
M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 84 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Based Optimization of Enterprise Application
and Service Deployment

András Balogh, Dániel Varró, and András Pataricza

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Budapest, Magyar Tudósok körútja 2
{abalogh, varro, pataric}@mit.bme.hu

http://www.inf.mit.bme.hu/FTSRG

Abstract. Enterprise services play an important role in these days’ business en-
vironments. With the growing incidence of web services, the web service-based
collaboration of systems is spreading. This leads to a large number of depend-
ing services. As these components form critical business applications, the avail-
ability and performance aspects of them are critical. We introduce in this paper
a method that collects the QoS requirements of the high level services and
propagates them through the dependencies to lower levels. Our tools also gen-
erate an optimal deployment configuration to a definite set of server nodes that
guarantees the required availability and performance characteristics for all
services.

1 Introduction

Nowadays, enterprises heavily depend on the quality of the service (QoS) they pro-
vide. In many cases, this quality of service primarily depends on the quality of their
business IT systems. Such applications not only have to deliver a service with correct
functionality (e.g. a bank transaction withdraws the right amount of money from our
bank account), but these services has to meet several non-functional requirements
(e.g. bank customers would expect the system to be available when they access it).

While non-functional requirements (such as performance, reliability, and availabil-
ity) play an important role in business IT systems, QoS issues are neglected when
designing such systems. Typically, the QoS assessment of a system is deferred until
the deployment phase, which is frequently too late: if the deployed system does not
meet its QoS requirements, it will cause an immense increase in the cost of
the project.

To avoid these risks, the fulfillment of these QoS attributes has to be validated
throughout the entire lifecycle of the project. Due to the increasing success of the
Model Driven Architecture (MDA) [1], such a validation preferably starts from a
model-based estimation / prediction of the QoS parameters carried out in a very early
phase of the design.

Enterprise systems consist of many heterogeneous hardware and software compo-
nents that form a logically and physically distributed infrastructure. The prediction

 Model-Based Optimization of Enterprise Application and Service Deployment 85

and calculation of the QoS attributes in such an environment is difficult, because of
the high number of dependencies between software components.

In the current paper, we present a method for model-level calculation of availabil-
ity and capacity requirements for enterprise services and application components. Our
method takes the QoS attributes of the highest level services that are directly accessed
by users and propagates these values to the lower levels. Using a hardware catalog,
we also synthesize the optimal hardware architecture for running the services while
maintaining the required availability and performance characteristics.

We illustrate our results with an example on Java 2 Enterprise Edition (J2EE) plat-
form that is widely used and supported by software vendors like IBM, SUN, BEA,
and many more.

2 Standards and Technologies

The development methodology of enterprise systems usually integrates several tech-
nologies and standards in the fields of design and implementation. We introduce the
most commonly used of these in the following sections.

2.1 Model Driven Architecture

MDA[1] (Model-Driven Architecture) is an emerging concept of the OMG (Object
Management Group). Its main goal is to provide a framework for model-based system
development, even in rapidly changing hardware and software environments. In par-
ticular, MDA addresses the challenges of todays highly networked, constantly chang-
ing system environments by providing an architecture that assures cross-platform
interoperability, portability and reusability of software components.

MDA recommends starting the design with a platform-independent model (PIM) of
the application. This focuses on the functional requirements, business logic, and the
logical data structures, independent from any implementation technology e.g. J2EE.
The suggested modeling language is UML 2 [2].

The next (automated) step is transforming the model to one or more PSMs (Plat-
form Specific Model), which now contains information about the running middleware
and other platform components.

The final step of the MDA design flow is the code generation phase. This is a
largely automated process, which yields the source code of the application. The de-
velopers can extend the generated code with manually written parts.

The main advantage of MDA is the portability of software components between
platforms, without manually recoding the application. This reduces the costs and
time-to-market of the new versions, while reducing the probability of errors and po-
tential security leaks caused by manual coding.

2.2 Enterprise Services

In addition to delivery the proper functionality, enterprises today need to extend their
reach, reduce their costs, and lower the response times of their services to customers,
employees, and suppliers.

