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Abstract We present a novel approach to implement a
graph transformation engine based on standard relational
database management systems (RDBMSs). The essence of
the approach is to create database views for each rule and to
handle pattern matching by inner join operations while han-
dling negative application conditions by left outer join oper-
ations. Furthermore, the model manipulation prescribed by
the application of a graph transformation rule is also imple-
mented using elementary data manipulation statements (such
as insert, delete). As a result, we obtain a robust and fast trans-
formation engine especially suitable for (i) extending model-
ing tools with an underlying RDBMS repository and (ii) em-
bedding model transformations into large distributed appli-
cations where models are frequently persisted in a relational
database and transaction handling is required to handle large
models consistently.

Key words Tool support – Graph transformation – Pattern
matching – Relational databases

1 Introduction

While nowadays model-driven systems development is more
and more being supported by a wide range of conceptually
differentmodel transformation tools, nearly all of these tools
have to solve a common problem: the efficient query and ma-
nipulation of complex graph-based model structures. The im-
portance of these issues from an MDA perspective has been
identified by issuing the QVT RFP [21] to establish an OMG
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standard for capturing Queries, Views and Transformations
within and between different domains.

While the QVT is a relatively new initiative for speci-
fying model transformations,graph transformation (GT)[8]
already integrates valuable research results of several decades
both from conceptual and implementation side.

From a conceptual point of view, graph transformation
provides a visual, rule and pattern-based formal paradigm. In-
formally, a graph transformation rule performs local manipu-
lation on graph models by finding a matching of the pattern
prescribed by its left-hand side (LHS) graph in the model, and
changing it according to the right-hand side (RHS) graph.

Graph transformation has proved its maturity for pre-
cisely defining (i) the operational semantics of various vi-
sual modeling languages (ii) as well as model transforma-
tions within and between such languages on a very high level
of abstraction. Furthermore, there is already a wide range of
available tools for simulation or verification purposes like
AGG [9], ATOM3 [31], Diagen [17], Fujaba [10], GReAT
[1], Groove [23], Progres [27], Viatra [32] and many more.

Surprisingly, all these tools are identical from a specific
aspect, namely, their underlying implementation technology
is related to aprogramming language(e.g. Java in case of
AGG, Fujaba, Groove, and Viatra2).

Relational database management systems (RDBMSs) that
serve as the storage medium for business critical data for
large companies are probably the most successful products
of software engineering. A crucial factor in this success is the
close synergy between theory and practice: SQL, the stan-
dard data definition, manipulation and query language is built
upon precise mathematical foundations.

In the current paper, we investigate how to exploit power-
ful RDBMSs to serve as an underlying implementation tech-
nology for model transformations. More precisely, we pro-
vide a mapping from graph transformation systems into re-
lational databases. The essence of the approach is to cre-
ate database views for each rule and to handle graph pat-
tern matching by inner join operations while negative appli-
cation conditions by left outer join operations. Furthermore,



the model manipulation prescribed by the application of a
graph transformation rule is also implemented using elemen-
tary data manipulation statements (such asINSERT, DELETE).
We extend previous results in [33] by the full formalization
of this mapping with proofs of correctness.

Furthermore, we implemented a prototype graph trans-
formation engine, which uses open, off-the-shelf relational
databases (namely, PostgreSQL [18] or MySQL [28]) as a
backend to demonstrate the practical feasibility of our ap-
proach. For a detailed experimental evaluation, we assess
how the performance of a graph transformation engine based
upon a relational database is influenced by (i) parallel rule
applications (ii) RDBMS-specific query optimization tech-
niques and (iii) the choice of the underlying RDBMS.

Structure of the paper. Our main intention in Sec. 2 is to
briefly and informally summarize the essence of our approach
on an example prior to going into deep mathematical details.
For that purpose, we assume the reader’s familiarity with the
basics of relational databases.1

Readers also interested in the precise mathematical treat-
ment of our approach should continue with Sec. 3, which pro-
vides formal definitions for modeling languages and graph
transformation to capture model transformations between
these languages. In Sec. 4, an overview is provided to the
main concepts of relational databases together with formal
definitions. Sec. 5 presents the formalization of our approach
to encode graph transformation rules into relational databases
(with formal proofs of correctness listed in Appendix A).

Then Sec. 6 discusses implementation issues of our ex-
perimental graph transformation engine built upon an off-the-
shelf RDBMS. We also investigate how the performance of
graph transformation over a RDBMS is dependent on dif-
ferent design decisions, and tool or graph transformation-
specific heuristics. Finally, an overview of related work is
presented in Sec. 7, while Sec. 8 concludes our paper.

2 Overview of the approach

We first demonstrate how model transformations between
modeling languages (metamodels) can be specified by graph
transformation. An informal overview is provided on how
graph transformation rules can be implemented by using tra-
ditional relational database techniques. Our concepts are pre-
sented on a widely used benchmark model transformation
problem: the object-relational mapping [30], which serves as
a running example for the paper.

2.1 Metamodels, models and graph transformation: An
informal overview

Metamodels and models.The metamodeldescribes the
abstract syntax of a modeling language (or domain). The

1 If this is not the case, we recommend to read Sec. 4 for an
overview on relational database concepts

metamodels of UML class diagrams and relational database
schemas (following the CWM standard [20]) are depicted in
Fig. 1. In order to avoid complex figures, only the relevant
parts of the metamodel is presented.

Fig. 1 Metamodel of the problem domain

Nodes (e.g.Schema, Table) of the metamodel are called
classes. A class may haveattributes(e.g. the edge labelled
by name) that define some kind of properties of the specific
class. Inheritancemay be defined between classes, which
means that the inherited class has all the properties its par-
ent has, but it may further contain some extra attributes. Note
that the CWM standard derives database notions like tables,
columns, etc. from UML notions by inheritance (see Fig. 1).

Associationslike EO, CF, SFT, CE, PE, KRF andUF de-
fine connections between classes. Both ends of an association
may have amultiplicity constraint attached to them, which
declares the number of objects that, at run-time, may partic-
ipate in an association. We consider the most typical multi-
plicity constraints, which are (i) the at most one (denoted by
arrows or diamonds), and (ii) the arbitrary (denoted by line
ends without arrows and diamonds). Furthermore, we useref-
erence edges (denoted by dashed lines in instance models)
connecting source and target model nodes.

Theinstance modeldescribes concrete systems defined in
a modeling language and it is a well-formed instance of the
metamodel. Nodes and edges are calledobjectsandlinks, re-
spectively. Objects and links are the instances of metamodel
level classes and associations, respectively. Attributes in the
metamodel appear asslotsin the instance model. Inheritance
in the instance model imposes that instances of the subclass
can be used in every situation where instances of the super-
class are required.

Example 1A well-formed instance model of this domain
(shown in Fig. 2(a)) has a UML packageanimal, 2 which con-
tains a UML classcat named as’cat’. A UML classcat has
a UML attributecolor. We assume for the paper that UML
packageanimal and UML classcat have already been trans-
formed by the object-relational mapping algorithm, which
means that schemas and tablet cat with a name’cat’ are at-
tached to UML packageanimal and UML classcat, respec-

2 To prevent confusion between metamodeling terms and class
diagram notions we use the UML prefix for the latter.
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tively, via edges of typeRef. Tablet cat has a single column
cat id and a primary key constraintcat pk referring to the col-
umncat id.

(a) Model1

(b) Model2

Fig. 2 Sample instance models

Since our technique is applicable for models appearing
on any MOF metamodel layer, we use termsmodelandmeta-
modelin a generalized sense by not restricting them only to
M1 and M2 layer, respectively. According to the terminology
of this paper, themetamodelis always one MOF level above
themodelindependently of the position ofmodelin the MOF
metamodel hierarchy.

Graph transformation. Graph transformation [8, 24]
provides a pattern and rule based manipulation of graph mod-
els. Each rule application transforms a graph by replacing a
part of it by another graph.

A graph transformation rulecontains a left–hand side
graphLHS, a right–hand side graphRHS, and negative ap-
plication condition graphsNAC (depicted by crosses). The
LHS and theNAC graphs are together called the precondi-
tion of the rule.

Rule application.The application of a rule to an instance
model replaces a matching of theLHS in the model by an
image of theRHS. Informally, this is performed by (i) find-
ing a matching ofLHS in the model, (ii) checking the neg-
ative application conditions (which prohibit the presence of
certain objects and links) (iii) removing a part of the model
that can be mapped toLHS but not toRHS yielding the
context model, and (iv) gluing the context model with an im-
age of theRHS by adding new objects and links (that can
be mapped to theRHS but not to theLHS) obtaining the
derived model.

Example 2The object relational mapping can be described
by 6 graph transformation rules as presented in Fig. 3.

(a) SchemaRule (Fig. 3(a)) simply generates a database
schema for a UML package.

(b) ClassRule (Fig. 3(b)) searches for a UML class in the
UML package, for which there does not exist a corre-
sponding table in the database schema, and creates the
corresponding table that has a single columntid, for
which a primary keytp is defined.

(c) The inheritance relation in the UML model is handled
by appropriate foreign key constraints in the database
schema. This is expressed by theGeneralizationRule
(Fig. 3(c)), which creates a foreign key constraint on the
identifier columncb of the subclass tabletb for any un-
handled generalization node. The constraint will refer to
the columncp of the superclass tabletp that has a primary
key pp.

(d) A new column is created in the table assigned to the UML
class that includes the unhandled UML attribute. This is
performed by theAttributeRule (Fig. 3(d)). The applica-
tion of this rule is restricted to tables not having a name
table. A further negative application condition prohibits
the attribute to have a UML class as its type.

(e) AssociationRule (Fig. 3(e)) creates a new table in the
database, if there has not been any table assigned yet. This
new table has again a single columncrel with a primary
key prel.

(f) TheAssocEndRule (Fig. 3(f)) selects an unhandled UML
association end, and generates an additional columncrel
and a corresponding primary keyprel in the tabletrel that
has been created for the UML association itself. More-
over, a foreign key constraint is added to thetrel table,
which refers to the columncc of the tabletc that is asso-
ciated with the UML classc.

To continue our previous example, one can notice that the
attributeRule (Fig. 3(d)) is applicable if there is a UML class
in the model that has been transformed to a table with a name
not equal to’table’ and this UML class has an untransformed
UML attribute of a type not being a UML class.Model 1 of
Fig. 2(a) presents a situation where this rule is applicable,
since UML classcat, tablet cat and UML attributecolor fulfil
all the necessary criteria.

In this specific case, rule application means that a new
column is added to the selected table and a reference edge is
set from the UML attribute to the new column. The derived
instance modelModel 2 is presented in Fig. 2(b).

2.2 Graph transformation in relational databases: An
informal overview

Mapping metamodels to database tables.We use a stan-
dard mapping (for more details see [22, 30]) to generate the
schema of the database from the metamodel.

– Each class withk outgoing many-to-one associations and
attributes is mapped to a table withk + 1 columns. Col-
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(a) SchemaRule

(b) ClassRule

(c) GeneralizationRule

(d) AttributeRule

(e) AssociationRule

(f) AssocEndRule

Fig. 3 Rules describing the object relational mapping

umn id will store the identifiers of objects of the spe-
cific class. All other columns will contain the identifiers
of target objects of such outgoing many-to-one links that
have the corresponding association as their direct type.
If no such outgoing link exists in the model, the unde-
fined (NULL ) value is used in the corresponding column.
Additional foreign key constraints, whose role is to guar-
antee the consistency of the database have to be defined
for columns representing many-to-many associations re-
ferring to the table assigned to the corresponding target
class.

– A table with 2 columns storing the identifiers of source
and target objects is assigned to each many-to-many as-
sociation.

– Inheritance is handled by a foreign key constraint defined
for the identifier columnid of the table assigned to the
subclass. This foreign key constraint maintains reference
to the identifier columnid of the superclass table.

Database representation of instance models.Instance
models representing the system under design are stored in
these database tables.

– A unique identifier is assigned to each object of the in-
stance model.

– The identifier of each object has to appear in the column
id of all tables that correspond to ancestors of the object’s
direct type.

– The database representation of a many-to-one link is a
row in the table that corresponds to the source class of
the link’s type. This row should contain the identifiers of
source and target objects in the identifier columnid and
the column representing the many-to-one association, re-
spectively.

– Each many-to-many link is represented in the database by
a pair of source and target object identifiers appearing in
the table that corresponds to the direct type of the link.

Example 3The database representation of the instance model
Model 1 is depicted in Fig. 4.

id Ref EO id id name id CF id id
animal s NULL animal cat 'cat' color cat color cat_pk
cat t_cat animal s t_cat 'cat' cat_id t_cat cat_id
color NULL NULL
s NULL NULL Table

t_cat NULL s id id src trg id id
cat_id NULL NULL s t_cat cat_pk cat_id cat_id cat_pk
cat_pk NULL t_cat

src trg

UniqueKey

PrimaryKey

SFT

ModelElement Package

Schema

Class

UF

Feature Attribute

Column

Fig. 4 Database representation of the instance model

(i) Model 1 contains a UML classcat, which is identified
by the keycat in the database. AsModelElement, Namespace
andClass are ancestors ofClass, all their corresponding ta-
bles should have the keycat in their identifier columnid. (ii)
UML class cat is contained by UML packageanimal. This
containment is a many-to-one link of typeEO going from
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UML classcat to UML packageanimal. The database rep-
resentation of this link is a row in theModelElement table,
which has valuescat andanimal in columnsid andEO, re-
spectively. (iii) Model 1 has a single many-to-many link of
typeUF connecting objectscat pk andcat id, which is repre-
sented by a corresponding row in tableUF.

Views for LHS and NAC. The matching patterns of
a graph transformation rule are calculated by using views,
which contain all matchings of the rule. More specifically, we
introduce a separate view for eachLHS andNAC graph.

1. The view generated for rule graphs (LHS andNAC) ex-
ecutes aninner join operationon tables that represent ei-
ther a node or an edge of the rule graph.

