformation runis a sequence of rule the database without its source and target nodes being already

applications (denoted a&f; == M,), which starts froman ~ Present
initial model M; and which applies rules from the sit

Definition 17 A graph transformation systemSgr =
(MM, R) is a tuple that consists of the metamodél},
and the set of graph transformation rulé&s

Definition 24 A foreign key constraint for columnR. A re-

ferring to column 8.B (denoted byR.A N S.B) declares
4 Database operations that all values of columfR. A should also be found in column
S.B, or formallyR.A C S.B.
In our graph transformation engine a relational DBMS is used

stance models and to perform modifications on such models$éparate name.

Now we summarize the database terminology used throughl—Definition 26 Thedatabase schem@lenoted byS ;) con-

out this paper. . . o
pap sists of the set of tables and views appearing in the database.

4.1 Tables and views]
4.2 Query operations
The most basic entities of a database are tables that may have
several columns and their role is to store data in its rows. After introducing the basic entities (i.e., tables), query opera-
tions are discussed, which can be used to define derived tables
Definition 19 A database table with: columns (denoted (j.e., views).

by T™(Ay,...,A,)) is an n-ary relation over sets

(Cru{e}),...,(Ch,U{e}). TandA, denote names of the Definition 27 Given an ordered sequence of column refer-
table and of theth column, respectively. Column names def-encesT.Aq, ..., T.A; for T, the projection of a tableJ to
initely have to be unique in the scope of a single table, thusolumns Ay, ..., Ay (denoted byra,, . 4, (7)) is a k-ary

relation, which consists of only the enumerated columi¥ of Definition 31 Given two tableR(™) and$(™), a column set

Its formal definition is as follows of a joint tableR x § referring to the base tabl& (denoted
by R¢*) is the largest possible set of columns that originate
(T1,.. ., 21) €ma, . a,(T) = from table®, which is the firstn columns ofR x § in this
case.

k
Ay owm) €T N v =ya,, . -
i1 Definition 32 Given two tablesk and 8, anindirect column

L o . reference for the joint table€l’ = R x§ (denoted by . k. A;,
where/\;_, z; = ya, denotes the conjunction (logicaND) or simply byR°*. 4;) identifies a column of by selecting a
of equalities. column set first and then by using the direct column reference

In SQL terms projection is implemented in the select i On the column set.
statement as follows:

SELECT Ay, ..., A, FROM R An indirect column reference for a row of the joint table

can be similarly defined.

Definition 28 An atomic expressiorhas a forma63, where
o and 3 can be either a column & or a constant. 4 is a Definition 33 Given a formulaF’, theinner join of tablesR

. - Fo . .
comparison operator, s { =, <,>, <,>,7# }. Aformula 54 (denoted byR x $) is a selection from the Cartesian
F is either an atom or it is constructed from atoms using theproduct filtered by formula. Formally

logical and (A), logical or (v), and negation-{) operators.

F
Definition 29 Given a formula F, selection (denoted by RX8=0p(RxS8).
or (7)) operates on a single tabl& and collects the rows _
of T whereF(yy, ..., y») holds. The formal definition of se- In this paper, only atoms of typd = B (two column
lection is names in equality relation) and the logical and operator will
be used for basic atoms and for constructing formulae, re-
spectively. TypicallyA and B are taken from different tables.
or(T) ={ (W1, n) | (Y1, yn) € TA Itis useful from a practical point of view, if column names on
F(y, yn) = true}. the different sides of the equality relation are from different
Y tables. However, the general definition does not require any
An obvious corollary is that - (T) C 7. sucfh"restrictions. SQL notation of the inner join operation is
as follows.

Selection operation can also be expressed in SQL, USING ge ecT * FROM R INNER JOIN S ON RA=S.B:
aWHERE condition with F' as its parameter.

Definition 30 The cross join of tablesR(™ and 8 (de- Definition 34 Given a formulaF’, theleft outer join of tables

F . . F
noted byR x 8) is a table withm + n columns and it is the R and§ (denoted byR x §) (i) contains all the rows oR x §,
Cartesian product of the two tables. A row is in the result ta- (i) additionally contains all such rows @R, for which there
ble, if its firstm values correspond to a row iR and its last ~ does not exist any row ifi, where F(x|y) holds, and (iii)

n values corresponds to a row B Its formal definition is: the latter rows are filled with undefined values in columns
originating froms.
Rx&={(T1,-- -, Tms Y15+, Yn) | The formal definition of left outer join is

(1, Tm) ERA (Y1, Yn) €S }.

F F
Cross join operation also exists in SQL, which can be for- Rx 8= (Rx 8)U{(x,¢,...,¢) |
mulated as: x € R A Py € 8 for which F(x|y) = true}.
SELECT * FROM R,S;
n¥}éhereF(x|y) denotes whether formul& is satisfiable if its

Column name unigueness has only a table scope, so na unbound variables are replaced by the corresponding values
clashes may occur in joint tables. In order to avoid this P y P 9
f rowsx andy.

uncomfortable consequence caused by join operations, w8
should be able to differentiate between columns that origi-
nate from different base tables.

In RDBMSs name clashes are resolved by some renaming SELECT * FROM R LEFT JOIN S ON RA=S.B;
mechanisms. The SQL notation for renaming depends on the
actual RDBMS software that is being used. In this paper, we
use the PostgreSQL notation, namely A&keyword for this 4.3 Data manipulation operations
purpose in SQL queries (e.id AS T). In our mathematical
formalism, column sets implement the table renaming func-Finally, we define three data manipulation operatidfisvill
tionality, while column renaming is performed implicitly by mark the content of tabl&, after the database operation has
defining a new name for a column in the view definition. completed.

A sample query presenting the left outer join operation is

10

Definition 35 Thedelete operation

DELETE FROM J WHERE A; = y; AND ... AND Ay = yi

5.1 Mapping metamodels and models to database tables

Mapping of metamodels to database tablefmstance mod-

els representing the system under design are stored in

removes those rows of tablg which contain valuesg;
in their column A;, respectively. Formally,7’ = T\

{x eT| /\f:1 x[Ai] = v } where /\f:1 x[A;] = y; de-
notes the conjunction (logicalND) of equalities.

Definition 36 Theupdate operation
UPDATE T SET Aj; = y WHERE A; =

sets the value of columd; to y in all rows of table
T(Aq,...,A,)where columm; has valuer. Formally, 7’ =
(T\ Minus) U Plus, where

Minus={ze T |z[A] =z}
and

Plus = {z' | 3z € Minus, Vk € Z;} : 2'[A;] = yA
N\ 21A4x] = 2[4},

i#k

whereZ denotes the set of positive integers upntdi.e.,
1<k<n).

Definition 37 Theinsert operation

INSERT INTO T (A, ..., Ay) VALUES (y1,. ..

s Yk)

adds an n-tupley to table T, if y is not yet contained. The
tupley has valuey; in column A;, respectively, and it con-
tains undefined values in all other columns. In other words,
T = TU{y}, wherey[4;] = y;, if1 < i < k, and
yC]=¢e,ifC ¢ {A,..., A }.

Definition 38 Given a sequence of database operatidhs,
a transaction is executed on a representatioit resulting

in an other representatiord)t’ (denoted byt L4 '), if
either all operations of"A or none of them are executed.

5 Graph transformation in relational databases

database tables. We use the standard bi-directional mapping
(for more details see [22, 30]) to generate the schema of the
database with BCNF property [6] from the metamodel.

— Let us first introduce a set callethiversg(denoted bytf),

which denotes the set of all identifiers that are (or will be)
ever stored in the database.

Each datatypeD is mapped to a table with a single col-
umn D4 (id). Columnid contains all the possible values
of the datatype that can be ever used. Note that this table
is introduced only for making definitions, notations and
proofs simpler and more understandable. As relational
databases support some built-in types (©&CIMAL
VARCHAR the implementation omits these tables as the
same type restrictions can be achieved by defining appro-
priate built-in types for columns. Formallyy? C D,
where® denotes the built-in database type that is as-
signed to datatyp® of the metamodel.

Each clasg” with k& outgoing many-to-one associations

(and attributes) & Ci,...,C L Cy) is mapped to

a table withk + 1 columnsCd(id, A4, ..., A). Col-
umn id will store the identifiers of objects of the spe-
cific class. ColumnA¢ will contain the identifiers of
target objects of such outgoing many-to-one links that

have association’ i C; as their direct type. If no
such outgoing link exists in the model, the undefined
valuee is used in columnA¢. Additionally, we should
define foreign keysti € [1.k] : CcdAd "5 Cdid
to respect the graph structure in the database. Formally,
CiCUx (Cfue) x...x (CluUe).

We assign a tablel¢(src, trg) for each many-to-many
associationC A C, connecting classeS; and C; in

the metamodel. Columns ¢ andtrg contain identifiers

of source and target objects, respectively. Foreign keys
Ad sre ™8 0d.idand A trg ™5 €4 id should addition-

ally be defined to respect the graph structure (preserve the
source and the target of edges) in the database. In a more
formal way,A¢ C C¢ x C{.

If a classC is inherited from a superclas®, then ta-

ble C¢ should be extended by a foreign key constraint

cdid EX pd jq.

We introduced the superscript to uniformly denote

database representations of all kinds of graph transformation
We present how a graph transformation engine (following therelated entities. For instanc€?, r¢ ,, 5, andc? mark the enti-
single pushout [24] approach with injective matchings) canties that represent a cla€s a rule graph; 5 s, and an object
be implemented using a relational database. First, we presentin the database, respectively. This notation is always used
how an appropriate database schema can be created basssla bi-directional mapping meaning that, €§.unambigu-
on the metamodel, and how the database representation ofisly identifies the database table that was assigned to class
the model can be generated (Sec. 5.1). Afterwards, the patz, and vice versa.

tern matching phase of rule application is implemented using

database queries (Sec. 5.2-5.3), finally data manipulation iMapping of instance models into rowsNow we define a bi-

handled (in Sec. 5.4).