86 A. Balogh, D. Varró, and A. Pataricza

Typically, applications that provide these services must be integrated with the ex-
isting enterprise information systems (EISs) with new business functions that deliver
services to a broad range of partners. The services should be highly available, to meet
the needs of today’s global business environment; secure, to protect the privacy of the
business partners and the integrity of the enterprise; reliable and scalable, to ensure
that business transactions are accurately and promptly processed, and business growth
can be followed by the software and hardware infrastructure.

The second important aspect of services besides the functional requirements is the
quality-of-service (QoS) attributes of the services. Services are commercial in most
cases, so the availability and proper performance of the services is an important point.
The guaranteed QoS attributes are defined in a Service Level Agreement (SLA). This
acts as a contract between the service provider and the user.

In most cases, enterprise systems are implemented as distributed multi-tier applica-
tions. The middle tier functions are grouped into web services and can be automati-
cally discovered and used by partners, allowing the automatic intra-enterprise collabo-
ration. This leads to a distributed, multi-organization service oriented architecture
(SOA) [3] that involves many partners and service endpoints.

Several standards have been developed to ease the integration of basic services into
complex processes. One of the most commonly used ones is the Business Process
Execution Language (BPEL) [4] that is supported by the greatest software and middle
tier vendors. BPEL can be used with services running on various platforms, such as
Microsoft .NET and J2EE.

2.3 Design for High Availability in J2EE

We introduce the basic architecture and common redundancy patterns of the Java 2
Enterprise Edition (J2EE) platform. This introduction is based on the 1.4 version of
the J2EE specification [5].

2.3.1 J2EE Architecture
The basic architecture of J2EE is built up from at least three tiers.

The first tier is responsible for data persistence. This layer consists of so called en-
tity beans. Beans represent the smallest independent software components in Java. An
entity bean maps to a row in a relational database table. The entity beans and their
EJB container manage the creation, storage, and retrieval of application data. The
architecture also defines transaction support for bean methods.

The second tier of the architecture is responsible for the implementation of busi-
ness logic. This tier is made up from session beans that collect the business methods
required by the application logic and may also contain message-driven beans that
support asynchronous communication with reliable messages.

The third (presentation) layer of the architecture is responsible for the implementa-
tion of application user interfaces. Web clients use the HTTP interface of the server to
access the web pages that are dynamically created by the servlet container of the J2EE
server.

The J2EE architecture defines the infrastructural services that are needed to exe-
cute enterprise applications therefore the developers do not need to create custom
interfaces to naming, authentication, message queuing, and database servers.

 Model-Based Optimization of Enterprise Application and Service Deployment 87

2.3.2 Redundancy Patterns
There are several patterns for creating redundant J2EE server architecture for high
availability and load balancing solutions. The basic concept behind these techniques
is clustering. A cluster is a set of computers which all run the same J2EE application
and communicate with each other to determine the set of currently active nodes and to
synchronize their internal state.

The incoming requests are distributed between the running nodes to provide load
balancing. If a node goes down, the other nodes take over its workload. This results in
higher availability, because the failure of a single node does not directly affect the
availability of the services and applications.

2.3.3 Existing Development Environments
Today’s development environments (such as IBM Websphere Studio and Microsoft
Visual Studio .NET) focus on modeling the functionality of applications, and the
generation of the source code skeletons for software components. They do not sup-
port, however, the definition and evaluation of QoS attributes such as availability and
performance. The evaluation of the non-functional parameters is deferred to the test-
ing phase of the development.

The capacity design of the hardware infrastructure environment that runs the appli-
cation is not supported by any automated tools; therefore designers have to manually
create the deployment plan and tune the hardware infrastructure to achieve the needed
availability and performance levels.

2.4 Fault Model

Enterprise application server nodes consist of several layers of hardware and software
components. We assume that errors can only occur in lower levels (illustrated by
Figure 1), either in the hardware or in the operating system level. Errors of the higher
level components can be easily and rapidly detected and repaired by the local man-
agement agent that can restart the failed component.

Hardware and operating system errors cannot be repaired as fast as the higher level
errors. This results in a much longer downtime. Even if the severity of the hardware
errors is lower than the software errors, the overall service downtime is much higher
because of the longer repair time.