2. The joined table isfiltered by injectivity and edge con-
straints. Injectivity constraints express the injective map-
ping of rule graph nodes and edges on the database level.
Edge constraints define restrictions imposed by the graph
structure, which means that the source (target) node iden-
tifier of the given edge should be found in tables repre-
senting the type of the edge and the type of the source
(target) node.

3. Finally, aprojectionselects only those columns of the fil-
tered joined table that represent node identifiers. Infor-
mation about the source and target nodes of edges is dis-
carded during projection. This information is unnecessary
in the sequel, since requirements imposed by the graph
structure have already been checked and fulfilled.

Example 4We introduce the essence of this approach by an
example listing the view generated for theLHS andNAC
graph of the ruleAttributeR (see Fig. 3(d)).

CREATE VIEW AttributeR_lhs AS -- an LHS view
SELECT a.id AS a, t.id AS t, c.id AS c -- with 3 columns
FROM Attribute AS a, Feature AS a_anc, Class AS c,

ModelElement AS c_anc, Table AS t
WHERE a.id = a_anc.id AND a_anc.CF = c.id -- CF edge cf1

AND c.id = c_anc.id AND c_anc.Ref = t.id -- Ref edge r1
AND c.id <> t.id -- injectivity constraint

-- for nodes c and t

CREATE VIEW AttributeR_nac1 AS
SELECT a.id AS a, cln.id AS cln
FROM Attribute AS a, ModelElement AS a_anc2, Column AS cln
WHERE a.id = a_anc2.id AND a_anc2.Ref = cln.id

-- Ref edge refn
AND a.id <> cln.id -- injectivity constraint

-- for nodes a and cln

CREATE VIEW AttributeR_nac2 AS
SELECT a.id AS a, cn.id AS cn
FROM Attribute AS a, SFT as sft, Class AS cn
WHERE a.id = sft.src AND sft.trg = cn.id -- SFT edge sft

CREATE VIEW AttributeR_nac3 AS
SELECT t.id AS t
FROM Table AS t, Class AS t_anc
WHERE t.id = t_anc.id AND t_anc.name = ’table’

-- for name edge n

TheLHS of ruleAttributeR requires the presence of aCF
edge that connects a UML attribute to a UML class. Since
CF edges are stored in theFeature table, it must also be in-
cluded in the inner join operation in addition to tablesAt-
tribute and Class. Since the source node ofcf1 has to be
a UML attribute, only such source object identifiers of the

column id of table Feature can participate in a matching
that can also be found in tableAttribute as expressed by the
edge constrainta.id=a anc.id . A similar edge constraint
a anc.CF=c.id requires possible target object identifiers
of columnCF in tableFeature to be equal to a value from the
identifier column of tableClass. A similar pair of equalities
express the edge constraints for the reference edger1. Due to
inheritance relations defined in the metamodel, every table is
a UML class at the same time. Thus, mappings oft andc to
the same object has to be avoided. On the database level, this
(injectivity) constraint is expressed by the inequalityc.id
<> t.id .

a c t a cln a cn t name
color cat t_cat

AttributeR_lhs AttributeR_nac1 AttributeR_nac2 AttributeR_nac3

a c t cln cn name a c t
color cat t_cat NULL NULL NULL color cat t_cat

AttributeRAttributeR_left_join

Fig. 5 Database representation of matchings

The upper part of Fig. 5 shows the contents of views that
have been defined for theLHS and theNAC parts of rule
AttributeR.

As color is a UML attribute of the UML classcat and this
UML class is connected to tablet cat by a reference edge
in Model 1, a matching for theLHS of rule AttributeR is
found, which is represented by a row in the corresponding
(i.e., the leftmost) view of Fig. 5. The view generated for the
first NAC is empty, since there is no matching for thisNAC
as no reference edges leave any UML attributes ofModel 1.
Since tableSFT is empty, the view representing the second
NAC has no rows. The last view is again empty, since there
are no UML classes with name’table’.

Left joins for preconditions of rules. When the view
for the precondition graph is calculated, views of all its pos-
itive and negative application conditions are available. If the
precondition has no negative application conditions then the
view defined for theLHS contains the database representa-
tion of all matchings of the precondition graph.

1. EachNAC view is left outer joinedto theLHS view one
by one. Thejoin conditionof this operation expresses that
columns representing the same shared node in theLHS
and theNAC graphs should be equal.

2. For a matching of the precondition graph, we require (in
the null condition) that columns ofNAC(s), which are
shared with theLHS part, are filled with undefined val-
ues. This means that there are no possible extensions of
a matching of theLHS that is also a matching of (any)
NAC graph.

3. Then aprojectionis performed, which displays only those
columns that originate fromLHS.

Example 5To continue our running example, we present the
view definition for the precondition graph of ruleAttributeR.
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CREATE VIEW AttributeR AS
SELECT lhs.*
FROM AttributeR_lhs AS lhs

LEFT JOIN AttributeR_nac1 AS nac1 ON lhs.a = nac1.a
LEFT JOIN AttributeR_nac2 AS nac2 ON lhs.a = nac2.a
LEFT JOIN AttributeR_nac3 AS nac3 ON lhs.t = nac3.t

WHERE nac1.a IS NULL AND nac2.a IS NULL AND nac3.t IS NULL

The upper part of Fig. 5 shows the contents of views that
have been defined for theLHS, theNACs of ruleAttributeR,
respectively. The first table in the bottom of Fig. 5 presents
the result of the left outer join operation, while the last table
corresponds to the precondition of ruleAttributeR. Note that
columns representing UML attributea are shared between
LHS, NAC1 andNAC2 graphs, and columns showing ta-
ble t are shared betweenLHS andNAC3, so these columns
appear both in the join and in the filtering condition.

Since views generated forNAC graphs are empty, such
column sets of the left outer joined table that originate from
theNAC views are filled withNULL values (meaning unsuc-
cessful matchings for theNAC graphs), while column sets
from theLHS view contain the database representation of
the single matching of theLHS. As this row is not filtered out
by the null conditions, it can also be found in the view gen-
erated for the whole precondition graph, which means that
a matching has been found for the ruleAttributeR, and as a
consequence the rule is applicable on that matching.

Model manipulation in relational databases. Opera-
tions in the graph manipulation phase can be implemented
by issuing several data manipulation commands (INSERT,
DELETE, and UPDATE) in a single transaction block. The
transaction block is needed to ensure that a graph transfor-
mation step is atomic, i.e., either all commands or none of
them are executed to result in a consistent model after rule
application.

In the graph manipulation phase, deletions are followed
by insertions.

– We further restrict the order of delete operations in such
a way that edge deletions precede node deletions.
– If a many-to-one link has to be deleted from the

model, then the table that represents the source class
of the direct type association of the given link has to
be updated. Specifically, the value of the column cor-
responding to the many-to-one association has to be
set toNULL in the row that contains the source node
identifier of the link in its columnid.

– In case of a deletion of a many-to-many link, the row
consisting of the source and the target node identifiers
of the link has to be removed from the table that cor-
responds to the direct type of the given link.

– As the node identifier to be deleted can be found in tables
representing the ancestors of the object’s direct type, the
deletion should proceed in a bottom-up order (to respect
foreign key constraints) by starting at the class, which is
the direct type of the object.
During this iteration, additional attention is needed to
consistently handle the removal of dangling edges from
the database. As a first step, all associations have to be

determined, whose source or target is the class, which is
just being traversed by the iteration. Then we should per-
form the above mentioned edge deletion procedure on all
links that (i) have the object to be deleted as their source
or target node and that (ii) are instances of associations
collected in the previous step. The final step of the it-
eration is the deletion of the object itself from the table
that corresponds to the class being traversed. This is per-
formed by deleting the row of this table, which contains
the identifier of the given object in its columnid.

For handling node and edge insertions on the database
level in the graph manipulation phase, we can use exactly the
same procedures as for the initial table filling phase.

We state that the new content of database tables always
corresponds to the derived model, thus it can be proven that
our approach performs graph transformation over an under-
lying relational database.

Example 6We continue our sample graph transformation rule
AttributeR with the model manipulation parts. This rule pre-
scribes the insertion of a new column, which is contained by
the table being selected in the pattern matching phase. More-
over, the origin of this column has to be marked by inserting
a new reference link.

On the database level, the same effect can be achieved by
generating a new identifierc col for this new column and
by inserting this identifier into all tables that represent the an-
cestors ofColumn. In order to respect foreign key constraints,
insertions are executed in a top-down order starting at the ta-
ble corresponding to the most general ancestor. Insertion of
the 2 new many-to-one links appears as the 2 update opera-
tions presented in the listing below.

INSERT INTO ModelElement (id) VALUES (c_col);
INSERT INTO Feature (id) VALUES (c_col);
INSERT INTO Attribute (id) VALUES (c_col);
INSERT INTO Column (id) VALUES (c_col);
UPDATE ModelElement SET Ref = c_col WHERE id = color;
UPDATE Feature SET CF = t_cat WHERE id = c_col;

When the execution of these graph manipulation com-
mands terminates, the new content of database tables corre-
sponds to the derived modelModel 2.

3 Metamodels, models and graph transformation

Now the formalization of concepts related to metamodels,
models and graph transformation is presented.

3.1 Metamodels and models

The metamodeldescribes the abstract syntax of a modeling
language.

Definition 1 A directed graph (denoted by G =
(VG, EG, srcG, trgG)) is a 4-tuple, whereVG and EG

denote nodes and edges of the graph, respectively. Functions
srcG : EG → VG and trgG : EG → VG map edges to
their source and target node, respectively.
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Definition 2 A metamodel(denoted byMM ) is a directed
graph, where

– VMM and EMM denote nodes and edges of the meta-
model;

– classes (Cls) and datatypes (DTypes) form a (distinct
and complete) partition of nodes, formally,VMM =
Cls ∪DTypes, Cls ∩DTypes = ∅;

– a classC is a node of the type graph that represents a
user-defined and domain-specific type, formally,C ∈
Cls;

– a datatypeD is a node of the type graph that repre-
sents a built-in type of a programming language (e.g.
int , String ), formally,D ∈ DTypes;

– associations (Assoc) and generalization (inheritance)
edges (Inher) constitute a partition of edges, formally,
EMM = Assoc ∪ Inher, Assoc ∩ Inher = ∅;

– associations can be further partitioned into at-
tributes Attr, ’many-to-many’ (AssocM2M ) and
’many-to-one’ (AssocM2O) associations, formally,
Assoc = AssocM2M ∪AssocM2O∪Attr,AssocM2M ∩
AssocM2O = ∅, Attr ∩ AssocM2M = ∅, Attr ∩
AssocM2O = ∅;

– a many-to-many associationA from source classCs

to target classCt (denoted byCs
A
⇀ Ct) is an edge

from the setAssocM2M , wheresrcMM (A) = Cs ∈
Cls, trgMM (A) = Ct ∈ Cls;

– a many-to-one associationA from source classCs to

target classCt (denoted byCs
A7→ Ct) is an edge from

the setAssocM2O, wheresrcMM (A) = Cs ∈ Cls,
trgMM (A) = Ct ∈ Cls;

– an attribute A in a classC of a datatypeD (de-

noted byC
A7→ D) is an edge from the setAttr, for-

mally, srcMM (A) = C ∈ Cls, trgMM (A) = D ∈
DTypes, andC

A7→ D ∈ Attr;
– a generalization (inheritance) edgeI leading from class

Ct to classCs (denoted as in UML byCs ^ Ct) is an
edge from the setInher, formally, srcMM (I) = Ct ∈
Cls, trgMM (I) = Cs ∈ Cls, andCs ^ Ct ∈ Inher.

In the above definition, associations define binary rela-
tions between classes. In the current paper, we do not handle
association classes. Note that we use the same notation for
many-to-one associations and attributes as they differ only in
the categorization of their target nodes. In the following, the

notationCs
A→ Ct is used for a general association of any

kind that isA ∈ (AssocM2M ∪AssocM2O ∪Attr).
Inheritance graph. The inheritance hierarchy forms a

lattice, which implies that the inheritance graph is a directed
acyclic graph (DAG), and there is a common root ancestor
class for all classes.

Definition 3 The inheritance graph MMInher =
(Cls, Inher, srcMM , trgMM ) is the type graph restricted to
generalization (inheritance) edges, which forms a lattice.

Definition 4 Given a metamodelMM , classC1 is a (direct)
superclassof classC2 (or, equivalently, classC2 is a (direct)
subclassof classC1) as denoted byC1 ^ C2, if and only if

– there is a generalization edgeC1 ^ C2 ∈ Inher;
– there are no other classes in the inheritance hierarchy

betweenC1 and C2, formally, @C ∈ VMM such that
C1 ^ C ^ C2.

Note that this definition does not imply that a classC2 has
a single superclassC1, as multiple inheritance is allowed in
the inheritance graph. Since the superclass of a class may also
have its own superclass, it is useful to define the transitive
closure of the superclass relation.

Definition 5 Given a metamodelMM , classC1 is anances-
tor (class)of classC2 (or, equivalently, classC2 is adescen-
dant of classC1) (denoted byC1

∗
^ C2), if eitherC1 = C2,

or ∃C ∈ VMM such thatC1 ^ C
∗
^ C2.

Capital letters from the beginning of the alphabet (e.g.,

C,Ds
A→ Dt) will be used for meta-level graph elements

(classes, associations).
The instance model describes concrete systems defined in

a modeling language and it is always a well-formed instance
of the metamodel, which means that typing morphisms for
nodes and edges of the model can be defined. Type functions
map model nodes and edges to metamodel level classes and
associations, respectively.