11

jective mapping, which assigns an identifier to each object of

the instance model. The image of the mappifwill be used Algorithm 1 From instance models to its database represen-
as a primary key that identifies an objedh the database. tation

In order to appropriately represent an object in the 1: forall c € Vi, {For all objects in modeM } do
database, its key has to be contained by all tables that ar@: ¢’ := GenerateNewlIdentifier()
assigned to an ancestor of the object’s type. Since inheritance® ~ for all ¢' € TopologicalOrder (t(c)) do .
relation in the metamodel (i.e., the type hierarchy) poses re-4 ~ INSERT INTO O (id) VALUES (c”) {Inserts the new iden-

striction (in the form of foreign key constraints) on exactly tifier to all ancestor tablgs
I 5: end for
the same set of tables, additional care has to be taken whe%, end for

inserting (or deleting) even a single key (identifier). The order 4. ¢ 211 o < € Ear {For all many-to-one links (and slots) in

that handles insertion correctly is being defined now. model M} do
. d d _ d - _ d
Definition 39 Given a metamodel/ M with inheritance re- & UPPATE sre(t(e))’ SET#(e)" = bTWHEREud = a
.] . {Updates the value in columt{e)® to b¢ in the row with
lations that are acyclic, @opological order of a typée (de- identifiera?}
noted byT'opologicalOrder(t)) is such a sequence of the g. o for

ancestors of in which a classD cannot appear before an 1¢: for all ¢ % b ¢ £, {For all many-to-many links in model

ancestorC in the order, ifC' < D. M} do
o _ 11: INSERT INTO t(e)? (src,trg) VALUES (a%,b%) {Inserts
A natural consequence of the definition is that type identifiers of end points: and b into the table that corre-
the last element in its tOpO'OgiC&' order. sponds to many-to-many associat'[(@a)}

Definition 40 Given a metamodelZ M with inheritance re- ~2—e9 ™"

lations that are acyclic, amverse topological order of a type
t (denoted bylnverseT opological Order(t)) is a topologi-

A model M and a database representatidii are con-

cal order oft traversed in the opposite order. sistent(M =), if
A natural consequence of the definition is that tyde — each object (and value) of the instance model is repre-
the first element in its inverse topological order. sented in the database by one row in all the tables that

After fixing a certain topological and inverse topological have been assigned to ancestors of the node type. More-
order of a type to be used in the sequel, Algorithm 1 derives qyer, these rows must contain the identifier of the object

the database representation of the initial model as follows. in their identifier columnid. Formally,YC' € Var, Ve €
— We suppose that all the tables are initially empty. Var - (C “ te) <= 3ceC?: clid] = cd>,
— A new identifierc? is generated for each objecbf the — each many-to-one link (and slot) of the instance model
instance modell/. Then ancestors of the typgc) of is represented in the database by exactly one row in

the objectc are determined and furthermore they are or- the table that corresponds to the source class of the
dered topologically according to the inheritance relation. type of the edge. This single row must contain identi-
The ordering is done in a top-down manner, meaning that fiers of source objects in the identifier colunvh and

the “most general” class is enumerated first. (The role target objects in the column corresponding to the di-
of topological ordering is to avoid the violation of for- rect type of the edge. Formally, +5 b € Ep <~
eign key constraints that have already been imposed on (aa € src(t(e))? : afid] = a® A aft(e)?] = bd), and
database tables.) The final step is to insert the new identi- — the identifiers of source and target nodes of each many-
fier to all the tables that have been assigned to the enumer- to-many link (edge) of the instance model can be found
ated ancestor classes. (Note that this algorithm performs exactly in the table that corresponds to the type of the

exactly the same steps in the cases, wifenis a class or edge. Formallya > b € Ey <= (a%,b%) € t(e)?.
a datatype.)
— For each many-to-one link - b of the instance model, Finally, we formulate a theorem, which states that the

the row in the tablesrc(t(e))?, which represents the database representation that has been created by the above-
source object, is updated by replacing the value in col- mentioned initialization algorithm is consistent with the ini-
umnt(e)? by the identifie? of the target objedh. tial instance model.

— For each many-to-many link= b of the instance model,
the identifiers of the source and target nodesandb?)
are inserted to the tablge)? that has been assigned to

the edge type (associatiot{y) of the link. Proof Proofs of all theorems can be found in Appendix A.

We introduce a new term that formalizes the consistent
database representation of an instance model.

Theorem 1 The initial instance modeM and its database
representatiort are consistent. Formallyl/ = 9.

5.2 Views for rule graphs (LHS and NAC).
Definition 41 Let a metamodel/ M, and a database schema
G pp be given together with the bidirectional mappiéiffom As it is described in Sec. 2.2, the view generated for rule
M M to the tables o6 p 3. graphs L HS andN AC) executes an inner join operation on

12

tables that have been assigned to types of nodes and edges ap- Projection selects all the node identifier columns. For-

pearing in the rule graph. Then the joined table is filtered by
injectivity and edge constraints. Finally, a projection selects

mally,
ProjColRefs = x7°.id, . ..

cs .
s Ty, -0

only those columns of the filtered joined table that represent — Finally, a renaming is executed. In the result view, the

node identifiers.

Formalization. In order to define pattern matching calcula-
tion for anLH S precisely, let us suppose that = |V s|
andng = |ELps|. Let us define a total order on the node
and edge sets in which nodes precede edges, and &td
Zny +; b€ theith node and thgth edge according to this or-
der, respectively.

Now the vieWrdLHS("V) for the LH S can be calculated
as follows:

name of each column corresponds to the node from which
it originates. Moreover, it stores the identifiers of those
objects that were assigned to the original rule graph node
by matchings. Note that the result view has as many
columns as many nodes its origin rule graph had.

d

d
ResCols = x7,...,Ty,

The view for theN AC's can be calculated in exactly the
same way, but using th& AC graphs in the process. Now
we define when a matching is consistent with its database

representation.

d
r ResCols) = TproiColRe fs (TIni e (T . .
Lis() = TProjCothess (Timjnsdge (T)) Definition 42 Given a modelM together with a database

representatiordt, a matchingm for a patternrg in model
M is consistent with a ronn? of a viewr¢, in database
representatior)t — denoted bym|rg) = (m?|rd) — (i)

— First theCartesian product of table$; is calculatedT;
denotes the table that was assigned to the type oftithe
graph object of 1, 5. Formally,T = T7 x - - - X Ty 4

o~

where if the identifiers of all objects of instance modelthat have
J been selected by matching for patternrs can be found as
t(z;)", wheni < ny andz; € Vigs an element in the corresponding position of rew¢, and (ii)
sre(t(zi))?, whenny < i < ny +ng for each element of a rom? in rd there is a node in pattern
. r¢ that is mapped to the object that corresponds to the given
i = andu; = v; € Epgs element of the selected row by the matching~ormally,

d .
t(z:)", whenny <i <ny +ng — there exists matching: for patternG in modelM —

Jm? € rd, Vo € Vg : m4xd] = m(z)?
—-Im? € rd, Vo € Vg : miz?] = m(z)? = there
exists matchingn for patternG in model M.

andu; 2N v; € Frgs

Edge constraint®\ pair of equations is defined for each

edge of LHS. One such pair expresses that the edge is
incident to its source and its target node, respectively. (As Note that the above definition is asymmetric as pattern
the database representation of many-to-many and manymatching requires matching model elements both for nodes
to-one links differ from each other, the corresponding and edges of the pattern, while the corresponding row in the

pairs of edge constraints have to be obviously different iny;e\, contains only the identifiers of matching objects.
their structure.) The conjunction of these equations con-

stitute edge constrain#sdge. Formally, Definition 43 Given a model) together with a database
representatiord)t, a patternr¢ is consistent with a view¢,
(denoted by¢ = r%) if (i) for each matchingn of a pattern
7 in instance modeM there exists a rown? in rd, where
matchingm is consistent with romn? and (ii) for each row
m? in rd there exists a matching: of a patternrg where
matchingm is consistent with rown®. Formally,

Edgeone = /\ { 2% ad = u°®ad N\ zcs.t(z)d =v.id |

u»iveELHs}

Edgemany = /\ { 2. sre =udd A 2% trg = 0°%id |

-Vm:G— M, 3m? € rd : (m|rg) = (m|rd)

-vm? erd, Im:G— M : (mlrg) = (m?rd)

The edge constraint of the view can be expressed as

Edge = Edgeone N Edgemany- Finally, we formulate a theorem that states that each pos-
Injectivity constraints/nj are defined for all pairs of sible matching of & HS (or N AC) rule graph corresponds
LHS nodes, for which the type of one node is an an-to exactly one row in the¢ ,, ; (orr% ,) view. Furthermore,
cestor of the type of the other. The role of injectivity con- the row in the view contains the identifiers of objects and

straints is always to ensure the injective mapping of graphjnks that participate in the matching.
objects.

u>v€ELns}

Theorem 2Let d be a bidirectional mapping betweéb,
andSpp. If model M is consistent with the database repre-
sentatiord)t, then a patterm¢ (withoutnegative application
condition) inG g is consistent with viewg in &ppg. For-
mally, M =M = rg = re.