Fig. 1. Application server components

88 A. Balogh, D. Varró, and A. Pataricza

Our fault model is applicable if we can suppose that the higher level software com-
ponents are stable enough not to cause a significant downtime. Commercial J2EE
application server software and database management software meet this requirement.
As the application modules are typically generated by automatic code generators from
a higher level model, such as BPEL (Business Process Execution Language), we
suppose that the application components cause no errors.

The fault model introduced here has several limitations. If running on a depend-
able, highly redundant hardware, where hardware component and operating system
errors do not cause system restart (for example, in a massively parallel system) higher
level software errors will be dominant in service downtime.

As in most cases business software components are running on entry or medium
level servers where the fault hypothesis is satisfied.

3 Modeling Technique

We introduce the modeling techniques used for representing the functional and QoS
aspects of the systems in the following sections. We used the standard UML Profile
for J2EE for functional modeling with several extensions to allow the representation
of the QoS aspects of system components.

We illustrate the explained concepts with a running example.

3.1 Running Example

Our example is a simple order processing and stock management system. It receives
orders from customers, prints invoices and generates backorders to part suppliers if
necessary. It consists of several services.

The partner service is responsible for storing and retrieving the partner data, such
as name, address, payment and discount options. The product service offers access to
the various data of the companies’ products such as name, price, and description.

The stock service manages the administration of the product’s stocking and move-
ments. It relies on the product service. The actual stock state can be queried for a
specific product, and goods movements can be administered. The accounting service
is used to create invoices for customers who order goods from the company. This
service relies on the partner service. The ordering service that relies on the product,
the stock and the accounting services manages the incoming product orders.

The backorder service is responsible for the creation of backorders to parts suppli-
ers if a specific product runs out of stock. This service uses the product, stock and
partner services. It is automatically invoked periodically and checks the stock state.

Each service bean uses an entity bean to get access to business entity data. For ex-
ample, the ordering service uses the OrderBean to access the data of living orders in
the system. All entity beans use the same database to store their data.

The services are grouped into three EJB containers and a database module.
Figure 2 illustrates the deployment units of the system.

 Model-Based Optimization of Enterprise Application and Service Deployment 89

«EJBContainer»
ordering

+ AccountingService

+ InvoiceBean

+ InvoiceItem

+ OrderBean

+ OrderingService

«EJBContainer»
partner

+ BackOrderService

+ PartnerBean

+ PartnerService

«EJBContainer»
product

+ ProductBean

+ ProductService

+ StockBean

+ StockService

database

«depends»

«depends»

«depends»

«depends»

«depends»

«depends»

Fig. 2. Deployment units in the system

3.2 Modeling J2EE Components

Modeling J2EE components in UML is standardized by several UML Profiles, for
example the UML Profile for EJB [6]. The standard UML classes are extended with
stereotypes and tagged values to provide information about the J2EE-specific proper-
ties of the system components.

The EJB profile defines several stereotypes for marking the various types of Enter-
prise Java Beans. The “SessionBean” stereotypes marks the session beans, and the
“EntityBean” marks the entity beans. Several other types (for example, message
driven beans) and subtypes (container, or bean managed persistence) of components
can be defined, but these are only necessary for the code generation, not for the QoS
analysis.

3.3 Modeling Non-functional Requirements

3.3.1 Representing QoS Attributes in UML Models
Non-functional requirements are out of the scope of the EJB profile described earlier;
therefore these properties have to be modeled in another way. Modeling non-
functional aspects of systems is described in UML Profile for Schedulability, Per-
formance, and Time [7], and in UML Profile for Quality of Service and Fault Toler-
ance [8]. These profiles define elements for the specification of non-functional (for
example, performance and availability) parameters of system components.

In our architecture, the service access points are either web services (represented
by stateless session beans) or session beans (either stateful or stateless). This means
that the QoS attributes are defined for these components, and has to be automatically
propagated to lower level ones. Other session beans and entity beans work at lower
levels to provide basic services for the others and provide access to databases.