Definition 6 Given a metamodelMM , a well-formed in-
stance model (graph)M of the metamodelMM is a di-
rected graph together with adirect type function (graph
morphism)t : M → MM , which maps modelM to meta-
modelMM according to the following rules

– Unambiguous mapping of objects and values:model
nodes are mapped to metamodel nodes, formally,∀c ∈
VM : t(c) ∈ VMM ;

– a model node is called as anobject, if its direct type
is a class;

– a model node is called as avalue, if its direct type is
a datatype;

– Unambiguous mapping of links:model edges (called as
links) are mapped to associations, formally,∀e ∈ EM :
t(e) ∈ EMM ;

– Type conformance of source objects:the direct type of
the source object of a link is a descendant of the source
of the direct type of the same link, formally,∀e ∈ EM :
srcMM (t(e))

∗
^ t(srcM (e));

– Type conformance of target objects:the direct type of
the target object of a link is a descendant of the target
of the direct type of the same link, formally,∀e ∈ EM :
trgMM (t(e))

∗
^ t(trgM (e));

– Multiplicity criterion for many-to-one associations and
attributes: each object can have at most one link of a
given direct type originating from the same many-to-
one association. Formally,∀A ∈ AssocM2O, ∀e1, e2 ∈

7



EM : srcM (e1) = a ∧ trgM (e1) = b ∧ srcM (e2) =
a ∧ trgM (e2) = c ∧ A = t(e1) = t(e2) =⇒ e1 = e2;
and

– Non-existence of parallel edges:No parallel edges are
allowed, which means that there cannot be any pair of
links of the same type leading between the same pair of
objects in a given direction. Formally,∀e1, e2 ∈ EM :
srcM (e1) = srcM (e2) ∧ trgM (e1) = srcM (e2) ∧
t(e1) = t(e2) =⇒ e1 = e2.

Small letters from the beginning of the alphabet (e.g.
c, a

e→ b) will be used for objects and links of the instance
model.

In the following, we use termsmany-to-many link (de-
noted bya

e
⇀ b), many-to-one link (denoted bya

e7→ b) and
slot (denoted again bya

e7→ b), if the direct type of the given
link is a many-to-many association, a many-to-one associa-
tion and an attribute, respectively.

Type definition can be generalized in such way that all
ancestors of a direct type are also implied.

Definition 7 Given a metamodelMM , a well-formed in-
stance modelM with a direct type functiont, the type of an
objectc (denoted byt∗(c)) consists of all ancestors oft(c).
Formally, t∗(c) =

{
C | C ∈ VMM ∧ C

∗
^ t(c)

}
.

Alternatives for handling inheritance in graph-based
models can be found in [15] (graph schema) and in [29]
(typed graphs).

3.2 Graph transformation

Graph transformation [8] provides a pattern and rule based
manipulation of graph models. Each rule application trans-
forms a graph by replacing a part of it by another graph.

Definition 8 Given a metamodelMM , a basic rulerb con-
sists of a left–hand side graphLHS and a right–hand side
graphRHS and an injective partial morphismp : LHS →
RHS whereLHS and RHS are well-formed instances of
the metamodelMM . One further criteria has to be fulfilled,
namely,

– Preservation of values:If a value appears on one side of
a basic rule, then it must also exist on the other side. For-
mally,∀x ∈ VLHS : t(x) = D =⇒ D ∈ DTypes =⇒
x ∈ VRHS∧p(x) = x, and∀x ∈ VRHS : t(x) = D =⇒
D ∈ DTypes =⇒ x ∈ VLHS ∧ p(x) = x.

Definition 9 Given a metamodelMM and a basic rulerb,
a negative application condition[13] consists of theLHS
graph ofrb, a directed graphNAC (depicted by crosses in
figures) and an injective partial morphismpNAC : LHS →
NAC. The NAC graph also has to be a well-formed in-
stance of the metamodelMM .

In the following, we use the termattribute constraint for
a slot appearing in anLHS or aNAC graph, and we restrict

ourselves to equalities in case of attribute constraints. A slot
in an RHS graph is called anattribute assignment in the
sequel.

Definition 10 Given a metamodelMM , a graph transfor-
mation ruler consists of a basic rulerb, and a set of negative
application conditions{NACi}.

Definition 11 Theprecondition of ruler (denoted byrPRE)
is theLHS graph together with the set of negative applica-
tion conditions.

The LHS graph and theith negative application condi-
tion graphNACi of a ruler are denoted byrLHS andrNACi

,
respectively. For the graph objects (nodes and edges) of rules
we always use small letters from the end of the alphabet (e.g.
x, u

z→ v).
In this paper we use notationVLHS \VRHS for the nodes

of LHS that do not have images inRHS according to mor-
phismp. The notational shorthandVLHS ∩VRHS will denote
those nodes ofLHS that are mapped by the morphismp.
Finally, VRHS \ VLHS marks those nodes ofRHS that do
not have an origin inLHS. We will use the same notation
for negative application conditions (e.g.VLHS \ VNACi

) and
edges (e.g.ELHS \ ERHS).

For the application of a rule we follow the single pushout
approach [24] with injective morphisms. However, the defi-
nitions are slightly adapted to our proof technique.

Definition 12 A matching m for a graph G in a modelM
(denoted bymG) is a type conformant total morphismmG :
G → M , which means that

– ∀x ∈ VG, ∃c ∈ VM : t(x)
∗
^ t(c) ∧mG(x) = c, and

– ∀u z→ v ∈ EG, ∃a e→ b ∈ EM : t(u)
∗
^ t(a) ∧ t(v)

∗
^

t(b) ∧ t(z) = t(e) ∧mG(u z→ v) = a
e→ b.

Definition 13 A matchingm for a rule r in a modelM (de-
noted bymr) is

– a matchingm for theLHS in modelM , provided that
– no matching exists for any NAC graph, formally,
∀NACi @m′ : NACi → M , for which∀x ∈ VLHS ∩
VNACi

: m′(x) = m(x) and ∀u z→ v ∈ ELHS ∩
ENACi : m′(u z→ v) = m(u z→ v).

Definition 14 Given a matchingm for a rule r in modelM ,
thedeletion phaseof a rule application of the ruler is exe-
cuted on a matchingm in the modelM yielding the context
modelMc, when

– we delete all objects, to which nodes appearing only in
the LHS are mapped bym, formally, VMc

= VM \
{ c | ∃x ∈ VLHS \ VRHS ∧m(x) = c }; and

– we delete all links, to which edges appearing only in the
LHS are mapped bym, formally,

EM1 = EM \
{

a
e→ b | ∃u z→ v ∈ ELHS \ ERHS∧

m(u z→ v) = a
e→ b

}
;
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– all dangling (i.e., incident) edges are deleted as well, for-
mally,

EMc = EM1 \
n

a
e→ b | ∃x ∈ VLHS \ VRHS∧

(m(x) = a ∨m(x) = b)
o

Definition 15 Given a matchingm for a rule r in modelM ,
the insertion phaseof a rule application of the ruler is exe-
cuted on a matchingm in the context modelMc yielding the
modelM ′, if

– a new objectm(x) is added to modelM for each node
of RHS that is not contained byLHS, formally,VM ′ =
VMc

∪ {m(x) | x ∈ VRHS \ VLHS }, and
– a new linkm(u z→ v) is added to modelM for each

edge ofRHS that cannot be found in theLHS graph.
Note that in this case source and target objectsm(u) and
m(v) already exist in the modelM . Formally, EM ′ =
EMc

∪
{

m(u z→ v) | u z→ v ∈ ERHS \ ELHS

}
Definition 16 Given a matchingm for a rule r in modelM ,
rule r is applied to the matchingm in the modelM yielding
the derived modelM ′, (denoted byM

r,m
=⇒ M ′) if deletion

and insertion phases are executed in this order.

When modeling complex systems, naturally, more than a
single graph transformation rule is required. A graph trans-
formation system encapsulates a set of rules, which can be
applied during the evolution of the system model.

Definition 17 A graph transformation systemSGT =
(MM,R) is a tuple that consists of the metamodelMM ,
and the set of graph transformation rulesR.

Definition 18 Given a graph transformation systemSGT =
(MM,R), a graph transformation runis a sequence of rule
applications (denoted asMI

∗=⇒ Mn), which starts from an
initial modelMI and which applies rules from the setR.

4 Database operations

In our graph transformation engine a relational DBMS is used
to represent metamodels as database schemas, to store in-
stance models and to perform modifications on such models.
Now we summarize the database terminology used through-
out this paper.

4.1 Tables and views

The most basic entities of a database are tables that may have
several columns and their role is to store data in its rows.

Definition 19 A database table withn columns (denoted
by T(n)(A1, . . . , An)) is an n-ary relation over sets
(C1 ∪ { ε }) , . . . , (Cn ∪ { ε }). T andAi denote names of the
table and of theith column, respectively. Column names def-
initely have to be unique in the scope of a single table, thus

a table cannot have columns sharing the same name. Theith
column of the table may contain values from the setCi. Unde-
fined (or null) values (denoted byε) are also allowed in any
columns. Formally,T(A1, . . . , An) ⊆ (C1 ∪ { ε }) × . . . ×
(Cn ∪ { ε }).

Definition 20 Since database tables are n-ary relations, their
elements are n-tuplesx = (x1, . . . , xn), which are called
rows in database terminology.

While the traditional relational DBMSs use multi-set se-
mantics, we can simplify to set semantics in the paper, since
uniqueness of rows can be guaranteed by the algorithm that
will be presented in Sec. 5.

Definition 21 A direct column reference for a tableT (de-
noted byT.Ai or simply byAi (if the table to which it refers
can unambiguously be determined)) identifies the column of
T that has a nameAi.

Definition 22 Given a tableT with a column calledAi, a di-
rect column reference for a rowt ∈ T (denoted byt[Ai])
identifies the element oft that can be found in the column
T.Ai.

Definition 23 A primary key constraint for columns
A1, . . . , Aj of table T(A1, . . . , An) guarantees the unique-
ness of values in the selected set of columns. Formally,∀r, s ∈
T : (r = s ⇐⇒ ∀i, 1 ≤ i ≤ j : r[Ai] = s[Ai]).

Foreign key constraints are integrity constraints provided
by the most RDBMSs. Their role is to ensure that columns
in different tables never contain inconsistent data. In our ap-
proach, these constraints are (mainly) used to guarantee that
the database representation of an edge can never appear in
the database without its source and target nodes being already
present.

Definition 24 A foreign key constraint for columnR.A re-

ferring to column S.B (denoted byR.A
FK→ S.B) declares

that all values of columnR.A should also be found in column
S.B, or formallyR.A ⊆ S.B.

Definition 25 A viewV is a derived (calculated) table with a
separate name.

Definition 26 Thedatabase schema(denoted bySDB) con-
sists of the set of tables and views appearing in the database.

4.2 Query operations

After introducing the basic entities (i.e., tables), query opera-
tions are discussed, which can be used to define derived tables
(i.e., views).

Definition 27 Given an ordered sequence of column refer-
encesT.A1, . . . ,T.Ak for T, the projection of a tableT to
columns A1, . . . , Ak (denoted byπA1,...,Ak

(T)) is a k-ary
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relation, which consists of only the enumerated columns ofT.
Its formal definition is as follows

(x1, . . . , xk) ∈ πA1,...,Ak
(T) ⇐⇒

∃(y1, . . . , yn) ∈ T :
k∧

i=1

xi = yAi
,

where
∧k

i=1 xi = yAi
denotes the conjunction (logicalAND)

of equalities.

In SQL terms projection is implemented in the select
statement as follows:

SELECT A1, . . ., Ak FROM R;

Definition 28 An atomic expressionhas a formαθβ, where
α andβ can be either a column ofT or a constantc. θ is a
comparison operator, soθ ∈ {=, <, >,≤,≥, 6= }. A formula
F is either an atom or it is constructed from atoms using the
logical and (∧), logical or (∨), and negation (¬) operators.

Definition 29 Given a formulaF , selection (denoted by
σF (T)) operates on a single tableT and collects the rows
of T whereF (y1, . . . , yn) holds. The formal definition of se-
lection is

σF (T) = { (y1, . . . , yn) | (y1, . . . , yn) ∈ T∧
F (y1, . . . , yn) = true} .

An obvious corollary is thatσF (T) ⊆ T.

Selection operation can also be expressed in SQL, using
a WHERE condition withF as its parameter.

Definition 30 The cross join of tablesR(m) and S(n) (de-
noted byR × S) is a table withm + n columns and it is the
Cartesian product of the two tables. A row is in the result ta-
ble, if its firstm values correspond to a row inR and its last
n values corresponds to a row inS. Its formal definition is:

R× S = { (x1, . . . , xm, y1, . . . , yn) |
(x1, . . . , xm) ∈ R ∧ (y1, . . . , yn) ∈ S } .

Cross join operation also exists in SQL, which can be for-
mulated as:

SELECT * FROM R,S;

Column name uniqueness has only a table scope, so name
clashes may occur in joint tables. In order to avoid this
uncomfortable consequence caused by join operations, we
should be able to differentiate between columns that origi-
nate from different base tables.

In RDBMSs name clashes are resolved by some renaming
mechanisms. The SQL notation for renaming depends on the
actual RDBMS software that is being used. In this paper, we
use the PostgreSQL notation, namely theASkeyword for this
purpose in SQL queries (e.g.T.id AS T). In our mathematical
formalism, column sets implement the table renaming func-
tionality, while column renaming is performed implicitly by
defining a new name for a column in the view definition.

Definition 31 Given two tablesR(m) andS(n), a column set
of a joint tableR× S referring to the base tableR (denoted
by Rcs) is the largest possible set of columns that originate
from tableR, which is the firstm columns ofR × S in this
case.

Definition 32 Given two tablesR andS, an indirect column
reference for the joint tableT = R×S (denoted byT.Rcs.Ai,
or simply byRcs.Ai) identifies a column ofT by selecting a
column set first and then by using the direct column reference
Ai on the column set.

An indirect column reference for a row of the joint table
can be similarly defined.

Definition 33 Given a formulaF , the inner join of tablesR

and S (denoted byR
F
on S) is a selection from the Cartesian

product filtered by formulaF . Formally,

R
F
on S = σF (R× S).