Inj— /\ {a5%id # 3" id |

zj, Tk € Vias Nt(xj) - t(zk) }

13

5.3 Left joins for preconditions of rules. As a result, each matching for precondition graph; g
_ _ _ _ appears as exactly one row in the corresponding vigy .
As it has been introduced in Sec. 2.2, the calculation of aa row consists of the identifiers of objects that are selected by

view for the precondition of a rule proceeds as follows. Eachthe matching. In a more formal way, the following theorem
N AC is left outer joined to thd.H.S graph one by one by can be formulated.

using join conditions, which express that columns represent-
ing the same shared node in different rule graphs should b&heorem 3Let us suppose that there exists a bijective map-
equal. Additional filtering conditions require that columns of ping from&gr to Gpp. If model M is consistent with the
NAC(s), which are shared with theH S part, have to be database representatiofi, then a patternvpre in Sar
filled with undefined values. Thenmojectiondisplays only thathasnegative application condition is consistent with view
those columns that originate frof S. Finally, a column 7%z in Spp. Formally, M =~ M = rprp = rh .
renaming procedure performs an identical redefinition of col-
umn names.

5.4 Graph manipulation in relational databases
Formalization. We suppose that the rule consists of a
LHS andk negative application conditions. Furthermore, the
notational shorthand is used for denoting the cardinality

Operations in the graph manipulation phase can be imple-
mented by issuing several data manipulation commands in a
single transaction block as it has been explained informally

of Vigs.
%ﬁesview generated for the preconditiopz z consists of in Sec. 2.2. Note thgt the database updating alggrithm part_s
ny columns and it can be calculated as follows. should be executed in exactly the same order as it appears in
J the current section.
rpre(ResCols) = mprojcoiness (Onui(8k)) - Deletions. For eachuge; %' viger € Erms \ Erms,
m(2der)

the matched edgei(uge;) — m(vger) has to be deleted
from the modelM. In the database the corresponding edge

— Left outer join.Eachry ac, is left outer joined tor ;s deletion is performed as follows

one by one using a join conditioR;. Formally, §; =
F Fy F

Zde
T%HS X TE]YACH Koo KA — For each many-to-one edgeu. S Ve
— Join conditionsF; express that shared nodes cannot be of the Ergs \ ER_HS set . (line 1)ad an
mapped to different objects in the model by matching UPDATE(s7c(t(m(2de1)))", id, m(uder)®, t(m(24et))”, €)
functionsm of r. g andm’ of ry 4¢,. Formally, operation (line 2) is executed. .
— For each many-to-many edge:g. 2 Vel
F, = /\ { 6%t = Tf\fAcffd | of the FErgs \ Fgrus set (line 4), a
DELETE(t(m(24e1))?, s7¢, m(uger)?, trg, m(vae)?)
€ Vins N Vvac } operation (line 5) is executed.
Note that the fact that column namé appearing in sev-
eral tables only denotes that those columns represent the
same (shared) node of the rule graph in tabless and ~ Algorithm 2 Edge deletion
rNac . Require: Ir € 7% A Im, A (me|r) = (r]r)
— Null conditionsNull express thatitis notallowed tohave 1. for all vy, %' vae € Erps \ Erms do
matchings for any y a¢; in order to have a matching for ». UPDATE sre(t(m(z4e1)))?
rpre- Formally, SET t(m(zae))? = ¢ WHEREid = m(uger)"
4 3: end for
Null = /\ { 7"JC\AJQAC,Q-@’ =€ ‘ 4: for all uge; ! Vdelt € Frus \ Erns do

5. DELETE FROM (m(zge))?
WHEREsrc = m(udel)d AND trg = m(vdel)d
In this expressionZ;" denotes positive integers upto 6: end for
— Projection selects all columns that originate from view
rd 1. Formally,

i€ Zf AN € Vigs N Vnac, }-

If x4e1 € VLus\Vrus, thenitsimagen(z,.;) and all the
ProjColRefs = riys.af,...,riws Tn, dangling edges (i.e., all incident edges) should be removed
— Finally, identical renamings implemented. In the result oM the model\/. On the database level even the deletion of
view, the name of each column is the same as the nod@ Single node is performed by issuing a sequenaeEeETE
of the LH S graph from which it originates. Moreover, it Operations. One reason why a singleLETE is insufficient
stores the identifiers of those objects that were assignet$ that a node identifier can appear in several node tables be-
to the LH S graph node by matchings. Note that the re- cause of inheritance in the metamodel. Moreover, node iden-
sult view has as many columns as many nadgss had. tifiers may appear in tables that represent edges. These latter
Formally, types of rows should also be deleted in order to ensure that
ResCols = af, ..., a0, the instance model still remains a graph.

14

The node deletion algorithm (see Alg. 3) proceeds as fol- Insertions. If a node z;,, appears only inRH.S, but

lows. not in LH S, then a new node (denoted by(x;,s)) of type

— ltiterates through all the nodes Bf s \ Vrus (line 1).
— All types of each node belonging to the difference set are

t(zins) should be added to the modd.

— The algorithm iterates over each nodg,; that appears
only in RHS, butnotinLHS (line 1-6),

— A new identifierm(z;,s)? is generated. (line 2)

— On each ancestor ofz;,) (line 3-5) anINSERT oper-
ation is executed. (line 4)

determined, and they get ordered according to the inverse
topological order (line 2) to prevent violating foreign key
constraints during deletion. (The inverse topological or-
der is a bottom-up style enumeration of the ancestors of a
specific type.)
All the outgoing many-to-many associatioas,,,; that i i :
have clas€ as their source node have to be determined Algorithm 4 Node insertion
(line 3-5) Require: Ir € 74 A Im, A (m.|r) = (r|r?)
o The appropriateELETE command can be executed 1: forall zins € Vrus \ Vius do
on the tables that correspond to the above-mentioned2: M(zins)* = GenerateNewldentifier(){Generates
association. (line 4) identifier for the new node
All the incoming many-to-many associations,, that 3: forall C € TopologicalOrder(t(xins)){Top-down traver-

. . sal of class hierarchy ending #z;,s)} do
Zﬁ}v:glgsﬁ as their target node have to be determined. 4 INSERT INTO C (id) VALUES (1m(zins)?)
_ y

e . end for
o A similar DELETE command has to be executed on g. ond for

the tables that correspond to the above-mentioned as-
sociation. (line 7)
All the incoming many-to-one associatiofs, that have If Uins ™™ Vins € Erms \ ELns, then a new edge
classC as their target node have to be determined. (I|ne(m(um8) ") (0ins)) OF type t(zins) should be added
9-11) to the model\/
o An UPDATE command has to be executed on the ta- '
bles that correspond to the source nodes of the above-— For each many-to-one edge,., % v;,s that can be
mentioned associations. (line 10) found inErps\ Erus (line 1-3), alUPDATECcommand

Finally, the node itself can be deleted from clasgline should be executed on the table that corresponds to the
12), and the iteration should be continued on the ancestors source noderc(t(z;,,)) of the direct type of the edge.

of C. Note that this step automatically deletes all outgo- _ For each many-to-many edge,, “** v, of Erus \

ing many-to-one links, which have been stored in table p, ., (line 4-6), anINSERT command should be exe-

ce. cuted on the table that corresponds to the type of the edge
t(%ins)- (line 5)

Algorithm 3 Node and dangling edge deletion

Require: Ir € v A Im, A (m|r) = (r|r?)

Algorithm 5 Edge insertion

1: forall z4e1 € Voms \ Vrus do Require: Jr € Tfl A Fmy A (mefr) 2 (rlr)
2: forall C € InverseTopologicalOrder(t(m(xqer))){List 1: for all wins *%° vins € Erus \ Erus do
ancestors of(m(z4)) in a bottom-up ordgrdo 2. UPDATE STCd(t(Zins))d . .
3: forall C “2¢* D, € Assocarans {For all outgoing many- SET #(2ins)” = m(vins)" WHERE = m(uins)
to-many associationd,.; having source class'} do 3: end for Zins
4: DELETE FROM A%,, WHERE src = m(zger)? 4-forall wins =% vins € Erps \ Eis do
5- end for 5: INSERT INTO t(zém) (srdc7 trg)
6: for all Dy ¢ ¢ € Assocarao {For all incoming many- VALUES (m(uins)®, m(vins))
to-many associationg;,, having target clas€'} do 6: end for
7: DELETE FROM A¢, WHERE trg = m(aer)?
8: end for .
o: forall Ds i ¢ ¢ Assocaraar {For all incoming many- Now we can fqrmulate the flnal_ statemgnt that expresses
to-one associationd.,, having target clas§’} do the correct behaviour of our algorithm. This states that if a
10: UPDATE D§ SET A%, = ¢ WHERE A%, = m(z401)? model M was consistent with its database representafign
11 end for and if we perform modifications on the model by a graph
12: DELETE FROM C' WHERE id = m(z4.1)® {Deletes the ob- transformation rule and we execute the corresponding up-
ject itself from C* and all outgoing many-to-one links, dating algorithm in the database, then the resulting model
which have been stored @} M’ and the database representatii will still be consis-
13: end for tent, yielding that our algorithm built on top of a relational
14: end for

database correctly performs graph transformation.

15

Theorem 4 Let us suppose that there exists a bijective map-1. Thematch() method executes the prepared queries and

ping d from S to Spp. If (i) model M is consistent with it collects (and returns) the actual matching bH .S
the database representatiofi, (ii) we have a matchingn,. nodes to objects. (A repeated invocation of thatch()
for rule r, together with a corresponding rom¢ in viewr<, method provides the next matching, if such exists.)

andm is consistent witm?, (iii) rule r is applied on match- 2. Methodmatch(Map m) allows the user to define a par-
ing m,. resulting inM’, and (iv) Algorithms 2-5 are executed tial matchingm which is extended by our engine to yield

in the database fom“ < ¢ resulting in a database repre- a complete matching as a result. In this case, the queries
sentatiord)t’, thenM’ = 90, have to be constructed at run-time to be able to express
Formally, if the additional constraints posed by matchimgNote that
this specific operation is not discussed in details in Sec. 5,
- (@) M =, however, its handling is obvious by adding some equa-
= (i) (m,|r) = (m?r?) for a pair (m,,m?), tions to thewHERE clause of thesELECTquery.)
— (iii) M = M, 3. Theupdate(Map m) method gets the actual matching
—(iv) m “”9-:2;5 ', mas its parameter, and it executes the prepared data ma-
nipulation statements that reflect activities of the updating
thenM" = M. phase of graph transformation.