• The QoS attributes that are used in our work are the expected availability and the
peak workload of services.

These two attributes are specified as tagged values (QOS_Availability and
QOS_Workload, respectively) for the components. Our optimization method also
needs the component dependencies to be defined, with the help of standard UML

90 A. Balogh, D. Varró, and A. Pataricza

dependencies. This way, our transformation can compute the needed QOS aspects of
the lower level components.

As the unit of deployment in J2EE is the EJB module, which is a set of Enterprise
Java Beans, we need to propagate the QoS attributes of beans to these modules. EJB
modules are represented by UML packages in our models. A package gets the maxi-
mal availability requirement and the sum of the peak workload of its components.
These values are used in the further calculations.

3.3.2 QoS Attributes in the Example
Not all services in our example have QoS attributes, because the source model con-
tains only those attributes that are defined for the external available, complex ser-
vices. The attributes for the other services will be automatically calculated by the
optimizer.

As mentioned before, the QoS attributes are propagated to the EJB modules. The
results are illustrated in Table 1 (N/A means that no explicit constraints are defined).

Table 1. Calculated QoS parameters for the EJB modules

Module name Availability Workload
Product 99.9 200
Partner 99.9 22
Ordering 99.99 50
Database n/a n/a

3.4 Modeling Available Physical Components

In our scenario physical system components are server computers that can run J2EE
applications. UML Components represent the server types in our model.

3.4.1 Performance Metrics
There are several industrial standard benchmarks that measure the overall perform-
ance of a server system with all of its hardware and software components. One of
these is the TPC-W benchmark developed by the Transaction Processing Performance
Council. This test measures the performance of a web-based transactional system. As
enterprise services are web services, this benchmark can be used as a reference for the
overall system performance.

The model of the server components has a tagged value called “performance”,
which holds the number of the served requests determined by the TPC-W benchmark.
This will be used to determine the capacity (maximum workload) of the server.

3.4.2 Component Costs
The server components also have an associated cost value that indicates the TCO
(Total Cost of Ownership) value of the server, including the cost of all hardware
(processor, memory, disks, UPS, and so on) and software (OS, application server,
management tools) components, and all associated services (extended warranty, on-
site service) for a given period of time.

 Model-Based Optimization of Enterprise Application and Service Deployment 91

The time factor depends on the desired lifetime of the service or application that is
served. In case of applications with long life cycle, the basis of the calculation could
be the expended life cycle of the server farm. The typical length of the lifecycle of
servers is around 2-3 years. To make the cost of the possible server choices compara-
ble, the time factor should be universal for the whole model.

The components have a tagged value called “TCO” to hold the Total Cost of Own-
ership value.

3.4.3 Component Availability
The third QoS value that is attached to servers is the availability. This attribute de-
pends on the hardware, software, and also on the value added services offered to the
specific server. Hardware suppliers specify the MTBF (Mean Time Between Failures)
value for computer hardware. This can act as a starting point of availability calcula-
tion. As mentioned before, we handle only hardware and operating system errors, as
the potential downtime they can cause is much higher than is case of higher level
software component errors (application server or database server components), be-
cause the software components can be efficiently monitored and restarted in case of
errors.

If we want to achieve high availability, software errors play also an important role,
as the 30-60 sec typical restarting time of a J2EE application server can also affect the
availability of a critical service. In this case, the system adds extra redundancy to
avoid the unavailability of service.

Availability (A) can be calculated from the MTBF value and the MTR (Mean Time
to Repair) by the following formula (1).

A = MTBF/(MTBF/MTR) . (1)

Availability is also attached to the server components by a corresponding tagged
value.

3.4.4 Component Cardinality
The last attribute of physical system components that is required for our analysis is
the maximum number of available instances of a given server type. This is important
if we want to deploy the needed services on an existing infrastructure. The number of
the server instances is stored in tagged value “max_instances”.

3.4.5 Physical Components in the Sample System
In this sample system we have three different server machines that can be used for
serving the application. The performance and availability data of the servers are ap-
proximate values as we do not know the exact service contracts data and resale prices
for these machines.