In this paper, only atoms of typeA = B (two column
names in equality relation) and the logical and operator will
be used for basic atoms and for constructing formulae, re-
spectively. Typically,A andB are taken from different tables.
It is useful from a practical point of view, if column names on
the different sides of the equality relation are from different
tables. However, the general definition does not require any
such restrictions. SQL notation of the inner join operation is
as follows.

SELECT * FROM R INNER JOIN S ON R.A=S.B;

Definition 34 Given a formulaF , theleft outer join of tables

R andS (denoted byR
F
nS) (i) contains all the rows ofR

F
on S,

(ii) additionally contains all such rows ofR, for which there
does not exist any row inS, whereF (x|y) holds, and (iii)
the latter rows are filled with undefined values in columns
originating fromS.

The formal definition of left outer join is

R
F
n S = (R

F
on S) ∪ { (x, ε, . . . , ε) |

x ∈ R ∧ @y ∈ S for whichF (x|y) = true } .

whereF (x|y) denotes whether formulaF is satisfiable if its
unbound variables are replaced by the corresponding values
of rowsx andy.

A sample query presenting the left outer join operation is

SELECT * FROM R LEFT JOIN S ON R.A=S.B;

4.3 Data manipulation operations

Finally, we define three data manipulation operations.T′ will
mark the content of tableT, after the database operation has
completed.
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Definition 35 Thedelete operation

DELETE FROM T WHERE A1 = y1 AND . . . AND Ak = yk

removes those rows of tableT, which contain valuesyi

in their column Ai, respectively. Formally,T′ = T \{
x ∈ T |

∧k
i=1 x[Ai] = yi

}
, where

∧k
i=1 x[Ai] = yi de-

notes the conjunction (logicalAND) of equalities.

Definition 36 Theupdate operation

UPDATE T SET Aj = y WHERE Ai = x

sets the value of columnAj to y in all rows of table
T(A1, . . . , An) where columnAi has valuex. Formally,T′ =
(T \Minus) ∪ Plus, where

Minus = { z ∈ T | z[Ai] = x }

and

Plus =
{
z′ | ∃z ∈ Minus, ∀k ∈ Z+

n : z′[Aj ] = y∧∧
j 6=k

z′[Ak] = z[Ak]
}
,

whereZ+
n denotes the set of positive integers up ton (i.e.,

1 ≤ k ≤ n).

Definition 37 Theinsert operation

INSERT INTO T (A1, . . . , Ak) VALUES (y1, . . . , yk)

adds an n-tupley to tableT, if y is not yet contained. The
tupley has valueyi in columnAi, respectively, and it con-
tains undefined values in all other columns. In other words,
T′ = T ∪ {y }, wherey[Ai] = yi, if 1 ≤ i ≤ k, and
y[C] = ε, if C /∈ {A1, . . . , Ak }.

Definition 38 Given a sequence of database operationsTA,
a transaction is executed on a representationM resulting

in an other representationM′ (denoted byM
TA=⇒ M′), if

either all operations ofTA or none of them are executed.

5 Graph transformation in relational databases

We present how a graph transformation engine (following the
single pushout [24] approach with injective matchings) can
be implemented using a relational database. First, we present
how an appropriate database schema can be created based
on the metamodel, and how the database representation of
the model can be generated (Sec. 5.1). Afterwards, the pat-
tern matching phase of rule application is implemented using
database queries (Sec. 5.2–5.3), finally data manipulation is
handled (in Sec. 5.4).

5.1 Mapping metamodels and models to database tables

Mapping of metamodels to database tables.Instance mod-
els representing the system under design are stored in
database tables. We use the standard bi-directional mapping
(for more details see [22, 30]) to generate the schema of the
database with BCNF property [6] from the metamodel.

– Let us first introduce a set calleduniverse(denoted byU),
which denotes the set of all identifiers that are (or will be)
ever stored in the database.

– Each datatypeD is mapped to a table with a single col-
umnDd(id). Columnid contains all the possible values
of the datatype that can be ever used. Note that this table
is introduced only for making definitions, notations and
proofs simpler and more understandable. As relational
databases support some built-in types (e.g.DECIMAL,
VARCHAR), the implementation omits these tables as the
same type restrictions can be achieved by defining appro-
priate built-in types for columns. Formally,Dd ⊆ D,
whereD denotes the built-in database type that is as-
signed to datatypeD of the metamodel.

– Each classC with k outgoing many-to-one associations

(and attributes) (C
A17→ C1, . . . , C

Ak7→ Ck) is mapped to
a table withk + 1 columnsCd(id, Ad

1, . . . , A
d
k). Col-

umn id will store the identifiers of objects of the spe-
cific class. ColumnAd

i will contain the identifiers of
target objects of such outgoing many-to-one links that

have associationC
Ai7→ Ci as their direct type. If no

such outgoing link exists in the model, the undefined
value ε is used in columnAd

i . Additionally, we should

define foreign keys∀i ∈ [1..k] : Cd.Ad
i

FK→ Cd
i .id

to respect the graph structure in the database. Formally,
Cd ⊆ U×

(
Cd

1 ∪ ε
)
× . . .×

(
Cd

k ∪ ε
)
.

– We assign a tableAd(src, trg) for each many-to-many

associationCs
A
⇀ Ct connecting classesCs andCt in

the metamodel. Columnssrc andtrg contain identifiers
of source and target objects, respectively. Foreign keys

Ad.src
FK→ Cd

s .id andAd.trg
FK→ Cd

t .id should addition-
ally be defined to respect the graph structure (preserve the
source and the target of edges) in the database. In a more
formal way,Ad ⊆ Cd

s × Cd
t .

– If a classC is inherited from a superclassD, then ta-
ble Cd should be extended by a foreign key constraint

Cd.id
FK→ Dd.id.

We introduced the superscriptd to uniformly denote
database representations of all kinds of graph transformation
related entities. For instance,Cd, rd

LHS , andcd mark the enti-
ties that represent a classC, a rule graphrLHS , and an object
c in the database, respectively. This notation is always used
as a bi-directional mapping meaning that, e.g.Cd unambigu-
ously identifies the database table that was assigned to class
C, and vice versa.

Mapping of instance models into rows.Now we define a bi-
jective mapping, which assigns an identifier to each object of
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the instance model. The image of the mappingcd will be used
as a primary key that identifies an objectc in the database.

In order to appropriately represent an object in the
database, its key has to be contained by all tables that are
assigned to an ancestor of the object’s type. Since inheritance
relation in the metamodel (i.e., the type hierarchy) poses re-
striction (in the form of foreign key constraints) on exactly
the same set of tables, additional care has to be taken when
inserting (or deleting) even a single key (identifier). The order
that handles insertion correctly is being defined now.

Definition 39 Given a metamodelMM with inheritance re-
lations that are acyclic, atopological order of a typet (de-
noted byTopologicalOrder(t)) is such a sequence of the
ancestors oft in which a classD cannot appear before an

ancestorC in the order, ifC
∗
^ D.

A natural consequence of the definition is that typet is
the last element in its topological order.

Definition 40 Given a metamodelMM with inheritance re-
lations that are acyclic, aninverse topological order of a type
t (denoted byInverseTopologicalOrder(t)) is a topologi-
cal order oft traversed in the opposite order.

A natural consequence of the definition is that typet is
the first element in its inverse topological order.

After fixing a certain topological and inverse topological
order of a type to be used in the sequel, Algorithm 1 derives
the database representation of the initial model as follows.

– We suppose that all the tables are initially empty.
– A new identifiercd is generated for each objectc of the

instance modelM . Then ancestors of the typet(c) of
the objectc are determined and furthermore they are or-
dered topologically according to the inheritance relation.
The ordering is done in a top-down manner, meaning that
the “most general” class is enumerated first. (The role
of topological ordering is to avoid the violation of for-
eign key constraints that have already been imposed on
database tables.) The final step is to insert the new identi-
fier to all the tables that have been assigned to the enumer-
ated ancestor classes. (Note that this algorithm performs
exactly the same steps in the cases, whent(c) is a class or
a datatype.)

– For each many-to-one linka
e7→ b of the instance model,

the row in the tablesrc(t(e))d, which represents the
source objecta, is updated by replacing the value in col-
umnt(e)d by the identifierbd of the target objectb.

– For each many-to-many linka
e
⇀ b of the instance model,

the identifiers of the source and target nodes (ad andbd)
are inserted to the tablet(e)d that has been assigned to
the edge type (association)t(e) of the link.

We introduce a new term that formalizes the consistent
database representation of an instance model.

Definition 41 Let a metamodelMM , and a database schema
SDB be given together with the bidirectional mappingd from
MM to the tables ofSDB .

Algorithm 1 From instance models to its database represen-
tation
1: for all c ∈ VM {For all objects in modelM} do
2: cd := GenerateNewIdentifier()
3: for all C ∈ TopologicalOrder(t(c)) do
4: INSERT INTO Cd (id) VALUES (cd) {Inserts the new iden-

tifier to all ancestor tables}
5: end for
6: end for
7: for all a

e7→ b ∈ EM {For all many-to-one links (and slots) in
modelM} do

8: UPDATE src(t(e))d SET t(e)d = bd WHERE id = ad

{Updates the value in columnt(e)d to bd in the row with
identifierad}

9: end for
10: for all a

e
⇀ b ∈ EM {For all many-to-many links in model

M} do
11: INSERT INTO t(e)d (src, trg) VALUES (ad, bd) {Inserts

identifiers of end pointsa and b into the table that corre-
sponds to many-to-many associationt(e)}

12: end for

A modelM and a database representationM are con-
sistent(M ∼= M), if

– each object (and value) of the instance model is repre-
sented in the database by one row in all the tables that
have been assigned to ancestors of the node type. More-
over, these rows must contain the identifier of the object
in their identifier columnid. Formally,∀C ∈ VMM ,∀c ∈
VM :

(
C

∗
^ t(c) ⇐⇒ ∃c ∈ Cd : c[id] = cd

)
,

– each many-to-one link (and slot) of the instance model
is represented in the database by exactly one row in
the table that corresponds to the source class of the
type of the edge. This single row must contain identi-
fiers of source objects in the identifier columnid and
target objects in the column corresponding to the di-
rect type of the edge. Formally,a

e7→ b ∈ EM ⇐⇒(
∃a ∈ src(t(e))d : a[id] = ad ∧ a[t(e)d] = bd

)
, and

– the identifiers of source and target nodes of each many-
to-many link (edge) of the instance model can be found
exactly in the table that corresponds to the type of the
edge. Formally,a

e
⇀ b ∈ EM ⇐⇒

(
ad, bd

)
∈ t(e)d.

Finally, we formulate a theorem, which states that the
database representation that has been created by the above-
mentioned initialization algorithm is consistent with the ini-
tial instance model.

Theorem 1The initial instance modelM and its database
representationM are consistent. Formally,M ∼= M.

Proof Proofs of all theorems can be found in Appendix A.

5.2 Views for rule graphs (LHS and NAC).

As it is described in Sec. 2.2, the view generated for rule
graphs (LHS andNAC) executes an inner join operation on
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tables that have been assigned to types of nodes and edges ap-
pearing in the rule graph. Then the joined table is filtered by
injectivity and edge constraints. Finally, a projection selects
only those columns of the filtered joined table that represent
node identifiers.

Formalization. In order to define pattern matching calcula-
tion for anLHS precisely, let us suppose thatnV = |VLHS |
andnE = |ELHS |. Let us define a total order on the node
and edge sets in which nodes precede edges, and letxi and
znV +j be theith node and thejth edge according to this or-
der, respectively.

Now the viewrd
LHS

(nV )
for theLHS can be calculated

as follows:

rd
LHS(ResCols) = πProjColRefs (σInj∧Edge (T))

– First theCartesian product of tablesTi is calculated.Ti

denotes the table that was assigned to the type of theith
graph object ofrLHS . Formally,T = T1×· · ·×TnV +nE

,
where

Ti =



t(xi)
d
, wheni ≤ nV andxi ∈ VLHS

src(t(zi))
d
, whennV < i ≤ nV + nE

andui
zi7→ vi ∈ ELHS

t(zi)
d
, whennV < i ≤ nV + nE

andui
zi⇀ vi ∈ ELHS

– Edge constraintsA pair of equations is defined for each
edge ofLHS. One such pair expresses that the edge is
incident to its source and its target node, respectively. (As
the database representation of many-to-many and many-
to-one links differ from each other, the corresponding
pairs of edge constraints have to be obviously different in
their structure.) The conjunction of these equations con-
stitute edge constraintsEdge. Formally,

Edgeone =
^ ˘

zcs.id = ucs.id ∧ zcs.t(z)d = vcs.id |

u
z7→ v ∈ ELHS

¯
Edgemany =

^ ˘
zcs.src = ucs.id ∧ zcs.trg = vcs.id |

u
z
⇀ v ∈ ELHS

¯
The edge constraint of the view can be expressed as

Edge = Edgeone ∧ Edgemany.
– Injectivity constraintsInj are defined for all pairs of

LHS nodes, for which the type of one node is an an-
cestor of the type of the other. The role of injectivity con-
straints is always to ensure the injective mapping of graph
objects.

Inj=
^ ˘

xcs
j .id 6= xcs

k .id |

xj , xk ∈ VLHS ∧ t(xj)
∗
^ t(xk)

¯

– Projection selects all the node identifier columns. For-
mally,

ProjColRefs = xcs
1 .id, . . . , xcs

nV
.id

– Finally, a renaming is executed. In the result view, the
name of each column corresponds to the node from which
it originates. Moreover, it stores the identifiers of those
objects that were assigned to the original rule graph node
by matchings. Note that the result view has as many
columns as many nodes its origin rule graph had.

ResCols = xd
1, . . . , x

d
nV

The view for theNACs can be calculated in exactly the
same way, but using theNAC graphs in the process. Now
we define when a matching is consistent with its database
representation.