4. Theapply() method performs a standard rule appli-
cation step, which consists of a pattern matching phase

6 Implementation issues and experimental evaluation (i.e., a call of methodanatch()) followed by an updat-
ing phase (i.e., execution apdate(m)) onthe selected
Now implementation issues of our experimental graph trans- matchingm . _
5. TheapplyParallel() method applies the given rule

formation engine are discussed. . '
in parallel, which means that model updates are per-

o] formed in a transaction block in order to avoid re-
Implementation issues.We have already implemented & eyajuation of matchings during the transaction. Parallel
prototype version of our graph transformation engine. The oyacution is implemented by iterative callsroftch()
engine is written entirely in Java and it uses the standard andupdate(m) methods which are placed inside a sin-
JDBC interface to communicate with the underlying rela- gle database transaction.

tional database, which was MySQL version 4.1.7. and Post- The transaction handling subsystem of the underlying

greSQL 8.0.3 in our case. o o database engine makes a snapshot of the possible match-
The initial phase of a standard application scenario is as jngs before any modification is performed. The itera-
follows. tive calls ofmatch() andupdate(m) methods always

use this snapshot without recalculating the database con-
tent before the successive pattern matching, which means
that modifications cannot influence the set of matchings.
As a consequence, modifications can be applied in any
order always yielding the same derived model, which
means that the current implementation achieves real par-
allelism. As methodmatch() andupdate(m) are ap-
plied once on each matching, termination is guaranteed
by the finiteness of the snapshot.

Note that parallel independence is not checked by our ap-
proach. If the methodpplyParallel() is executed

in a conflicting situation, the parallel rule application may
not have any serial equivalent sequential rule applica-
tions.

1. Our engine connects to the database and automatically
builds the database schema from the metamodel by is-
suing the appropriate data definition commands to create
tables and foreign key constraints as discussed in Sec. 5.1.

2. Then for each rule, queries and data manipulation com-
mands are automatically generated from the rule de-
scriptions for representing graph transformation activ-
ities in the pattern matching and the updating phase,
respectively. These SQL commands are stored as
PreparedStatement s as their structure does not
change during their application.

3. Finally, during a traversal of the initial instance model,
the tables are filled by using the data manipulation com-
mands.

The implementation of the approach follows the example
As the current version of the engine is a prototype, thepresented in Sec. 2 and not the mathematical descriptions as
decision on selecting a standard interface (e.g. JMI, MDR)he set of possible values of an attribute can be constrained by

for representing the input (i.e., metamodels, instance mode|%|mp|y deﬁning an appropriate built-in type for the column
LHS, RHS andN AC graphs) has been postponed to a laterthat represents the given attribute.

phase of development. As a consequence, their current repre-

sentation uses an own graph structure implemented in JavaExperimental results. Since graph transformation can be
The initialization phase is followed by the normal oper- used for different scenarios in several fields, a detailed quanti-

ation phase that performs graph transformation. During thidative performance comparison of graph transformation tools

phase, the user can call the following methods of the rule taequires extensive examinations to determine, in which situ-

be applied. ation a tool has a good performance. As our aim is to present

16

a new technique to implement a graph transformation enginelatabase related approach whaarallel rule executionis
built on top of a relational database, the performance analysiased as an optimization strategy. As a consequence, only this
of GT tools is out of scope of this paper. However, a com-tool feature is included into our current experiments. In case
prehensive study on such performance analysis can be founaf parallel rule execution all matchings of a rule are calcu-
in [34]. Instead of such a wide-range comparison of graphlated in the pattern matching phase, and then updates are
transformation tools, we focus on such properties of our apperformed as a transaction block on the collected matchings
proach that are expected to have a significant impact on rurwithout re-evaluating valid matchings during the transaction.
time performance or that are specific to our database related We identified an additional optimization possibility that is
solution. specific to a graph transformation approach that is based on
By using the terminology defined in [34], we selected thetop of a relational database. This database specific feature is
object-relational mapping as a benchmark example for outheapplication of the built-in query optimizef the underly-
current measurements, which can be considered as an incang RDBMS. Note that the query built for the precondition of
nation of a typical model transformation scenario. In ordera graph transformation rule has a special structure, for which
to fix a test set, which is a complete, deterministic, but parathe built-in query plan generator, which is optimized for han-
metric specification, the structure of the initial model and thedling general queries, may not provide an optimal solution as
transformation sequence have to be fixed up to numerical pat lacks the additional information about the structure of GT
rameters. In our case, the number@ésses in the initial rules or models. Since some relational databases allow the
instance model (denoted bY) is selected as the single nu- definition of such queries, for which the generated plan can

merical parameter. be influenced from outside the RDBMS, the examination of
this optimization possibility has been included into our mea-
surements.
e1:AssocEnd | S etclass |- | e3:AssocEnd As two orthogonal features have been identified, we per-
oF £0 oF formed our measurements on all the four possible combina-

tions of these features, which means that four test cases have
been analyzed. The paramef€rwas fixed to 10 and 30 in
test cases where rules were executed sequentiallyyands

set to 10, 30, 50 and 100 for test cases with parallel rule ap-

O N p———— O

|c2:Class [estassocEnd [“F+[az3:ass0c | e6iassocEnd };{{szchss\ plication feature having been switched on.
Two popular RDBMSs (namely MySQL version 4.1.7
Fig. 6 Initial model of the test case for th¥ = 3 case and PostgreSQL version 8.0.3) took part in our measure-

ments, which were performed on a 1500 MHz Pentium ma-
chine with 768 MB RAM. A Linux kernel of version 2.6.7
The structure of the initial model is presented in Fig. 6 Served as an underlying operating system. The execution time
for the N = 3 case. The model has a singackage that ~ results are shown in Table 1.
containsV classes. Amssociation and 2 AssociationEnds

are added to the model for each paiidsses, thus initially, D T e i
.. L size leng own own
we haVe]V(N — 1)/2 Associations andN(N — 1) Associatio- . . . match update| match update| match update| match update
. . . . msec msec | msec msec | msec msec | msec msec
nEnds. Associations are also contained by the singleckage 2[oaratiel oFF 101322 14jm 2045 3500 2783 4.40] 5340 .46
as expressed by the corresponding links of gpeEachAs- ¢ s
sociationEnd is connected to a correspondiAgsociation and 8 Jparalel ON [— ol 03 5o 014 522 02 47| 153 534
H H © 100] 139402 14951 0.12 4.24 0.12 4.68] 0.58 7.69
Class by aCF andSFT Ilnk1 respecthEly % parallel OFF 10] 1342 14€| 1220 4.82| 13.60 518|557 5.60] 4.29 6.72
1 i 30] 12422 1336] 160.20 2.94] 159.41 2.96] 37.20 4.90] 48.62 5.62
The transforma}tlon_sequenpe consists of.4 macro stepg B L B
f[hat are executgd in this specific order. The first macro stepg parallel O [—20] 12422 1336 0.12 291 011 2961 008 5901 009 377
is a single application of th&chemaR (Fig. 3(a). This is 8 100[To0a02 1a052] 008 43| 00T 489 005 639
. R parallel OFF 10| 1342 146] 13.17 2.68] 14.28 3.14| 7.29 5.31 5.86 5.41
followed by a macro step that Cons|§ﬁN — 1)/2 apph- o 30| 12422 7336|249.35 3.04[2a782 28] 3295 508f 3201 5.0
. . . 4 10| 1342 146 1.33 2.94 135 294] 0.82 4.81 0.81 4.86
cations of ruleAssociationR (Fig. 3(e)). ThenClasses are Bl arallel on |30 12422 1336 741 238] 7.44 238 125 407 100 a2
. . © 50| 34702 3726] 39.78 1.99] 38.32 2.04 1.99 3.80 2.00 3.74]
transformed by the execution of rui@assR (Fig. 3(b)) for 700| 139402 14951 262.40 _2.00] 268.99 1.95| 837362
N times. Finally, a macro step of lengtN(N — 1) fol- Table 1 Experimental results
lows, which prescribes the application of rudgsocEndR
(Fig. 3(f)).