The first configuration is an entry level Intel x32 server that can process 90 re-
quests per minutes and has an availability of 97%. Its TCO is 2500 Euros.

The second configuration is a more robust Intel x32 server that can process 170 re-
quests per minutes and has an availability of 98%. Its TCO is 3700 Euros.

The third configuration is a robust multi processor PowerPC server with redundant
components and can process 1400 requests per minutes and has an availability of
99.9%. Its TCO is 18000 Euros.

92 A. Balogh, D. Varró, and A. Pataricza

4 The Optimization Workflow

We introduce our code generation and architecture synthesis methods in this section.
We have been used our general-purpose model transformation system for the imple-
mentation of the required transformations and code generation scripts.

4.1 Architecture Synthesis

The process synthesis consists of two main steps (see Fig. 3). The first step is the
transformation of the UML model of the system to a special format that can be im-
ported to the optimization program. The program that is used for the synthesis is the
second step of our workflow. The result of the process is the recommended architec-
ture of the system. In parallel with the optimization, the source code of the system
components can also be generated with commercial code generators or the VIATRA 2
framework.

UML Model

Source code

QoS data of service
and servers Optimized

deployment structure

optimization
model

transformation

code generation

Fig . 3. Model processing workflow

4.1.1 Model Transformation
The first basic step of the transformation is the propagation of the bean QoS values to
the EJB modules as described earlier. Each EJB module inherits the maximum avail-
ability and aggregates the performance value of its beans.

The second step is to propagate the bean dependencies to the modules. An EJB
module depends on an other one if at least one of its beans depends on one of the
beans in the other container.

After all QoS attributes and dependencies have been propagated to EJB containers,
the transformation program generates the input file for the optimization program by
the traversal of the UML package structure. It prints out the defined capacity and
availability requirements and dependencies for every UML package that is marked
with the stereotype EJBModule.

4.1.2 Deployment Optimization
We developed a simple command-line application that computes the optimal deploy-
ment pattern for the input system. It takes the input file with the system services and
available hardware components and generates the optimal system configuration as
output.

The arrangement of EJB modules between servers is a special optimization task.
There are finite number of resources and finite number of software modules that must

 Model-Based Optimization of Enterprise Application and Service Deployment 93

be related to each other. There are also several special constraints that describe the
QoS constraints and dependencies of the components.

The goal of the optimization process is to minimize the overall system cost while
providing the necessary system availability and capacity.

4.2 Implementation Technology

We have developed VIATRA [9], our general model transformation system, in order
to support the dynamic, multilevel metamodeling features of VPM [10], and ge-
neric/meta transformations [11]. The main intended usage of our framework is de-
pendability evaluation and optimization of business process workflow models and
UML models.
A source user model (which is a structured textual representation such as an XMI
description of a UML model exported from a CASE tool) is imported into the VPM
modelspace. Transformation specifications can be constructed by combining graph
transformation [12] and abstract state machine [13] rules. These rules can be created
within the framework or in a UML tool using a special profile (and, in the future,
using the QVT standard).

The rules are then executed on the source VPM model by the generic (higher-
order) VIATRA rule interpreter in order to yield the target (VPM) model. Finally, the
target model can be serialized into an appropriate textual representation specific to
back-end tools.

The VIATRA 2.0 framework is implemented as a set of plugins for the Eclipse
framework [14] that is a widely used open-source system development and modeling
framework.

5 The Mathematical Model for Optimization

Optimization, in general, means a method that searches a point in the problem space
that satisfies the defined constraints, and the objective function has a maximum (or
minimum) value. Several special optimization problem classes have been defined, for
example the traveling agent problem.

5.1 Our Optimization Problem

5.1.1 Initial Steps
The first step of the optimization process is the calculation of the aggregate workload
of software modules. The developer only has to specify the direct workload for a
specific container (the actual requests from clients) but the capacity needs to depend
also on the indirect workload (calls from depending services). In our simple model,
we suppose that a dependency represents a single call to the target service.

The calculation of aggregate workload is a recursive expression that calculates the
workload as a sum of the direct workload and the additional workload of depending
services (expression (1)). The depends(i) is a set of services that depend on service i.