Definition 42 Given a modelM together with a database
representationM, a matchingm for a patternrG in model
M is consistent with a rowmd of a view rd

G in database
representationM — denoted by(m|rG) ∼= (md|rd

G) — (i)
if the identifiers of all objects of instance modelM that have
been selected by matchingm for patternrG can be found as
an element in the corresponding position of rowmd, and (ii)
for each element of a rowmd in rd

G there is a node in pattern
rG that is mapped to the object that corresponds to the given
element of the selected row by the matchingm. Formally,

– there exists matchingm for patternG in modelM =⇒
∃md ∈ rd

G, ∀x ∈ VG : md[xd] = m(x)d

– ∃md ∈ rd
G, ∀x ∈ VG : md[xd] = m(x)d =⇒ there

exists matchingm for patternG in modelM .

Note that the above definition is asymmetric as pattern
matching requires matching model elements both for nodes
and edges of the pattern, while the corresponding row in the
view contains only the identifiers of matching objects.

Definition 43 Given a modelM together with a database
representationM, a patternrG is consistent with a viewrd

G

(denoted byrG
∼= rd

G) if (i) for each matchingm of a pattern
rG in instance modelM there exists a rowmd in rd

G where
matchingm is consistent with rowmd and (ii) for each row
md in rd

G there exists a matchingm of a patternrG where
matchingm is consistent with rowmd. Formally,

– ∀m : G → M, ∃md ∈ rd
G : (m|rG) ∼= (md|rd

G)
– ∀md ∈ rd

G, ∃m : G → M : (m|rG) ∼= (md|rd
G)

Finally, we formulate a theorem that states that each pos-
sible matching of aLHS (or NAC) rule graph corresponds
to exactly one row in therd

LHS (or rd
NAC) view. Furthermore,

the row in the view contains the identifiers of objects and
links that participate in the matching.

Theorem 2Let d be a bidirectional mapping betweenSGT

andSDB . If modelM is consistent with the database repre-
sentationM, then a patternrG (withoutnegative application
condition) inSGT is consistent with viewrd

G in SDB . For-
mally,M ∼= M =⇒ rG

∼= rd
G.
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5.3 Left joins for preconditions of rules.

As it has been introduced in Sec. 2.2, the calculation of a
view for the precondition of a rule proceeds as follows. Each
NAC is left outer joined to theLHS graph one by one by
using join conditions, which express that columns represent-
ing the same shared node in different rule graphs should be
equal. Additional filtering conditions require that columns of
NAC(s), which are shared with theLHS part, have to be
filled with undefined values. Then aprojectiondisplays only
those columns that originate fromLHS. Finally, a column
renaming procedure performs an identical redefinition of col-
umn names.

Formalization. We suppose that the ruler consists of a
LHS andk negative application conditions. Furthermore, the
notational shorthandnV is used for denoting the cardinality
of VLHS .

The view generated for the preconditionrPRE consists of
nV columns and it can be calculated as follows.

rd
PRE(ResCols) = πProjColRefs (σNull(Sk)) .

– Left outer join.EachrNACi
is left outer joined torLHS

one by one using a join conditionFi. Formally, Sk =

rd
LHS

F1
n rd

NAC1

F2
n . . .

Fk

n rd
NACk

– Join conditionsFi express that shared nodes cannot be
mapped to different objects in the modelM by matching
functionsm of rLHS andm′ of rNACi . Formally,

Fi =
∧ {

rcs
LHS .xd = rcs

NACi
.xd |

x ∈ VLHS ∩ VNACi
}

Note that the fact that column namexd appearing in sev-
eral tables only denotes that those columns represent the
same (shared) node of the rule graph in tablesrd

LHS and
rd
NACi

.
– Null conditionsNull express that it is not allowed to have

matchings for anyrNACi
in order to have a matching for

rPRE . Formally,

Null =
^ n

rcs
NACi

.xd = ε |

i ∈ Z+
k ∧ x ∈ VLHS ∩ VNACi

¯
.

In this expression,Z+
k denotes positive integers up tok.

– Projection selects all columns that originate from view
rd
LHS . Formally,

ProjColRefs = rcs
LHS .xd

1, . . . , r
cs
LHS .xd

nV

– Finally, identical renamingis implemented. In the result
view, the name of each column is the same as the node
of theLHS graph from which it originates. Moreover, it
stores the identifiers of those objects that were assigned
to theLHS graph node by matchings. Note that the re-
sult view has as many columns as many nodesrLHS had.
Formally,

ResCols = xd
1, . . . , x

d
nV

As a result, each matching for precondition graphrPRE

appears as exactly one row in the corresponding viewrd
PRE .

A row consists of the identifiers of objects that are selected by
the matching. In a more formal way, the following theorem
can be formulated.

Theorem 3Let us suppose that there exists a bijective map-
ping fromSGT to SDB . If modelM is consistent with the
database representationM, then a patternrPRE in SGT

thathasnegative application condition is consistent with view
rd
PRE in SDB . Formally,M ∼= M =⇒ rPRE

∼= rd
PRE .

5.4 Graph manipulation in relational databases

Operations in the graph manipulation phase can be imple-
mented by issuing several data manipulation commands in a
single transaction block as it has been explained informally
in Sec. 2.2. Note that the database updating algorithm parts
should be executed in exactly the same order as it appears in
the current section.

Deletions. For eachudel
zdel→ vdel ∈ ELHS \ ERHS ,

the matched edgem(udel)
m(zdel)→ m(vdel) has to be deleted

from the modelM . In the database the corresponding edge
deletion is performed as follows.

– For each many-to-one edgeudel
zdel7→ vdel

of the ELHS \ ERHS set (line 1), an
UPDATE(src(t(m(zdel)))d, id, m(udel)d, t(m(zdel))d, ε)
operation (line 2) is executed.

– For each many-to-many edgeudel
zdel⇀ vdel

of the ELHS \ ERHS set (line 4), a
DELETE(t(m(zdel))d, src,m(udel)d, trg, m(vdel)d)
operation (line 5) is executed.

Algorithm 2 Edge deletion

Require: ∃r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (r|rd)

1: for all udel
zdel7→ vdel ∈ ELHS \ ERHS do

2: UPDATE src(t(m(zdel)))
d

SET t(m(zdel))
d = ε WHEREid = m(udel)

d

3: end for
4: for all udel

zdel⇀ vdel ∈ ELHS \ ERHS do
5: DELETE FROMt(m(zdel))

d

WHEREsrc = m(udel)
d AND trg = m(vdel)

d

6: end for

If xdel ∈ VLHS\VRHS , then its imagem(xdel) and all the
dangling edges (i.e., all incident edges) should be removed
from the modelM . On the database level even the deletion of
a single node is performed by issuing a sequence ofDELETE

operations. One reason why a singleDELETE is insufficient
is that a node identifier can appear in several node tables be-
cause of inheritance in the metamodel. Moreover, node iden-
tifiers may appear in tables that represent edges. These latter
types of rows should also be deleted in order to ensure that
the instance model still remains a graph.
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The node deletion algorithm (see Alg. 3) proceeds as fol-
lows.

– It iterates through all the nodes ofVLHS \ VRHS (line 1).
– All types of each node belonging to the difference set are

determined, and they get ordered according to the inverse
topological order (line 2) to prevent violating foreign key
constraints during deletion. (The inverse topological or-
der is a bottom-up style enumeration of the ancestors of a
specific type.)

– All the outgoing many-to-many associationsAout that
have classC as their source node have to be determined.
(line 3–5)
◦ The appropriateDELETE command can be executed

on the tables that correspond to the above-mentioned
association. (line 4)

– All the incoming many-to-many associationsAin that
have classC as their target node have to be determined.
(line 6–8)
◦ A similar DELETE command has to be executed on

the tables that correspond to the above-mentioned as-
sociation. (line 7)

– All the incoming many-to-one associationsAin that have
classC as their target node have to be determined. (line
9–11)
◦ An UPDATE command has to be executed on the ta-

bles that correspond to the source nodes of the above-
mentioned associations. (line 10)

– Finally, the node itself can be deleted from classC (line
12), and the iteration should be continued on the ancestors
of C. Note that this step automatically deletes all outgo-
ing many-to-one links, which have been stored in table
Cd.

Algorithm 3 Node and dangling edge deletion

Require: ∃r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (r|rd)
1: for all xdel ∈ VLHS \ VRHS do
2: for all C ∈ InverseTopologicalOrder(t(m(xdel))){List

ancestors oft(m(xdel)) in a bottom-up order} do

3: for all C
Aout⇀ D1 ∈ AssocM2M{For all outgoing many-

to-many associationsAout having source classC} do
4: DELETE FROM Ad

out WHERE src = m(xdel)
d

5: end for
6: for all D2

Ain⇀ C ∈ AssocM2O{For all incoming many-
to-many associationsAin having target classC} do

7: DELETE FROM Ad
in WHERE trg = m(xdel)

d

8: end for
9: for all D3

Ain7→ C ∈ AssocM2M{For all incoming many-
to-one associationsAin having target classC} do

10: UPDATE Dd
3 SET Ad

in = ε WHERE Ad
in = m(xdel)

d

11: end for
12: DELETE FROM Cd WHERE id = m(xdel)

d {Deletes the ob-
ject itself from Cd and all outgoing many-to-one links,
which have been stored inCd}

13: end for
14: end for

Insertions. If a node xins appears only inRHS, but
not in LHS, then a new node (denoted bym(xins)) of type
t(xins) should be added to the modelM .

– The algorithm iterates over each nodexins that appears
only in RHS, but not inLHS (line 1–6),

– A new identifierm(xins)d is generated. (line 2)
– On each ancestor oft(xins) (line 3–5) anINSERT oper-

ation is executed. (line 4)

Algorithm 4 Node insertion

Require: ∃r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (r|rd)
1: for all xins ∈ VRHS \ VLHS do
2: m(xins)

d := GenerateNewIdentifier(){Generates
identifier for the new node}

3: for all C ∈ TopologicalOrder(t(xins)){Top-down traver-
sal of class hierarchy ending int(xins)} do

4: INSERT INTO Cd (id) VALUES (m(xins)
d)

5: end for
6: end for

If uins
zins→ vins ∈ ERHS \ ELHS , then a new edge

(m(uins)
m(zins)→ m(vins)) of type t(zins) should be added

to the modelM .

– For each many-to-one edgeuins
zins7→ vins that can be

found inERHS \ELHS (line 1–3), anUPDATEcommand
should be executed on the table that corresponds to the
source nodesrc(t(zins)) of the direct type of the edge.

– For each many-to-many edgeuins
zins⇀ vins of ERHS \

ELHS (line 4–6), anINSERT command should be exe-
cuted on the table that corresponds to the type of the edge
t(zins). (line 5)

Algorithm 5 Edge insertion

Require: ∃r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (r|rd)

1: for all uins
zins7→ vins ∈ ERHS \ ELHS do

2: UPDATE src(t(zins))
d

SET t(zins)
d = m(vins)

d WHEREid = m(uins)
d

3: end for
4: for all uins

zins⇀ vins ∈ ERHS \ ELHS do
5: INSERT INTO t(zins)

d ( src, trg)
VALUES (m(uins)

d, m(vins)
d)

6: end for

Now we can formulate the final statement that expresses
the correct behaviour of our algorithm. This states that if a
modelM was consistent with its database representationM,
and if we perform modifications on the model by a graph
transformation rule and we execute the corresponding up-
dating algorithm in the database, then the resulting model
M ′ and the database representationM′ will still be consis-
tent, yielding that our algorithm built on top of a relational
database correctly performs graph transformation.
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Theorem 4Let us suppose that there exists a bijective map-
ping d from SGT to SDB . If (i) modelM is consistent with
the database representationM, (ii) we have a matchingmr

for rule r, together with a corresponding rowmd in viewrd,
andm is consistent withmd, (iii) rule r is applied on match-
ing mr resulting inM ′, and (iv) Algorithms 2–5 are executed
in the database formd ∈ rd resulting in a database repre-
sentationM′, thenM ′ ∼= M′.

Formally, if

– (i) M ∼= M,
– (ii) (mr|r) ∼= (md|rd) for a pair (mr,md),
– (iii) M

r,mr=⇒ M ′,

– (iv) M
Alg. 2−5

=⇒ M′,

thenM ′ ∼= M′.

6 Implementation issues and experimental evaluation

Now implementation issues of our experimental graph trans-
formation engine are discussed.

Implementation issues.We have already implemented a
prototype version of our graph transformation engine. The
engine is written entirely in Java and it uses the standard
JDBC interface to communicate with the underlying rela-
tional database, which was MySQL version 4.1.7. and Post-
greSQL 8.0.3 in our case.

The initial phase of a standard application scenario is as
follows.

1. Our engine connects to the database and automatically
builds the database schema from the metamodel by is-
suing the appropriate data definition commands to create
tables and foreign key constraints as discussed in Sec. 5.1.

2. Then for each rule, queries and data manipulation com-
mands are automatically generated from the rule de-
scriptions for representing graph transformation activ-
ities in the pattern matching and the updating phase,
respectively. These SQL commands are stored as
PreparedStatement s as their structure does not
change during their application.

3. Finally, during a traversal of the initial instance model,
the tables are filled by using the data manipulation com-
mands.

As the current version of the engine is a prototype, the
decision on selecting a standard interface (e.g. JMI, MDR)
for representing the input (i.e., metamodels, instance models,
LHS, RHS andNAC graphs) has been postponed to a later
phase of development. As a consequence, their current repre-
sentation uses an own graph structure implemented in Java.

The initialization phase is followed by the normal oper-
ation phase that performs graph transformation. During this
phase, the user can call the following methods of the rule to
be applied.

1. Thematch() method executes the prepared queries and
it collects (and returns) the actual matching ofLHS
nodes to objects. (A repeated invocation of thematch()
method provides the next matching, if such exists.)