This test set can be characterized by large patterns and a
large number of possible matchings for a rule. The remaining The head of a row (i.e., the first two columns) shows the
two paradigm features (i.e., the maximum degree of nodesmame of the rule and the optimization strategy settings for
(fan-out) and the length of the transformation sequence) dethe single tool feature (i.e., parallel rule execution) on which
pend on parametéy. the average is calculated. (Note that a rule is executed several
According to our earlier analysis reported in [34], the times in a run.) The third columrC(ass) depicts the number
most significant speed-up could be observed in case of af classes in the run, which is, in turn, the runtime parameter

17

N for the test case. The fourth and fifth columns show the — GRAS [15] is a graph-oriented database management sys-
concrete values for the model size and the transformation se- tem developed at the University of Aachen, which served
quence length, respectively. Heads of the remaining columns as the underlying database for the PROGRES [27] graph
unambiguously identify the RDBMS used and the status de- transformation tool. It uses a different underlying data
noting whether the built-in query optimizer was uset)(or model (based on attributed graphs), instead of the rela-
not (own). Values inmatch andupdate columns depict the tional data model used in our approach.
average times needed for a single execution of a rule in the However, a recent version of the GRAS database (namely
pattern matching and updating phase, respectively. Execution GRAS/GXL [5]) aims to define an interface that provides
times were measured on a microsecond scale, but a millisec- access to RDBMSs for graph based tools (e.g., PRO-
ond scale is used in Table 1 for presentation purposes. Light GRES).
grey areas denote run-time failures due to exceeding the de— Andries and Engels propose in [2] a hybrid (visual and
fault memory allocation limits of the operating system. textual) query language together with a method, which
Our initial experiments can be summarized as follows. translates hybrid queries into traditional textual queries
by graph transformation.
In their approach, (i) the graphical part of hybrid queries
was based on an E/R diagram notation, (ii) while the tar-
get (textual) language was an object-relational extension
of SQL. (iii) For graph transformation they employed the
above-mentioned PROGRES tool. (iv) Generated SQL
gueries used the concept of subqueries for expressing re-
strictions posed by the graph structure.
In [14], Jahnke and i&ndorf propose the use of triple
graph grammars [25] for database re-engineering of
legacy systems in their Varlet framework. In their ap-
proach, again PROGRES was used as a graph transfor-
mation engine, and it translated the database schema de-
scribed by an E/R diagram to an object-oriented concep-
tual model.

— In accordance with our assumptions, parallel rule execu-
tion has a dramatic effect on pattern matching. The time
increase for ruleClassR can be explained by having a
constant initialization and resource allocation time, which
is distributed over a relatively small number of rule appli-
cations.

— We have been forced into using temporary tables instead
of views in case of MySQL version 4.1.7 as it does not
support the concept of views. This obligate choice has a
strong negative impact in case of sequential rule execu-
tion on the performance of the graph transformation en-
gine as temporary tables are always stored on disks in
contrast to views (of PostgreSQL), which are calculated
in the memory in general.

— The update phase is slightly longer for PostgreSQL, but
the difference cannot be considered significant as the ex- It is common in all these approaches that they inves-
ecution times for both databases are of the same order dfgate how graph transformation can contribute to object-
magnitude. relational database design or to other database related tasks,

— The results for query plansvn being generated and in- such as translating hybrid queries to textual ones. Another
jected by the GT engine may deviate in both directionscommon feature is that they all use a graph-oriented underly-
from the results of plandb that have been created by the ing database (namely GRAS).
query optimizer. This observation indicates that it is pos- In contrast, our proposal is to examine how the mature
sible to create queries with better performance than theheory and practice of RDBMSs can potentially contribute
ones that are produced by RDBMS, which is an argumento the paradigm of graph transformation. In our approach, a
for doing further research on generating special querieplain relational DBMS was used as an underlying database.
optimized for GT rules.

— In contrast to our assumptions, MySQL does not allowGraph pattern matching approachesTypically, the most
manual influence on query plan generation, which is in-critical phase of a graph transformation step is graph pattern
dicated by the similar values in it andown columns. matching, i.e., to find a single (or all) occurrence(s) of a given

LHS graph in a host model. Pattern matching techniques of

existing graph transformation tools can be grouped into two

main categories. For further comparison of graph transforma-

tion approaches see [26].
Related work can be grouped into two main categories de- PP [26]

pending on the topics that are also covered in this paper. One- Algorithms based ogonstraint satisfactioifsuch as [16]
category concerns the integration of graph transformation and in AGG [9], VIATRA [32]) interpret the graph elements
relational database techniques. The other category focuses on in the LHS pattern of a rule as variables which should be
different pattern matching techniques. instantiated by fulfilling the constraints imposed by the
elements of the instance model and the pattern itself. Our
Graph transformation and databasesDuring the past implementation also falls into this category.
years, intensive research has been focusing on how graph- Algorithms based otocal searchestart from matching
transformation could be adapted as a visual query and data a single node and then extending the matching step-by-

7 Related work

manipulation language for databases. The following list is a
brief selection of some main results in the field.

18

step by neighboring nodes and edges. Several optimiza-
tions can be carried out to derive good search plans from

graph transformation rules. The graph pattern matchingVlySQL and PostgreSQL do not support this feature at all,
algorithm of PROGRES (with sophisticated search planswhich was the main reason for recalculating the views from
[35]), Dorr's approach [7], and the object-oriented solu- scratch in each step.

tion in FUJABA [19] fall in this category.

References

8 Conclusion and Future Work

1.

In the paper, we proposed a new graph transformation en-
gine based on off-the-shelf relational databases to support
model transformations between modeling languages. Com-

plex graph queries were implemented as database views de2-

fined by join operations constructed according the patterns
of the graph transformation rules. Model manipulation state-

date database operations.
We carried out several benchmark test cases to evalu-

ate the performance of our approach based on relationals,

databases in itself. We assessed the overall impact of (i) paral-
lel rule applications (i) RDBMS-specific query optimization
techniques and (iii) the choice of the underlying RDBMS.
Further benchmarks were carried out in [34] to compare
the performance of different graph transformation tools based
on fundamentally different implementation strategies. These

experiments also demonstrated that that relational databases’
provide a feasible candidate as an implementation frame-g

work for graph transformation engines with promising per-
formance results.
However, performance is not the only aspect one needs

to consider from a practical point of view when implement- 9.

ing model transformations. Our relational database approach
automatically provides persistence and transaction services
without further programming effort.

Persistence is very important in the case of MDA tools
storing their UML models in relational databases as e.g.
AMEOS of Aonix [3]. This tool offers a powerful built-in
means to capture model-to-code transformations, but model-

to-model transformations (including model manipulations) 11.

are not supported, which could be complemented by our tech-
nique to provide a general solution.

While model transformations served as the focal appli-
cation field for the current paper, another interesting future
field of our technique is EJB-based solutions. Enterprise Jav
Beans (EJB) is one of the most fundamental parts of the Java
2 Enterprise Edition (J2EE) platform, which defines a lay- 14
ered architecture for scalable, distributed application devel-
opment. EJB contains an object-oriented data query language
(called EJB-QL), which shows close resemblance with SQL.

Therefore, business queries and operations using EJB-QL aricb.

accessed via a Java interface could be generated automati-
cally with minor changes to our current approach. First ex-
periments in this direction have been carried out in [4].
Finally, further optimizations are required if we aim at
incremental transformations in the future. Despite the fact
that incremental updating techniques are subject to research

in many fields (e.g. database view recalculation [12], expert7.

systems [11]), there are still only a few RDBMSs that imple-
ment incremental view updating even with strong restrictions.

19

12.

Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph transfor-
mations on domain-specific models. Technical Report ISIS-03-
403, Institute for Software Integrated Systems, Vanderbilt Uni-
versity, November 2003.

M. Andries and G. Engels. A hybrid query language for the ex-
tended entity relationship modelournal of Visual Languages
and Computing8(1), 1997.

3. Aonix. Ameos framework. http://www.aonix.com/ameos.html.

ments were translated into elementary insert, delete and UPy Andiés Balogh, Gergely Vair Daniel Varb, and Andés Pata-

ricza. Generation of platform-specific model transformation
plugins for EJB 3.0. Accepted to SAC 2006.

B. Bohlen. Specific graph models and their mappings to a com-
mon model. InProc of the 2nd International Workshop on Ap-
plications of Graph Transformation with Industrial Relevance
(AGTIVE) volume 3062 oL.NCS pages 45-60. Springer Ver-
lag, 2003.

6. E.F. Codd. Arelational model for large shared data b&uakn-

munications of the ACML3(6):377-387, June 1970.

Heiko Dorr. Efficient Graph Rewriting and Its Implementatjon
volume 922 ofLNCS Springer-Verlag, 1995.

Hartmut Ehrig, Gregor Engels, Handrd Kreowski, and Grze-
gorz Rozenberg, editorddandbook on Graph Grammars and
Computing by Graph Transformation, volume 2: Applications,
Languages and Toal8Vorld Scientific, 1999.

C. Ermel, M. Rudolf, and G. Taentzein [8], chapter The
AGG-Approach: Language and Tool Environmegrages 551—
603. World Scientific, 1999.

10. T. Fischer, J. Niere, L. Torunski, and Au&dorf. Story di-

agrams: A new graph rewrite language based on the Unified
Modeling Language. In G. Rozenberg G. Engels, edRooc.

of the 6th International Workshop on Theory and Application of
Graph Transformation (TAGTolume 1764 ofLNCS pages
296-309. Springer Verlag, 1998.

C. L. Forgy. RETE: A fast algorithm for the many pattern/many
object match problemArtificial Intelligence 19:17-37, 1982.
Ashish Gupta and Inderpal Singh Mumick, editorslateri-
alized Views: Techniques, Implementations, and Applications
MIT Press, June 1999.

éB. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph

grammars with negative application conditionBundamenta
Informaticae 26(3/4):287-313, 1996.

. Jens H. Jahnke, Wilhelm Sifler, drg P. Wadsack, and Albert

Zundorf. Supporting iterations in exploratory database reengi-
neering processesScience of Computer Programmingb(2-
3):99-136, 2002.

Norbert Kiesel, Andy Sdhr, and Bernhard Westfechtel.
GRAS, a graph-oriented database system for (software) engi-
neering applications. In Jarzabek Lee, Reid, edRayc. CASE

'93, 6th Int. Conf. on Computer-Aided Software Engineering
pages 272-286. IEEE Computer Society Press, 1993.

16. J. Larrosa and G. Valiente. Constraint satisfaction algorithms

for graph pattern matchingMathematical Structures in Com-
puter Sciencel2(4):403-422, 2002.