2. Methodmatch(Map m) allows the user to define a par-
tial matchingm, which is extended by our engine to yield
a complete matching as a result. In this case, the queries
have to be constructed at run-time to be able to express
the additional constraints posed by matchingm. (Note that
this specific operation is not discussed in details in Sec. 5,
however, its handling is obvious by adding some equa-
tions to theWHERE clause of theSELECTquery.)

3. Theupdate(Map m) method gets the actual matching
mas its parameter, and it executes the prepared data ma-
nipulation statements that reflect activities of the updating
phase of graph transformation.

4. The apply() method performs a standard rule appli-
cation step, which consists of a pattern matching phase
(i.e., a call of methodmatch() ) followed by an updat-
ing phase (i.e., execution ofupdate(m) ) on the selected
matchingm.

5. TheapplyParallel() method applies the given rule
in parallel, which means that model updates are per-
formed in a transaction block in order to avoid re-
evaluation of matchings during the transaction. Parallel
execution is implemented by iterative calls ofmatch()
andupdate(m) methods which are placed inside a sin-
gle database transaction.
The transaction handling subsystem of the underlying
database engine makes a snapshot of the possible match-
ings before any modification is performed. The itera-
tive calls ofmatch() andupdate(m) methods always
use this snapshot without recalculating the database con-
tent before the successive pattern matching, which means
that modifications cannot influence the set of matchings.
As a consequence, modifications can be applied in any
order always yielding the same derived model, which
means that the current implementation achieves real par-
allelism. As methodsmatch() andupdate(m) are ap-
plied once on each matching, termination is guaranteed
by the finiteness of the snapshot.
Note that parallel independence is not checked by our ap-
proach. If the methodapplyParallel() is executed
in a conflicting situation, the parallel rule application may
not have any serial equivalent sequential rule applica-
tions.

The implementation of the approach follows the example
presented in Sec. 2 and not the mathematical descriptions as
the set of possible values of an attribute can be constrained by
simply defining an appropriate built-in type for the column
that represents the given attribute.

Experimental results. Since graph transformation can be
used for different scenarios in several fields, a detailed quanti-
tative performance comparison of graph transformation tools
requires extensive examinations to determine, in which situ-
ation a tool has a good performance. As our aim is to present
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a new technique to implement a graph transformation engine
built on top of a relational database, the performance analysis
of GT tools is out of scope of this paper. However, a com-
prehensive study on such performance analysis can be found
in [34]. Instead of such a wide-range comparison of graph
transformation tools, we focus on such properties of our ap-
proach that are expected to have a significant impact on run-
time performance or that are specific to our database related
solution.

By using the terminology defined in [34], we selected the
object-relational mapping as a benchmark example for our
current measurements, which can be considered as an incar-
nation of a typical model transformation scenario. In order
to fix a test set, which is a complete, deterministic, but para-
metric specification, the structure of the initial model and the
transformation sequence have to be fixed up to numerical pa-
rameters. In our case, the number ofClasses in the initial
instance model (denoted byN ) is selected as the single nu-
merical parameter.

Fig. 6 Initial model of the test case for theN = 3 case

The structure of the initial model is presented in Fig. 6
for the N = 3 case. The model has a singlePackage that
containsN classes. AnAssociation and 2AssociationEnds
are added to the model for each pair ofClasses, thus initially,
we haveN(N−1)/2 Associations andN(N−1) Associatio-
nEnds. Associations are also contained by the singlePackage
as expressed by the corresponding links of typeEO. EachAs-
sociationEnd is connected to a correspondingAssociation and
Class by aCF andSFT link, respectively.

The transformation sequence consists of 4 macro steps
that are executed in this specific order. The first macro step
is a single application of theSchemaR (Fig. 3(a). This is
followed by a macro step that consistsN(N − 1)/2 appli-
cations of ruleAssociationR (Fig. 3(e)). ThenClasses are
transformed by the execution of ruleClassR (Fig. 3(b)) for
N times. Finally, a macro step of lengthN(N − 1) fol-
lows, which prescribes the application of ruleAssocEndR
(Fig. 3(f)).

This test set can be characterized by large patterns and a
large number of possible matchings for a rule. The remaining
two paradigm features (i.e., the maximum degree of nodes
(fan-out) and the length of the transformation sequence) de-
pend on parameterN .

According to our earlier analysis reported in [34], the
most significant speed-up could be observed in case of a

database related approach whenparallel rule executionis
used as an optimization strategy. As a consequence, only this
tool feature is included into our current experiments. In case
of parallel rule execution all matchings of a rule are calcu-
lated in the pattern matching phase, and then updates are
performed as a transaction block on the collected matchings
without re-evaluating valid matchings during the transaction.

We identified an additional optimization possibility that is
specific to a graph transformation approach that is based on
top of a relational database. This database specific feature is
theapplication of the built-in query optimizerof the underly-
ing RDBMS. Note that the query built for the precondition of
a graph transformation rule has a special structure, for which
the built-in query plan generator, which is optimized for han-
dling general queries, may not provide an optimal solution as
it lacks the additional information about the structure of GT
rules or models. Since some relational databases allow the
definition of such queries, for which the generated plan can
be influenced from outside the RDBMS, the examination of
this optimization possibility has been included into our mea-
surements.

As two orthogonal features have been identified, we per-
formed our measurements on all the four possible combina-
tions of these features, which means that four test cases have
been analyzed. The parameterN was fixed to 10 and 30 in
test cases where rules were executed sequentially, andN was
set to 10, 30, 50 and 100 for test cases with parallel rule ap-
plication feature having been switched on.

Two popular RDBMSs (namely MySQL version 4.1.7
and PostgreSQL version 8.0.3) took part in our measure-
ments, which were performed on a 1500 MHz Pentium ma-
chine with 768 MB RAM. A Linux kernel of version 2.6.7
served as an underlying operating system. The execution time
results are shown in Table 1.

Class Model TS
size length

match update match update match update match update
# # # msec msec msec msec msec msec msec msec
10 1342 146 24.23 2.91 29.45 3.50 27.63 4.40 53.40 4.46
30 12422 1336 543.41 2.74 549.97 2.73 127.22 6.39 679.81 5.15
10 1342 146 0.23 3.28 0.23 3.39 2.60 6.23 1.00 4.07
30 12422 1336 0.13 2.83 0.40 2.40 0.40 5.97 0.80 6.14
50 34702 3726 0.37 3.93 0.14 5.22 0.26 4.77 1.53 5.34
100 139402 14951 0.12 4.24 0.12 4.68 0.58 7.69
10 1342 146 12.20 4.82 13.60 5.18 5.57 5.60 4.29 6.72
30 12422 1336 160.20 2.94 159.41 2.96 37.20 4.90 48.62 5.62
10 1342 146 0.38 4.43 0.26 6.13 0.22 6.05 0.26 5.61
30 12422 1336 0.12 2.91 0.11 2.98 0.08 5.90 0.09 3.77
50 34702 3726 0.10 2.71 0.10 3.24 0.08 8.19 0.08 8.03
100 139402 14952 0.08 4.43 0.07 4.88 0.06 6.39
10 1342 146 13.17 2.68 14.28 3.14 7.29 5.31 5.86 5.41
30 12422 1336 249.38 3.04 247.82 2.68 32.95 5.08 32.91 5.01
10 1342 146 1.33 2.94 1.35 2.94 0.82 4.81 0.81 4.86
30 12422 1336 7.41 2.38 7.44 2.35 1.25 4.07 1.09 4.12
50 34702 3726 39.78 1.99 38.32 2.04 1.99 3.80 2.00 3.74
100 139402 14951 262.40 2.00 268.99 1.95 8.37 3.62
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Table 1 Experimental results

The head of a row (i.e., the first two columns) shows the
name of the rule and the optimization strategy settings for
the single tool feature (i.e., parallel rule execution) on which
the average is calculated. (Note that a rule is executed several
times in a run.) The third column (Class) depicts the number
of classes in the run, which is, in turn, the runtime parameter
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N for the test case. The fourth and fifth columns show the
concrete values for the model size and the transformation se-
quence length, respectively. Heads of the remaining columns
unambiguously identify the RDBMS used and the status de-
noting whether the built-in query optimizer was used (db) or
not (own). Values inmatch and update columns depict the
average times needed for a single execution of a rule in the
pattern matching and updating phase, respectively. Execution
times were measured on a microsecond scale, but a millisec-
ond scale is used in Table 1 for presentation purposes. Light
grey areas denote run-time failures due to exceeding the de-
fault memory allocation limits of the operating system.

Our initial experiments can be summarized as follows.

– In accordance with our assumptions, parallel rule execu-
tion has a dramatic effect on pattern matching. The time
increase for ruleClassR can be explained by having a
constant initialization and resource allocation time, which
is distributed over a relatively small number of rule appli-
cations.

– We have been forced into using temporary tables instead
of views in case of MySQL version 4.1.7 as it does not
support the concept of views. This obligate choice has a
strong negative impact in case of sequential rule execu-
tion on the performance of the graph transformation en-
gine as temporary tables are always stored on disks in
contrast to views (of PostgreSQL), which are calculated
in the memory in general.

– The update phase is slightly longer for PostgreSQL, but
the difference cannot be considered significant as the ex-
ecution times for both databases are of the same order of
magnitude.

– The results for query plansown being generated and in-
jected by the GT engine may deviate in both directions
from the results of plansdb that have been created by the
query optimizer. This observation indicates that it is pos-
sible to create queries with better performance than the
ones that are produced by RDBMS, which is an argument
for doing further research on generating special queries
optimized for GT rules.

– In contrast to our assumptions, MySQL does not allow
manual influence on query plan generation, which is in-
dicated by the similar values in itsdb andown columns.

7 Related work

Related work can be grouped into two main categories de-
pending on the topics that are also covered in this paper. One
category concerns the integration of graph transformation and
relational database techniques. The other category focuses on
different pattern matching techniques.

Graph transformation and databases.During the past
years, intensive research has been focusing on how graph
transformation could be adapted as a visual query and data
manipulation language for databases. The following list is a
brief selection of some main results in the field.

– GRAS [15] is a graph-oriented database management sys-
tem developed at the University of Aachen, which served
as the underlying database for the PROGRES [27] graph
transformation tool. It uses a different underlying data
model (based on attributed graphs), instead of the rela-
tional data model used in our approach.
However, a recent version of the GRAS database (namely
GRAS/GXL [5]) aims to define an interface that provides
access to RDBMSs for graph based tools (e.g., PRO-
GRES).

– Andries and Engels propose in [2] a hybrid (visual and
textual) query language together with a method, which
translates hybrid queries into traditional textual queries
by graph transformation.
In their approach, (i) the graphical part of hybrid queries
was based on an E/R diagram notation, (ii) while the tar-
get (textual) language was an object-relational extension
of SQL. (iii) For graph transformation they employed the
above-mentioned PROGRES tool. (iv) Generated SQL
queries used the concept of subqueries for expressing re-
strictions posed by the graph structure.

– In [14], Jahnke and Z̈undorf propose the use of triple
graph grammars [25] for database re-engineering of
legacy systems in their Varlet framework. In their ap-
proach, again PROGRES was used as a graph transfor-
mation engine, and it translated the database schema de-
scribed by an E/R diagram to an object-oriented concep-
tual model.

It is common in all these approaches that they inves-
tigate how graph transformation can contribute to object-
relational database design or to other database related tasks,
such as translating hybrid queries to textual ones. Another
common feature is that they all use a graph-oriented underly-
ing database (namely GRAS).

In contrast, our proposal is to examine how the mature
theory and practice of RDBMSs can potentially contribute
to the paradigm of graph transformation. In our approach, a
plain relational DBMS was used as an underlying database.

Graph pattern matching approaches.Typically, the most
critical phase of a graph transformation step is graph pattern
matching, i.e., to find a single (or all) occurrence(s) of a given
LHS graph in a host model. Pattern matching techniques of
existing graph transformation tools can be grouped into two
main categories. For further comparison of graph transforma-
tion approaches see [26].

– Algorithms based onconstraint satisfaction(such as [16]
in AGG [9], VIATRA [32]) interpret the graph elements
in the LHS pattern of a rule as variables which should be
instantiated by fulfilling the constraints imposed by the
elements of the instance model and the pattern itself. Our
implementation also falls into this category.

– Algorithms based onlocal searchesstart from matching
a single node and then extending the matching step-by-
step by neighboring nodes and edges. Several optimiza-
tions can be carried out to derive good search plans from
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graph transformation rules. The graph pattern matching
algorithm of PROGRES (with sophisticated search plans
[35]), Dörr’s approach [7], and the object-oriented solu-
tion in FUJABA [19] fall in this category.

8 Conclusion and Future Work

In the paper, we proposed a new graph transformation en-
gine based on off-the-shelf relational databases to support
model transformations between modeling languages. Com-
plex graph queries were implemented as database views de-
fined by join operations constructed according the patterns
of the graph transformation rules. Model manipulation state-
ments were translated into elementary insert, delete and up-
date database operations.

We carried out several benchmark test cases to evalu-
ate the performance of our approach based on relational
databases in itself. We assessed the overall impact of (i) paral-
lel rule applications (ii) RDBMS-specific query optimization
techniques and (iii) the choice of the underlying RDBMS.

Further benchmarks were carried out in [34] to compare
the performance of different graph transformation tools based
on fundamentally different implementation strategies. These
experiments also demonstrated that that relational databases
provide a feasible candidate as an implementation frame-
work for graph transformation engines with promising per-
formance results.

However, performance is not the only aspect one needs
to consider from a practical point of view when implement-
ing model transformations. Our relational database approach
automatically provides persistence and transaction services
without further programming effort.

Persistence is very important in the case of MDA tools
storing their UML models in relational databases as e.g.
AMEOS of Aonix [3]. This tool offers a powerful built-in
means to capture model-to-code transformations, but model-
to-model transformations (including model manipulations)
are not supported, which could be complemented by our tech-
nique to provide a general solution.