M. Minas. Concepts and realization of a diagram editor gener-
ator based on hypergraph transformati8gience of Computer
Programming 44(2):157-180, 2002.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Bruce Momijian. PostgreSQL: Introduction and Concepts A Proofs of Theorems

Addison-Wesley, 2000.

U. Nickel, J. Niere, and A. indorf. The FUJABA environ- Theorem 1The initial instance modeM and its database
ment. InThe 22nd International Conference on Software Engi- representatio®t are consistent. Formally}/ = 9.

neering (ICSE)pages 742-745, Limerick, Ireland, June 2000. .
ACM Press. Proof In order to prove the consistency 8f and 2, we

John Poole, Dan Chang, Douglas Tolbert, and David Mellor.nave to check whether statements in its definition hold in both
Common Warehouse Metamadelohn Wiley & Sons, Inc., directions for all classes and associations.

2002. Nodes.— First we check the property that should be
QVT Partners. Revised submission for MOF 2.0 hold for the classes. Let us select an arbitrary class
Query/Views/Transformations RFP August 2003. V.

http://qvtp.org/ . According to the left part of Def. 4Bc € V), such that

tR' Ra'\TagriShnl_Tﬂ %ng Ja.?ehrg%%?base Management Sys- " 4(¢). Since topological order (Def. 39) enumerates all
Emsdé ra.w_k ll'h rGSO'(;c\)/né) | tor A tool for stat the ancestors af(c), C will surely appear in the topological
rend Rensink. the simuiator. A tootfor staté Space , yar oft(c). But Alg. 1 iterates over all objects (lines 1-6),

generation. In J. Pfalz, M. Nagl, and BoBlen, editorsAp- th el ing in the t logical order (i
plications of Graph Transformations with Industrial Relevance en over all classes appearing in the topological order (lines

(AGTIVE) volume 3062 of ecture Notes in Computer Science 5—2), line 4 is also executed for the objectclassC pair,
pages 479-485. Springer-Verlag, 2004. which means that the identifief generated foe in line 2

Grzegorz Rozenberg, editoHandbook of Graph Grammars Should be contained by tabi& in columnid after the termi-
and Computing by Graph Transformation, volume 1: Founda- nation of Alg. 1. The same statement is valid for any arbitrary
tions World Scientific, 1997. class of the metamodel.

Andy Sclirr. Specification of graph translators with triple Many-to-one edges—> Now we have a many-to-one
graph grammars. IRroc. of the 20th Intl. Workshop on Graph- link a +> b € Ejs. When Alg. 1 reaches line 7, the source
Theoretic Concepts in Computer Science (WG 198dlume objecta of this link has already a database representation,
903 of LNCS pages 151-163. Springer, 1995. which means that there exists a rewwith afid] = a*
Andy Scfiirr. In [24], chapter Programmed Graph Replacementin 5| tables that correspond to ancestors of clgss. As

Systems, pages 479-546. World Scientific, 1997. * .
Y pag sre(t(e)) < t(a) holds according to the type conformance

Andy Scliirr, Andreas J. Winter, and Albertiiidorf. In [8], . . .
chapter The PROGRES Approach: Language and Environment €duirements of Def. 6 for source objects, there exists a row

chapter 13, pages 487-550. World Scientific, 1999. a with a[id] = o in tablesrc(t(e))?. But the update oper-

Jon Stephens and Chad RussBiéginning MySQL Database ation in line 8 of Alg. 1 is executed for our selected many-

Design and Optimization: From Novice to Professionfgpress, ~ t0-one link, which seta(t(e)?] to b?, thus we have found an

October 2004. appropriate rova required by Def. 41.

Gabriele Taentzer and Arend Rensink. Ensuring structural con- Many-to-many edges.— It can be assumed that we

straints in graph-based models with type inheritance. In Maurahave a many-to-many link = b € E,;. Since lines 10—

Cerioli, editor,Proc. 8th Int. Conf on Fundamental Approaches 12 are executed for all many-to-many links of the instance

to Software Engineering (FASE 2005plume 3442 oLNCS model, it should also be executed for> b as well, which

pages 64-79. Springer Verlag, 2005. includes the insertion of tuplg:?, b%) to tablet(e) in line

J. D. Ullman, J. Widom, and H.. Garcia-MolinBatabase Sys- 11 But we are ready now, sinc(ed, bd) got into the table

tems: The Complete BooRrentice Hall, 2001. t(e)? as it is required in the right side of Def. 410

_Hans Va_ngheluwe, _Juan d? Lara, and_ Pieter J. _Moste_rman. An Nodes.<= Let us select an arbitrary clags € Vi s

introduction to multi-paradigm modelling and simulation. In . . . _—

F. Barros and N. Giambiasi, editoRxoc. of the AIS’2002 Con- 293!N- By using the statement of consistency definition
) ! (Def. 41) for a clas€’, it may be assumed that € C¢ such

ference (Al, Simulation and Planning in High Autonomy Sys- ; h , A a ;
tems) pages 920, April 2002. thatc[id] = ¢, thus there is a row in tableC* that contains

Daniel Varb, Gergely Var, and Andas Pataricza. Designing the valuec in columnid. Since taSIeCd was empty in the
the automatic transformation of visual languag&cience of ~ beginning, the only possibility for” to appear in the table
Computer Programmingt4(2):205-227, August 2002. is that it should be inserted during the execution of lines 1-6

Gergely Varb, Katalin Friedl, and Bniel Varb. Graph trans- of Alg. 1. But this could only happen, if objeetand class
formation in relational databases. Iimt. Workshop on Graph- (' have been enumerated in line 1 and in line 3, respectively.
Based Tools (GraBaTsJDctober 2004. http:/tfs.cs. Since clasg has to be in the topological order tff), this

t-berlin.de/grabats/ ,] means thaC' < (c). But in this case we have found an ob-
Gergely Vam, Andy Scliirr, and Caniel Varb. Benchmark-

ing for graph transformation. IRroc. of the 2005 IEEE Sym- J€ctcfor which €'« #(c) holds, so it fulfils the requirements
posium on Visual Languages and Human-Centric Computing @Ppearing in the left part of Def. 41. Since in the beginning
pages 79-88, Dallas, Texas, USA, September 2005. an arbitrary class was selected, our proof is valid for all other
Albert Zindorf. Graph pattern-matching in PROGRES. In classes as well.

Proc. 5th Int. Workshop on Graph Grammars and their Ap- Many-to-one edges<— It can be assumed that talile
plication to Computer Scienceolume 1073 ofLNCS pages which corresponds to a class in the metamodel, has a row
454-468. Springer-Verlag, 1996. a for which afid] = a? anda[t(e)?] = b¢ hold. Since all

20

tables were initially empty and only line 8 of Alg. 1 is able tered out by injectivity and edge constraints of the selection

to modify such tablél" in columns other thaiy, this part of operation.

the algorithm has to be executed. But this can only happen, if Checking injectivity constraints. Let us suppose by

there exists a many-to-one link-> b in model M. contradiction thas has been filtered out because of violating
Many-to-many edges.<— We know that there exists a an injectivity constraint in the query (e.g".id # zi°.id

row e = (a?,b?) in a tablet(e)?. Since tables were empty for some different:;, zj, € Ve wheret(z;) < t(a4) holds).
initially, e had to be inserted during one execution of lines\jp|ating the constraint means that values should be equal in
10-12 of Alg. 1, which means that there should exist a manycolumnsa¢.id andz*.id for all rows the joined table con-
to-many linka — b in the original instance model/ for (ains, and as such this equation must also hold for the corre-
which the correspondinNSERT operation could be exe- sponding elements af By taking care of construction rules
cutedinline 11. O of s it yields tom(z;)? = my,,[id] = m,, [id] = m(z)".
Sinced is bijective, the equation could hold only if, the ori-
Theorem 2Let d be a bidirectional mapping betwe&igr gins in model)M were the sameng(x;) = m(zy)). Butin
and&pp. If model M is consistent with the database repre- this case we have different rule graph nodes that have been
sentatior)t, then a patterm¢ (withoutnegative application mapped to the same object of the modelrbywhich is an
condition) iS¢ is consistent with view, in Spp. For- immediate violation of injective mapping requirements for
mally, M = M = rg = re. m. As a consequence, we may state thahitakes care of
injective mapping, then the injectivity filtering condition will
Proof (=) When proving in this direction, we may assume also take care of this requirement for the database represen-
that we have a matching for rule graphrs in model M, tation.
and we want to prove that there exists a corresponding row in Checking edge constraints.Let us select an arbitrary
view rd,. many-to-one edge: -~ v € Eg and let us further sup-
Since M = 9t we know that the instance model has a pose that it is mapped to link + b by matchingm. As a
correct representation in the database. During the proof weonsequence of the query construction algorithm, we know
first examine what the contents of database tables are, arttiats[z¢*.id] = m_[id] = a?, and similarly,s[z*.t(2)?] =
then we apply operations defined in the query/foistep-by- m.[t(z)?] = b%. Sinceu andv are rule graph nodes i,
step, and our aim is to prove that the result (namelyrthe there should exist columngu“®.id] ands[v*.id] originating
view) will contain a rowr with object identifiers defined by ~from m,, [id] andm,[id] with valuesa? andb?, respectively.
matchingm. Summarizing our experience resultsdfucs.id] = a? =
Consequences o/ = 9. Having a matchingn means ~ s[2°*.id] ands[v*.id] = b* = s[z°*.t(2)?]. Recall the edge
that for all nodes and edges of thegraph have a type con- constraint that has been defined for edge> v. Note that
form image in the model/. this specific edge constraint prescribes the equation of ex-
(i) Let us use the consistency definition (Def. 41) in left actly the same columns, whose equation has just been proved
to right direction for any objectn(z) € Vj, that partici- fors.
pates in the matching:. We get that a corresponding row Let us select an arbitrary many-to-many edge™ v €
m,, with m,[id] = m(x)? should be contained not only by E¢ and let us further suppose that it has been mapped to
table assigned to its own direct typém(z))? but also by @ — b by matchingm. By using a similar reasoning, we get
all its ancestor tables, and as sueh < #(z)? as well. (i) equalitiess[u*.id] = a® = s[z**.src] ands[v®.id] = b* =
By applying the consistency definition for many-to-one link s[z°®.trg], which means that fulfils the edge constraints de-
a +> b assigned to an edge~ v of rule graphG by match- fined for edge: = v.