While model transformations served as the focal appli-
cation field for the current paper, another interesting future
field of our technique is EJB-based solutions. Enterprise Java
Beans (EJB) is one of the most fundamental parts of the Java
2 Enterprise Edition (J2EE) platform, which defines a lay-
ered architecture for scalable, distributed application devel-
opment. EJB contains an object-oriented data query language
(called EJB-QL), which shows close resemblance with SQL.
Therefore, business queries and operations using EJB-QL and
accessed via a Java interface could be generated automati-
cally with minor changes to our current approach. First ex-
periments in this direction have been carried out in [4].

Finally, further optimizations are required if we aim at
incremental transformations in the future. Despite the fact
that incremental updating techniques are subject to research
in many fields (e.g. database view recalculation [12], expert
systems [11]), there are still only a few RDBMSs that imple-
ment incremental view updating even with strong restrictions.

MySQL and PostgreSQL do not support this feature at all,
which was the main reason for recalculating the views from
scratch in each step.
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A Proofs of Theorems

Theorem 1The initial instance modelM and its database
representationM are consistent. Formally,M ∼= M.

Proof In order to prove the consistency ofM and M, we
have to check whether statements in its definition hold in both
directions for all classes and associations.

Nodes.=⇒ First we check the property that should be
hold for the classes. Let us select an arbitrary classC ∈
VMM .

According to the left part of Def. 41,∃c ∈ VM such that

C
∗
^ t(c). Since topological order (Def. 39) enumerates all

the ancestors oft(c), C will surely appear in the topological
order oft(c). But Alg. 1 iterates over all objects (lines 1–6),
then over all classes appearing in the topological order (lines
3–5), line 4 is also executed for the objectc, classC pair,
which means that the identifiercd generated forc in line 2
should be contained by tableCd in columnid after the termi-
nation of Alg. 1. The same statement is valid for any arbitrary
class of the metamodel.

Many-to-one edges.=⇒ Now we have a many-to-one
link a

e7→ b ∈ EM . When Alg. 1 reaches line 7, the source
object a of this link has already a database representation,
which means that there exists a rowa with a[id] = ad

in all tables that correspond to ancestors of classt(a). As

src(t(e))
∗
^ t(a) holds according to the type conformance

requirements of Def. 6 for source objects, there exists a row
a with a[id] = ad in tablesrc(t(e))d. But the update oper-
ation in line 8 of Alg. 1 is executed for our selected many-
to-one link, which setsa[t(e)d] to bd, thus we have found an
appropriate rowa required by Def. 41.

Many-to-many edges.=⇒ It can be assumed that we
have a many-to-many linka

e
⇀ b ∈ EM . Since lines 10–

12 are executed for all many-to-many links of the instance
model, it should also be executed fora

e
⇀ b as well, which

includes the insertion of tuple(ad, bd) to tablet(e)d in line
11. But we are ready now, since(ad, bd) got into the table
t(e)d as it is required in the right side of Def. 41.ut

Nodes.⇐= Let us select an arbitrary classC ∈ VMM

again. By using the statement of consistency definition
(Def. 41) for a classC, it may be assumed that∃c ∈ Cd such
thatc[id] = cd, thus there is a rowc in tableCd that contains
the valuecd in columnid. Since tableCd was empty in the
beginning, the only possibility forcd to appear in the table
is that it should be inserted during the execution of lines 1–6
of Alg. 1. But this could only happen, if objectc and class
C have been enumerated in line 1 and in line 3, respectively.
Since classC has to be in the topological order oft(c), this

means thatC
∗
^ t(c). But in this case we have found an ob-

jectc for whichC
∗
^ t(c) holds, so it fulfils the requirements

appearing in the left part of Def. 41. Since in the beginning
an arbitrary class was selected, our proof is valid for all other
classes as well.

Many-to-one edges.⇐= It can be assumed that tableT,
which corresponds to a class in the metamodel, has a row
a for which a[id] = ad anda[t(e)d] = bd hold. Since all
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tables were initially empty and only line 8 of Alg. 1 is able
to modify such tableT in columns other thanid, this part of
the algorithm has to be executed. But this can only happen, if
there exists a many-to-one linka

e7→ b in modelM .
Many-to-many edges.⇐= We know that there exists a

row e = (ad, bd) in a tablet(e)d. Since tables were empty
initially, e had to be inserted during one execution of lines
10–12 of Alg. 1, which means that there should exist a many-
to-many linka

e
⇀ b in the original instance modelM for

which the correspondingINSERT operation could be exe-
cuted in line 11. ut

Theorem 2Let d be a bidirectional mapping betweenSGT

andSDB . If modelM is consistent with the database repre-
sentationM, then a patternrG (withoutnegative application
condition) inSGT is consistent with viewrd

G in SDB . For-
mally,M ∼= M =⇒ rG

∼= rd
G.

Proof (=⇒) When proving in this direction, we may assume
that we have a matchingm for rule graphrG in modelM ,
and we want to prove that there exists a corresponding row in
view rd

G.
SinceM ≡ M we know that the instance model has a

correct representation in the database. During the proof we
first examine what the contents of database tables are, and
then we apply operations defined in the query forrd

G step-by-
step, and our aim is to prove that the result (namely therd

G

view) will contain a rowr with object identifiers defined by
matchingm.

Consequences ofM ≡ M. Having a matchingm means
that for all nodes and edges of theG graph have a type con-
form image in the modelM .

(i) Let us use the consistency definition (Def. 41) in left
to right direction for any objectm(x) ∈ VM that partici-
pates in the matchingm. We get that a corresponding row
mx with mx[id] = m(x)d should be contained not only by
table assigned to its own direct typet(m(x))d but also by
all its ancestor tables, and as suchmx ∈ t(x)d as well. (ii)
By applying the consistency definition for many-to-one link
a

e7→ b assigned to an edgeu
z7→ v of rule graphG by match-

ing m, we get that tablesrc(t(e))d has a rowmz for which
mz[id] = ad andmz[t(e)d] = bd hold. Sincet(e) = t(z),
mz appears insrc(t(z))d as well. (iii) By using the consis-
tency definition for many-to-many linka

e
⇀ b assigned to an

edgeu
z
⇀ v of rule graphG by matchingm, we get that ta-

ble t(e)d has a rowmz = (ad, bd). It is worth to emphasize
that at this point we already know the contents of all database
tables that are used in the query ofrd

G.
Construction of the joined table. Now, if we enu-

merate nodes and edges ofG in their natural order
(and also take care of nodes being ahead of edges in
the enumeration), and we select exactly the same rows
from the tables that were mentioned above, then a row
s =

(
mx1 , . . . ,mxnV

,mz1 , . . . ,mznE

)
will appear in the

joined tableT = t(x1)d × · · · × t(xnV
)d × t(z1)d × · · · ×

t(znE
)d. In the following, it is examined why rows is not fil-

tered out by injectivity and edge constraints of the selection
operation.

Checking injectivity constraints. Let us suppose by
contradiction thats has been filtered out because of violating
an injectivity constraint in the query (e.g.xcs

j .id 6= xcs
k .id

for some differentxj , xk ∈ VG wheret(xj)
∗
^ t(xk) holds).

Violating the constraint means that values should be equal in
columnsxcs

j .id andxcs
k .id for all rows the joined table con-

tains, and as such this equation must also hold for the corre-
sponding elements ofs. By taking care of construction rules
of s it yields tom(xj)d = mxj

[id] = mxk
[id] = m(xk)d.

Sinced is bijective, the equation could hold only if, the ori-
gins in modelM were the same (m(xj) = m(xk)). But in
this case we have different rule graph nodes that have been
mapped to the same object of the model bym, which is an
immediate violation of injective mapping requirements for
m. As a consequence, we may state that ifm takes care of
injective mapping, then the injectivity filtering condition will
also take care of this requirement for the database represen-
tation.

Checking edge constraints.Let us select an arbitrary
many-to-one edgeu

z7→ v ∈ EG and let us further sup-
pose that it is mapped to linka

e7→ b by matchingm. As a
consequence of the query construction algorithm, we know
thats[zcs.id] = mz[id] = ad, and similarly,s[zcs.t(z)d] =
mz[t(z)d] = bd. Sinceu andv are rule graph nodes inG,
there should exist columnss[ucs.id] ands[vcs.id] originating
from mu[id] andmv[id] with valuesad andbd, respectively.
Summarizing our experience results ins[ucs.id] = ad =
s[zcs.id] ands[vcs.id] = bd = s[zcs.t(z)d]. Recall the edge
constraint that has been defined for edgeu

z7→ v. Note that
this specific edge constraint prescribes the equation of ex-
actly the same columns, whose equation has just been proved
for s.

Let us select an arbitrary many-to-many edgeu
z
⇀ v ∈

EG and let us further suppose that it has been mapped to
a

e
⇀ b by matchingm. By using a similar reasoning, we get

equalitiess[ucs.id] = ad = s[zcs.src] ands[vcs.id] = bd =
s[zcs.trg], which means thats fulfils the edge constraints de-
fined for edgeu

z→ v.
Sinces satisfies all the injectivity and edge constraints we

may state thats ∈ σInj∧Edge(T).
Performing projection. By using the definition of pro-

jection to columns being defined in Sec. 5.2, we getr =(
m(x1)d, . . . ,m(xnV

)d
)
∈ rd

G, which means that we have
found a row inrd

G that contains all the identifiers of nodes
that have been selected by the specific matching.ut

Proof (⇐=) When proving in this direction, we may assume
that tablerd

G havingnV columns contains a rowr, for which
∀x ∈ VG : r[xd] = cd. Now our goal is to define an appro-
priate matchingm for rule rG in modelM .

In this case the idea of the proof goes rather in a backward
direction. We already now that the joined tableS contains a
row s from whichr could originate during its calculation, but
since the joined table has more columns than the result table,
some values in rows are unknown initially. By using edge
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constraints, we are able to guess some further values, result-
ing in a rows that has more values filled in thanr. Then we
define the matchingm based on the values in rows, and fi-
nally we prove that this matching must also satisfy injectivity
constraints together with its original database representation.

Following the projection and selection operations in
backward direction. Now we have a rowr in rd

G. If an op-
eration (such as projection and selection) cannot increase the
number of rows, then it is sure that if we have a row in the
result table, then this row should have an origin in the ta-
ble, on which operations were performed. Formally, it is ob-
vious (by using the definitions of projection and selection)
that∃s ∈ σInj∧Edge(S) ⊆ S = T1 × · · · × TnV +nE

, where
Ti is the table that corresponds to theith graph object (node
or edge) of the patternG as defined by the query construc-
tion algorithm. By investigating the columns to which pro-
jection was applied, we can guess what the values of rows
should be before the projection was performed. More pre-
cisely,∀x ∈ VG : cd = r[xd] = s[xcs.id].

Matching definition for rule graph nodes. Let us exam-
ine an arbitrary nodex of patternG. According to the defi-
nition of S, the column setxcs that corresponds tox should
originate from tablet(x)d that was assigned to classt(x). As
a consequence, there should exist a rowtx in tablet(x)d such
thats[xcs.id] = tx[id] = cd. Since our tables contain unique
identifiers of objects in columnsid, there should exist a single
objectc whose identifier iscd. Now the consistency definition
(Def. 41) can be used in right to left direction, which means
that the direct typet(c) of objectc is a descendant oft(x),
so it is allowed to map nodex to objectc by matchingm.
So we can define the matchingm for rule graph nodex as
m(x) := c.

Matching definition for many-to-one rule graph edges.
Let us select an arbitrary many-to-one edgeu

z7→ v from
patternG. Recall how edge constraints look like for this
specific edge. These constraints arezcs.id = ucs.id, and
zcs.t(z)d = vcs.id. Note that sinceu andv are nodes in pat-
tern G, s[ucs.id] ands[vcs.id] have some valuesad andbd

being identifiers of objectsa andb, respectively, as we deter-

mined earlier. Furthermore, we know thatt(u)
∗
^ t(a) and

t(v)
∗
^ t(b). Edge constraints must hold for all rows ofS and

as suchs should also satisfy them, resulting ins[zcs.id] =
s[ucs.id] = ad ands[zcs.t(z)d] = s[vcs.id] = bd. We know
that the column setzcs of S should originate from the table
src(t(z))d that was assigned to classsrc(t(z)). Sinces is in
the joined tableS, src(t(z))d should have a rowtz such that
tz[id] = s[zcs.id] = ad andtz[t(z)d] = s[zcs.t(z)d] = bd.
The consistency definition (Def. 41) for many-to-one links
in right to left direction states that∃a e7→ b ∈ EM such
that t(z) = t(e). But this edge is an appropriate candidate
to which pattern edgeu

z7→ v can be mapped by matchingm.

Matching definition for many-to-many rule graph
edges.Let us select an arbitrary many-to-many edgeu

z
⇀ v

from patternG. Edge constraints for this specific edge are
zcs.src = ucs.id andzcs.trg = vcs.id. Sinceu andv are
nodes of patternG, s[ucs.id] and s[vcs.id] have some val-

uesad andbd that are identifiers of objectsa andb, respec-

tively. Moreover, we know thatt(u)
∗
^ t(a) andt(v)

∗
^ t(b).

Edge constraints must be satisfied by rows, which means that
s[zcs.src] = s[ucs.id] = ad ands[zcs.trg] = s[vcs.id] = bd

should hold. We know that column setzcs of S derives from
tablet(z)d, which has been created for associationt(z). Since
s is in tableS, there should exist a rowtz in tablet(z)d such
that tz[src] = s[zcs.src] = ad andtz[trg] = s[zcs.trg] =
bd. The consistency definition (Def. 41) for many-to-many
links in right to left direction states that there exists a link
a

e
⇀ b ∈ EM such thatt(z) = t(e). Now we may define

matchingm for edgeu
z
⇀ v asm(u z

⇀ v) := a
e
⇀ b.

Injectivity constraint check. Finally, we check that the
matchingm we have just defined cannot map different nodes
(edges) to the same object (link).