ing m, we get that tablerc(t(e))? has a ronm, for which Sinces satisfies all the injectivity and edge constraints we
m,[id] = a? andm,[t(e)?] = b? hold. Sincet(e) = t(z), may state that € ornjrpdge(T).

m_ appears insrc(t(z))? as well. (i) By using the consis- Performing projection. By using the definition of pro-
tency definition for many-to-many link = b assigned to an jection to columns being defined in Sec. 5.2, we get
edgeu = v of rule graphG by matchingm, we getthatta- (m(z1)?,...,m(z,,)?) € r&, which means that we have

blet(e)? has a romm, = (a?,b). It is worth to emphasize found a row inrg that contains all the identifiers of nodes
that at this point we already know the contents of all databaséhat have been selected by the specific matching.

tables that are used in the queryréf. L
querygf Proof («<=) When proving in this direction, we may assume

Construction of the joined table. Now, if we enu- d . ; i
. . that tablerg, havingny columns contains a row, for which
merate nodes and edges ¢f in their natural order d d . :
. Yr € Vi : r[z?] = ¢*. Now our goal is to define an appro-
(and also take care of nodes being ahead of edges in'. . .
riate matchingn for rule r4 in model M.

the enumeration), and we seleqt exactly the same rows In this case the idea of the proof goes rather in a backward

from the tables that were mentioned above, then a row,. . h :
) , direction. We already now that the joined taleontains a

s = (mww""mwnv Mz mZnE) will appear in the o,y 5 from whichr could originate during its calculation, but

joined tableT = t(z1)% x -+ x t(z,,)? x t(21)% x --- x since the joined table has more columns than the result table,

t(2n,)?. In the following, it is examined why row s not fil- some values in rovg are unknown initially. By using edge

21

constraints, we are able to guess some further values, resu
ing in a rows that has more values filled in thanThen we
define the matchingn based on the values in rosy and fi-
nally we prove that this matching must also satisfy injectivity

itesa? andb? that are identifiers of objects andb, respec-
tively. Moreover, we know that(w) -« t(a) andt(v) « t(b).
Edge constraints must be satisfied by kgwhich means that
s[z.src] = s[uc.id] = a? ands[z°*.trg] = s[v®*.id] = b?

constraints together with its original database representatiorshould hold. We know that column set® of S derives from

Following the projection and selection operations in
backward direction. Now we have a row in 7. If an op-

tablet(z)?, which has been created for associatior). Since
s is in table$, there should exist a row, in tablet(z)? such

eration (such as projection and selection) cannot increase tht@att. [src] = s[z.src] = a? andt,[trg] = s[z.trg] =

number of rows, then it is sure that if we have a row in the

result table, then this row should have an origin in the ta-

ble, on which operations were performed. Formally, it is ob-
vious (by using the definitions of projection and selection)
that3ds e O'Inj/\Edge(S) C8§=T; x--+ X “Tnv-i-nE’ where

T; is the table that corresponds to thlk graph object (node
or edge) of the patterty as defined by the query construc-
tion algorithm. By investigating the columns to which pro-
jection was applied, we can guess what the values ofsrow

should be before the projection was performed. More presnem to the same objeet Formally, m

cd:r

cisely,vx € Vg : [27] = s[z°*.id)].

Matching definition for rule graph nodes. Let us exam-
ine an arbitrary node of patternG. According to the defi-
nition of §, the column set“® that corresponds to should
originate from table(x)? that was assigned to clags). As
a consequence, there should exist a tun tablet(z)? such
thats[z°*.id] = t,[id] = c?. Since our tables contain unique
identifiers of objects in columng, there should exist a single
objectc whose identifier ig?. Now the consistency definition
(Def. 41) can be used in right to left direction, which means
that the direct type(c) of objectc is a descendant afz),
so it is allowed to map node to objectc by matchingm.
So we can define the matchimg for rule graph node: as
m(z) = c.

Matching definition for many-to-one rule graph edges.
Let us select an arbitrary many-to-one edge> v from
pattern G. Recall how edge constraints look like for this
specific edge. These constraints afé.id = u°®.id, and
2°%.t(2)? = v°*.id. Note that since: andv are nodes in pat-
tern G, s[u®.id] ands[v°*.id] have some values? and b?
being identifiers of objects andb, respectively, as we deter-

mined earlier. Furthermore, we know tht:) « t(a) and

t(v) < t(b). Edge constraints must hold for all rows$énd

as suchs should also satisfy them, resulting $fz“*.id] =
s[u®®.id] = a® ands[z°.t(2)%] = s[v.id] = b%. We know
that the column set“® of § should originate from the table
src(t(z))? that was assigned to clasec(t(z)). Sinces is in
the joined tables, src(t(z))¢ should have a row. such that
t.[id] = s[z.id] = a® andt_[t(2)9] = s[z*.t(2)?] = b
The consistency definition (Def. 41) for many-to-one links
in right to left direction states thala +> b € Ej; such
that¢(z) = t(e). But this edge is an appropriate candidate
to which pattern edge > v can be mapped by matching.

Matching definition for many-to-many rule graph
edges.Let us select an arbitrary many-to-many edge* v
from patternG. Edge constraints for this specific edge are
2% .srec = u®.id and z®®.trg = v°®.id. Sinceu andv are
nodes of patter@, s[u®®.id] ands[v°®.id] have some val-

22

b?. The consistency definition (Def. 41) for many-to-many
links in right to left direction states that there exists a link
a = b € Ey such thatt(z) = t(e). Now we may define
matchingm for edgeu = v asm(u = v) := a = b.

Injectivity constraint check. Finally, we check that the
matchingm we have just defined cannot map different nodes
(edges) to the same object (link).

Let us suppose by contradiction, that there are two differ-
ent nodes:;, z in G such that(z,) « t(z;) andm maps
(z;) = m(zr) = c
Sinced is bijective, these objects have the same identifier
in the database, formallyn(z;)? m(zp)? = ¢t We
have some further knowledge about this identifier, namely
s[z§*.id] = c? = s[z§*.id]. Recall that injectivity constraints
prescribed inequality for exactly the same columns, namely
x$°.id # x3°.id. Injectivity constraints should be satisfied by
row s in order to be the origin of row, which is a contradic-
tion, since we found equality of elements in the mentioned
columns in case of row.

Different pattern edges cannot be mapped to the same
link, as in such a situation the pattern could not be a well-
formed instance of the metamodel, since it would violate the
non-existence of parallel edges

Corollary 1 If we calculate the left outer join of tabl&g™)
and 8(™), then for each rowr of R there exists a rowt in
the joined table that contains row in its first m columns.

F
Formally, if T = R x 8§ thenVr € R, 3t € T such that
t[i] = r[¢] for all the columns of-.

F
In the following, notations; will be used forr%HS X

F. F; . . .
a0, S % ac, - With this notationS;, corresponds to

the table that has to be calculated for the viély, ;.

Theorem 3Let us suppose that there exists a bijective map-
ping from&ar to &pp. If model M is consistent with the
database representatiofit, then a patternrpre in Gar
thathasnegative application condition is consistent with view
rdPRE in GpaB- FormaIIy,M M = rprep = T%RE'

Proof (=) The basic idea is to prove th&t should contain

a rows that has defined values only in columns that originate
from view r¢ ;; 5, and all other values are undefined. This is
done in an iterative process starting frdy, which corre-
sponds to view¢ ... In each step in order to generaig
TﬁivAci is attached té;_; by a left outer join operation us-
ing the formulaeF; for join condition. Finally, we show that
the projection and selection performed in the last phases of

r% »p calculation does not filter out row from the set of The effect of selectionSince null conditionsVui! of the
results, yielding to an appropriate rawn view r% p, . selection operation pose restrictions only on columns origi-
Since m is a matching for pattermprz, it is also a nating from negative application condition viewﬁACi, ty
matching forrz g g. By using Theorem 2, this means that surely satisfies all of them, since it contains undefined values

Jto € rd g = So. in all such columns.

Lemma. Let wus suppose by induction that The effect of projection. The last operation is the projec-
we have already calculatedt;_; e 8,1 and tion, which selects the first;, columns ofty resulting in a
ticy = (to[2{],....to[z?],c,...,c). In other words rowr € rp.. Note that the firshy columns ofty are the
the firstny, columns oft;_; contains the same valuestas ones that contain identifiers originating fror,, ¢, and they
while all the remaining values are undefined. We want toare never undefined. It can be now concluded that arrav
prove thatt; has the similar structure and thigtcan also be found in the view that representp . O
found in tables,.

Proof of the lemma. Let us calculats;. By using Corol- Proof (<=) We know that there exists a ranin view 7% ;
lary 1, it can be stated that columnstgfthat originate from and an appropriate matching for rulerpz is to be found.
$;_1 have the same values &s ; independently of the fact Proof by contradiction I. Let us suppose by contradic-
whether the join conditiod; holds or not. The only thing to tion that we have € %, but no matchingn exists for the
be checked is whether the last. columns oft; (originating LS rule graph {1z s).
fromr4, ,.,) are filled with undefined values. If no matchings exist for, s, then Theorem 2 yields

Let us suppose by contradiction that there exigtén ~ t0 an emptyr{ ;¢ view. But note that this view appears at
view %, , . that can be attached tg_; by left outer join the leftmost position of left join operations in the definition
in such way that; holds. By using Theorem 2 there should Of 7%, Which means that}, , ; should also be empty. But
exist a matchingn’ for the graph Objects OfNAC this contradicts to our initial assumption, since T%RE'

If = is an arbitrary shared node (thus € (Vpzs N Proof by contradiction Il. Let us suppose by contradic-
Vi ac,)), then because of the construction algorithm of viewstion that we have € 74, and a matching: for .55, and
r¢ s andrd 4, each of them has a column that representsthere is also a matching’ for a rule graphry ¢, such that
this objectz. But we assumed thak; is satisfied, which ~€ach node and edge are mapped to the same object and link,
means that %, g.2¢ = r§,c 2% should hold for all the —respectively, by botw andm'.

rows, and as such fas as well. By summarizing our know!- By using Theorem 2 for matchings andm/’, we get that
edge about; we get so € So = 7 g andr; € % 4. . Letus suppose that rosy
of view §;, was calculated by usirg, andr;. For the sake of
to[r9] = ti1[rs.a] = ti[rig.ad] = simplicity, let us focus only on columns ef, that originate
from r¢, , .. Our statement is that this portion sf agrees
ti[r ac, -2%] = rifz?]. withr;.

The portion ofsy originating fromrNAC is introduced
to[z?] andr;[z¢] define the identifiers of objects to which whens; is calculated, and afterwards it is left unchanged by

x was mapped byn andm’, respectively. Thusy(z)? = left outer join operations. But when thith left outer join is
to[z?] = ri[z4] = m/(x)?. Sinced is bijective,m(z) = executed its join conditiorF; holds, and in this case inner
m/(x), which means that all the shared nodesL.éf S and join has to be executed resulting in our statement mentioned
N AC; had to be mapped onto the same object. above. The only thing to be checked is why is satisfied.

At this point we know that all the shared nodeslaff S Note thatF; is defined on the shared nodesofys and
and N AC; are mapped to the same objects bothvbyand rnyac,. Each shared node is mapped to the same object
m’, respectively. If the definition of matching for rule gz~ ¢ by bothm andm/, sos;_1[r¢%; ¢.2¢] = ¢? = r;[z?], which
is recalled from Sec. 5.3, then it can be seenthaannot be means that we have found correspondence in all columns of
a matching, sincen andm’ together violate the second part s;_; andr; for which correspondence was prescribediby
of the definition, which prohibits the existence of a matching Note that null conditions require the image of shared
for NAC;. So our initial assumption to have a raw that nodes ofrpgs andryac, to be undefined in columns of
satisfiesF; together witht;_ failed. But if there are no such sy that originate fromy 4¢,, which is immediately violated,
row r; for which F; could hold, then only the second part of since they got their values just in the previous paragraph. So
the left join definition could have been used when calculat-sy violates null conditions of the selection operation, and as
ing t;, which means that the columns foriginating from a consequence it should be filtered out inhibitsago be the
T?VAci must be padded with undefined values. At this pointorigin of r. It means that under the supposed circumstances
we may conclude that we have found a rawin view $; that ~ no origin ofr exists in viewo v, (S), which is a contradic-
has the prescribed structure. tion.

Consequence of the lemmaBy using our lemmak Final consequence At this point we know that there
times, we get that there is a roty € 8, which contains should exist a matching for r1 575, but no matchingn’ for
defined values in columns originating from vie\&HS and anyry ac,. Recalling the definition of matching ob g, we
all the other values are undefined. get that the above-mentioned situation is the one that fulfils

23

all the requirements, so matchimg is also good forprg. deletion of nodes) in both directions. The proofs for the other

O cases can be derived from the presented complete proof by
replacing object and lines of Algorithms 2 and 3 by a corre-

Theorem 4 Let us suppose that there exists a bijective map-sponding kind of link and lines of the same algorithms, re-

ping d from S to Spp. If (i) model M is consistent with gpectively, as defined in Table 2 for the given case.
the database representati®i, (ii) we have a matchingn,

for rule r, together with a corresponding rom? in viewr<,
andm is consistent wittm?, (iii) rule r is applied on match-
ing m,. resulting inM’, and (iv) Algorithms 2-5 are executed
in the database fom? € r¢ resulting in a database repre-
sentatiordt’, thenM’ = N,

Proof (=) The skeleton of the proof is as follows. We se-
lect an object (a link) from context modél/.. Since only
deletions are performed on mod#l, M should also contain
the same object (link). Then the consistencyldfanddt is
used in left to right direction to ensure that the object (link)

Formally, if is represented in the database (i.e.)i). Finally, it is ex-

— (i) M =9, amined why the database representation of the object (link)
(i)

—(ii) (my|r) = (m%r?) for a pair (m,., m%), cannot be deleted froMt during the execution of Alg. 2 and
(ii) (my|r) = (m®r?) pair (m,, m?)

— (i) M =2 M, 3.

—(v) m Alg- 25 gy Nodes.Let us select an objeetfrom context modelV/,.

thenit’ = o and an arbitrary clas§ € Vi, such thatC < t(c). Object
enM’ = 9.

chas to appear in modél as only deletions were allowed in
this step. By using the consistency of modéland database
Irepresentatiorfl)? (Def. 41) for objects in left to right direc-
tion, we get thatic € C? such that[id] = 7.

The only position where either Alg. 2 or Alg. 3 can delete
row c from C¢ is line 12 of Alg. 3. (All other database op-

and database representatiH is proven based on the con- erations eith_er_delete rows from tables ass_igned to many-to-_

sistency of)M, and90,.. Since skeletons of the proofs are ex- many associations, or updates tables assigned to classes in

actly the same in these steps, we only present the technige®!umns not equal tal.) Line 12 of Alg. 3 would delete row

for the more difficult (i.e., the deletion) step. ¢, if 3z € Vims \ Vrus such thatn(z) = ¢, but the ex-
The proof of the deletion step is bidirectional and it has 7/Stence of such node would yield to the deletion of object

cases in each direction, which use exactly the same technigufefom modelM, which is impossible as context modéd,

and which have to be checked one by one. The 7 cases corrét'" containsc. The result of thls_ reasoning is thatould npt

spond to the deletion of (i) objects: (if) many-to-one and (iii) 2€ deleted by Alg. 2 and 3, which means that C* also in

many-to-many dangling links leaving an object to be deletegdatabasén.. O

(iv) many-to-one and (v) many-to-many dangling links lead-

ing into an object to be deleted; and (vi) many-to-one andProof (<) Now the proof proceeds in the other direction.

(vii) many-to-many links selected by matchingfor an edge ~ We have arow in a table 0., which was assigned to a class

z € Ergs \ Erus. We may identify a well-defined part of (many-to-many association). Since Alg. 2 and 3 can delete

Alg. 2 and 3 for each case where the specific case is handle@Wws or set undefined values to columns with name not equal

by these algorithms in on the database. Table 2 presents th@ id, src, trg, it is sure that a row with the same value in

cases and their Corresponding hand“ng routines. columnid (in columnssre andtT’g) can be found in the same

table of9t. In this case, we may apply the consistency)df

and M for objects or many-to-one links (for many-to-many

links) in right to left direction, resulting in a corresponding

Proof The model manipulation phase of a rule application
can be divided into a deletion and an insertion step. Ou
first goal is to prove that context mod@l. is consistent
with database representatidfi. resulted by the execution
of Alg. 2 and 3. Then the consistency of derived modi&l

[Casé Object/link [Reason of selectidfDB operation |

() |object selected byn line 12 of Alg. 3 object or many-to-one link (many-to-many link) in modefl.

(ify |many-to-one link |dangling/outgoing|line 12 of Alg. 3 Finally, it is investigated why this object or many-to-one link
(iii) |many-to-many linkdangling/outgoing|line 4 of Alg. 3 (many-to-many link) is not deleted in the deletion phase of
((IV)) many-:o-one I|r:!<] gang:!ng;!ncom!ng :!ne %O ;)LlAlg.33 GT rule application.

v) |many-to-many linkdangling/incoming|line 7 of Alg. ro)

(vi) | many-to-one link |selected byn line 2 of Alg. 2 /Nodes.We have a rowe’ € C W'th c'[id] = ¢ where
(vii) [many-to-many linkselected byn line 5 of Alg. 2 C? represents a table that was assigned to a lassV/y;

and that has a content according to the database representa-
tion 901.. Since only row deletions and updates in columns
with name not equal téd could be performed on table?
during the execution of Alg. 2 and 3, it is sure tRatc C¢
such thatc[id] = c’[id] = ¢?. By using the consistency of

In order to avoid tedious and lengthy proofs of the samemodel A/ and database representatidh (Def. 41) for ob-
style, we only sketch the skeleton of the proof technique andects in right to left direction, we get that: € Vi, such that
we present a complete proof for only one case (i.e., for thes' < t(c).

Table 2 Different cases and corresponding lines of Alg. 2 and 3
participating in the proof

24

Let us suppose by contradiction that there is a node
Vims \ Vaus such thatm(z) = ¢ andt(z) « t(c). Since
C <« t(m(z)) = t(c), classC should have been enumerated
in the inverse topological order ofm(x)), and as a conse-
quence, line 12 of Alg. 3 should have been executed on table
C? with conditionid = ¢4, which means that should have
been removed, agid] = c?. This is a contradiction, sinae
remained in tabl€? in database contefit,.

Sofz € Vius \ Vrus that is mapped te by m. But in
this case: is not removed from modéV/, thus,c remains in
context modelV/.. O

25