Let us suppose by contradiction, that there are two differ-

ent nodesxj , xk in G such thatt(xj)
∗
^ t(xk) andm maps

them to the same objectc. Formally,m(xj) = m(xk) = c.
Sinced is bijective, these objects have the same identifier
in the database, formallym(xj)d = m(xk)d = cd. We
have some further knowledge about this identifier, namely
s[xcs

j .id] = cd = s[xcs
k .id]. Recall that injectivity constraints

prescribed inequality for exactly the same columns, namely
xcs

j .id 6= xcs
k .id. Injectivity constraints should be satisfied by

row s in order to be the origin of rowr, which is a contradic-
tion, since we found equality of elements in the mentioned
columns in case of rows.

Different pattern edges cannot be mapped to the same
link, as in such a situation the pattern could not be a well-
formed instance of the metamodel, since it would violate the
non-existence of parallel edges.ut

Corollary 1 If we calculate the left outer join of tablesR(m)

and S(n), then for each rowr of R there exists a rowt in
the joined table that contains rowr in its first m columns.

Formally, if T = R
F
n S then ∀r ∈ R,∃t ∈ T such that

t[i] = r[i] for all the columns ofr.

In the following, notationSi will be used forrd
LHS

F1
n

rd
NAC1

F2
n . . .

Fi

n rd
NACi

. With this notationSk corresponds to
the table that has to be calculated for the viewrd

PRE .

Theorem 3Let us suppose that there exists a bijective map-
ping fromSGT to SDB . If modelM is consistent with the
database representationM, then a patternrPRE in SGT

thathasnegative application condition is consistent with view
rd
PRE in SDB . Formally,M ∼= M =⇒ rPRE

∼= rd
PRE .

Proof (=⇒) The basic idea is to prove thatSk should contain
a rows that has defined values only in columns that originate
from view rd

LHS , and all other values are undefined. This is
done in an iterative process starting fromS0, which corre-
sponds to viewrd

LHS . In each step in order to generateSi,
rd
NACi

is attached toSi−1 by a left outer join operation us-
ing the formulaeFi for join condition. Finally, we show that
the projection and selection performed in the last phases of
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rd
PRE calculation does not filter out rows from the set of

results, yielding to an appropriate rowr in view rd
PRE .

Since m is a matching for patternrPRE , it is also a
matching forrLHS . By using Theorem 2, this means that
∃t0 ∈ rd

LHS = S0.
Lemma. Let us suppose by induction that

we have already calculatedti−1 ∈ Si−1 and
ti−1 = (t0[xd

1], . . . , t0[xd
nV

], ε, . . . , ε). In other words
the firstnV columns ofti−1 contains the same values ast0,
while all the remaining values are undefined. We want to
prove thatti has the similar structure and thatti can also be
found in tableSi.

Proof of the lemma.Let us calculateSi. By using Corol-
lary 1, it can be stated that columns ofti that originate from
Si−1 have the same values asti−1 independently of the fact
whether the join conditionFi holds or not. The only thing to
be checked is whether the lastnVi

columns ofti (originating
from rd

NACi
) are filled with undefined values.

Let us suppose by contradiction that there existsri in
view rd

NACi
that can be attached toti−1 by left outer join

in such way thatFi holds. By using Theorem 2 there should
exist a matchingm′ for the graph objects ofrNACi

.
If x is an arbitrary shared node (thusx ∈ (VLHS ∩

VNACi)), then because of the construction algorithm of views
rd
LHS andrd

NACi
, each of them has a column that represents

this objectx. But we assumed thatFi is satisfied, which
means thatrcs

LHS .xd = rcs
NACi

.xd should hold for all the
rows, and as such forti as well. By summarizing our knowl-
edge aboutti we get

t0[xd] = ti−1[rcs
LHS .xd] = ti[rcs

LHS .xd] =

ti[rcs
NACi

.xd] = ri[xd].

t0[xd] andri[xd] define the identifiers of objects to which
x was mapped bym andm′, respectively. Thus,m(x)d =
t0[xd] = ri[xd] = m′(x)d. Sinced is bijective,m(x) =
m′(x), which means that all the shared nodes ofLHS and
NACi had to be mapped onto the same object.

At this point we know that all the shared nodes ofLHS
andNACi are mapped to the same objects both bym and
m′, respectively. If the definition of matching for rulerPRE

is recalled from Sec. 5.3, then it can be seen thatm cannot be
a matching, sincem andm′ together violate the second part
of the definition, which prohibits the existence of a matching
for NACi. So our initial assumption to have a rowri that
satisfiesFi together withti−1 failed. But if there are no such
row ri for which Fi could hold, then only the second part of
the left join definition could have been used when calculat-
ing ti, which means that the columns ofti originating from
rd
NACi

must be padded with undefined values. At this point
we may conclude that we have found a rowti in view Si that
has the prescribed structure.

Consequence of the lemma.By using our lemmak
times, we get that there is a rowtk ∈ Sk, which contains
defined values in columns originating from viewrd

LHS and
all the other values are undefined.

The effect of selection.Since null conditionsNull of the
selection operation pose restrictions only on columns origi-
nating from negative application condition viewsrd

NACi
, tk

surely satisfies all of them, since it contains undefined values
in all such columns.

The effect of projection.The last operation is the projec-
tion, which selects the firstnV columns oftk resulting in a
row r ∈ rd

PRE . Note that the firstnV columns oftk are the
ones that contain identifiers originating fromrd

LHS , and they
are never undefined. It can be now concluded that a rowr is
found in the view that representsrPRE . ut

Proof (⇐=) We know that there exists a rowr in view rd
PRE

and an appropriate matchingm for rule rPRE is to be found.
Proof by contradiction I. Let us suppose by contradic-

tion that we haver ∈ rd
PRE , but no matchingm exists for the

LHS rule graph (rLHS).
If no matchings exist forrLHS , then Theorem 2 yields

to an emptyrd
LHS view. But note that this view appears at

the leftmost position of left join operations in the definition
of rd

PRE , which means thatrd
PRE should also be empty. But

this contradicts to our initial assumption, sincer ∈ rd
PRE .

Proof by contradiction II. Let us suppose by contradic-
tion that we haver ∈ rd

PRE , and a matchingm for rLHS , and
there is also a matchingm′ for a rule graphrNACi

such that
each node and edge are mapped to the same object and link,
respectively, by bothm andm′.

By using Theorem 2 for matchingsm andm′, we get that
s0 ∈ S0 = rd

LHS andri ∈ rd
NACi

. Let us suppose that rowsk
of view Sk was calculated by usings0 andri. For the sake of
simplicity, let us focus only on columns ofsk that originate
from rd

NACi
. Our statement is that this portion ofsk agrees

with ri.
The portion ofsk originating fromrd

NACi
is introduced

whenSi is calculated, and afterwards it is left unchanged by
left outer join operations. But when theith left outer join is
executed its join conditionFi holds, and in this case inner
join has to be executed resulting in our statement mentioned
above. The only thing to be checked is whyFi is satisfied.
Note thatFi is defined on the shared nodes ofrLHS and
rNACi . Each shared nodex is mapped to the same object
c by bothm andm′, sosi−1[rcs

LHS .xd] = cd = ri[xd], which
means that we have found correspondence in all columns of
si−1 andri for which correspondence was prescribed byFi.

Note that null conditions require the image of shared
nodes ofrLHS and rNACi to be undefined in columns of
sk that originate fromrNACi , which is immediately violated,
since they got their values just in the previous paragraph. So
sk violates null conditions of the selection operation, and as
a consequence it should be filtered out inhibitingsk to be the
origin of r. It means that under the supposed circumstances
no origin ofr exists in viewσNull(Sk), which is a contradic-
tion.

Final consequence.At this point we know that there
should exist a matchingm for rLHS , but no matchingm′ for
anyrNACi

. Recalling the definition of matching ofrPRE , we
get that the above-mentioned situation is the one that fulfils
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all the requirements, so matchingm is also good forrPRE .
ut

Theorem 4Let us suppose that there exists a bijective map-
ping d from SGT to SDB . If (i) modelM is consistent with
the database representationM, (ii) we have a matchingmr

for rule r, together with a corresponding rowmd in viewrd,
andm is consistent withmd, (iii) rule r is applied on match-
ing mr resulting inM ′, and (iv) Algorithms 2–5 are executed
in the database formd ∈ rd resulting in a database repre-
sentationM′, thenM ′ ∼= M′.

Formally, if

– (i) M ∼= M,
– (ii) (mr|r) ∼= (md|rd) for a pair (mr,md),
– (iii) M

r,mr=⇒ M ′,

– (iv) M
Alg. 2−5

=⇒ M′,

thenM ′ ∼= M′.

Proof The model manipulation phase of a rule application
can be divided into a deletion and an insertion step. Our
first goal is to prove that context modelMc is consistent
with database representationMc resulted by the execution
of Alg. 2 and 3. Then the consistency of derived modelM ′

and database representationM′ is proven based on the con-
sistency ofMc andMc. Since skeletons of the proofs are ex-
actly the same in these steps, we only present the technique
for the more difficult (i.e., the deletion) step.

The proof of the deletion step is bidirectional and it has 7
cases in each direction, which use exactly the same technique
and which have to be checked one by one. The 7 cases corre-
spond to the deletion of (i) objects; (ii) many-to-one and (iii)
many-to-many dangling links leaving an object to be deleted;
(iv) many-to-one and (v) many-to-many dangling links lead-
ing into an object to be deleted; and (vi) many-to-one and
(vii) many-to-many links selected by matchingm for an edge
z ∈ ELHS \ ERHS . We may identify a well-defined part of
Alg. 2 and 3 for each case where the specific case is handled
by these algorithms in on the database. Table 2 presents the
cases and their corresponding handling routines.

CaseObject/link Reason of selectionDB operation

(i) object selected bym line 12 of Alg. 3
(ii) many-to-one link dangling/outgoing line 12 of Alg. 3
(iii) many-to-many linkdangling/outgoing line 4 of Alg. 3
(iv) many-to-one link dangling/incoming line 10 of Alg. 3
(v) many-to-many linkdangling/incoming line 7 of Alg. 3
(vi) many-to-one link selected bym line 2 of Alg. 2
(vii) many-to-many linkselected bym line 5 of Alg. 2

Table 2 Different cases and corresponding lines of Alg. 2 and 3
participating in the proof

In order to avoid tedious and lengthy proofs of the same
style, we only sketch the skeleton of the proof technique and
we present a complete proof for only one case (i.e., for the

deletion of nodes) in both directions. The proofs for the other
cases can be derived from the presented complete proof by
replacing object and lines of Algorithms 2 and 3 by a corre-
sponding kind of link and lines of the same algorithms, re-
spectively, as defined in Table 2 for the given case.

Proof (=⇒) The skeleton of the proof is as follows. We se-
lect an object (a link) from context modelMc. Since only
deletions are performed on modelM , M should also contain
the same object (link). Then the consistency ofM andM is
used in left to right direction to ensure that the object (link)
is represented in the database (i.e., inM). Finally, it is ex-
amined why the database representation of the object (link)
cannot be deleted fromM during the execution of Alg. 2 and
3.

Nodes.Let us select an objectc from context modelMc

and an arbitrary classC ∈ VMM such thatC
∗
^ t(c). Object

c has to appear in modelM as only deletions were allowed in
this step. By using the consistency of modelM and database
representationM (Def. 41) for objects in left to right direc-
tion, we get that∃c ∈ Cd such thatc[id] = cd.

The only position where either Alg. 2 or Alg. 3 can delete
row c from Cd is line 12 of Alg. 3. (All other database op-
erations either delete rows from tables assigned to many-to-
many associations, or updates tables assigned to classes in
columns not equal toid.) Line 12 of Alg. 3 would delete row
c, if ∃x ∈ VLHS \ VRHS such thatm(x) = c, but the ex-
istence of such nodex would yield to the deletion of object
c from modelM , which is impossible as context modelMc

still containsc. The result of this reasoning is thatc could not
be deleted by Alg. 2 and 3, which means thatc ∈ Cd also in
databaseMc. ut

Proof (⇐=) Now the proof proceeds in the other direction.
We have a row in a table ofMc, which was assigned to a class
(many-to-many association). Since Alg. 2 and 3 can delete
rows or set undefined values to columns with name not equal
to id, src, trg, it is sure that a row with the same value in
columnid (in columnssrc andtrg) can be found in the same
table ofM. In this case, we may apply the consistency ofM
andM for objects or many-to-one links (for many-to-many
links) in right to left direction, resulting in a corresponding
object or many-to-one link (many-to-many link) in modelM .
Finally, it is investigated why this object or many-to-one link
(many-to-many link) is not deleted in the deletion phase of
GT rule application.

Nodes.We have a rowc′ ∈ Cd′ with c′[id] = cd where
Cd′ represents a table that was assigned to a classC ∈ VMM

and that has a content according to the database representa-
tion Mc. Since only row deletions and updates in columns
with name not equal toid could be performed on tableCd

during the execution of Alg. 2 and 3, it is sure that∃c ∈ Cd

such thatc[id] = c′[id] = cd. By using the consistency of
modelM and database representationM (Def. 41) for ob-
jects in right to left direction, we get that∃c ∈ VM such that

C
∗
^ t(c).
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Let us suppose by contradiction that there is a nodex ∈
VLHS \ VRHS such thatm(x) = c andt(x)

∗
^ t(c). Since

C
∗
^ t(m(x)) = t(c), classC should have been enumerated

in the inverse topological order oft(m(x)), and as a conse-
quence, line 12 of Alg. 3 should have been executed on table
Cd with conditionid = cd, which means thatc should have
been removed, asc[id] = cd. This is a contradiction, sincec
remained in tableCd in database contentMc.

So@x ∈ VLHS \ VRHS that is mapped toc by m. But in
this casec is not removed from modelM , thus,c remains in
context modelMc. ut
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