94 A. Balogh, D. Varró, and A. Pataricza

∑
∈

+=
)i(dependsj

)j(Workload)i(need_Capacity)i(Workload .
(1)

5.1.2 The Workload Constraint
The workload constraint means that the aggregated capacity of all deployed software
modules on a specific machine must not exceed the capacity of the machine. A further
tuning possibility is to define a saturation factor (SF) that specifies the maximum rate
of workload on machines. Expression (2) specifies the workload constraint.

∑
∈

≥∗∈∀
)(

)()(:
mdeployeds

sWorkloadSFmCapacityHWm
(2)

5.1.3 The Availability Constraint
The availability constraint specifies that the actual availability of each service must
be at least as high as the required availability. The actual availability of a service
can be calculated from the availability of the hardware that runs the service
and the availability of depending services. Expression (3) specifies the availability
constraint.

A service is available if the hardware it is running on is available and all the re-
quired services of the specific service are available. We suppose that if a hardware
unit is running then all services deployed on it are running as well. We also suppose
that all hardware nodes are independent, which means that all of them have their
own uninterruptible power supply, disk subsystem, and so on.

)i(A)i(A:servicesiAA

)availableHW(P)availableHW(P

)availableservicesneededAllavailableHW(P)i(A

requiredact
serviceneededrunning)j(HW,j

)j(HW)i(HW

servicerequiredrunningHWall

act

≥∈∀∗=

=∗=

=∧=

∏

∏

∀

(3)

5.1.4 The Objective Function
The objective function of the optimization process is the overall cost of the system, as
described by expression (4). The total cost of the system is the aggregation of the
product of the cost and the actual number of the defined hardware components.

∑
∈

∗=
HWm

System musednumbermTCOTCO)(_)(. (4)

5.1.5 The Solutions
A solution of the problem is a mapping between computers and software modules that
satisfies all constraints. Solutions are computed by a backtrack algorithm that tries to
build the mapping step-by-step while maintaining the constraints. The optimal solu-
tion is the solution that has the lowest overall cost.

 Model-Based Optimization of Enterprise Application and Service Deployment 95

5.1.6 Additional Steps
If the required availability or performance levels cannot be reached using the basic
hardware types defined in the model, the optimizer applies the J2EE redundancy pat-
terns for the design. This means that the program creates clusters from the basic hard-
ware nodes to raise the availability and performance of a server. If the availability
requirements do not allow single point of failures in the system, the developer can
specify that only redundant arrays of machines can be used during architecture syn-
thesis. This means that the program creates clusters even if the performance and avail-
ability of a single computer could satisfy the needs of the services.

The capacity of a cluster consisting of several nodes can be lower than the sum of
the capacity of the nodes. That is because various synchronization messages and algo-
rithms that are running on nodes. The typical value of performance loss depends
highly on the actual server software, but it can be measured or taken from server
benchmarks. Our tool supports the definition of a “performance loss percent” that is
subtracted from the sum performance of the cluster nodes. If the services only use
stateless session beans and entity beans, this loss is negligible in most cases.

More components (EJB containers) can be deployed on the same server if the
hardware has enough capacity for running all the services. This ensures that the work-
load of the servers will be nearly equal, and the hardware costs will be minimized.

The optimization program calculates the optimal configuration of services and
hardware nodes using the explained equations and constraints. The output of the pro-
gram is a list of services and the associated hardware nodes. This defines the sug-
gested configuration of the system.

5.2 Optimization Results of the Example

The optimal configuration with the original QoS attributes is to create a four node
cluster from the medium level server. This configuration has an availability of more
than 99.99999% and a total cost of 14800 Euros. All services are deployed to this
single cluster.

If we suppose that the business grows very rapidly and the workload grows to the
tens of the original. The optimal architecture in this case is to create a two node clus-
ter form the third server that runs the database, and the partner modules, an other two
node cluster from the third type that runs the product module, and a three node cluster
formed from mid range servers that runs the ordering module.

The total cost of the system is 83100 Euros. This is 5.6 times more than the origi-
nal, but offers 10 times more performance. This shows that a few of large but expen-
sive servers can be used for serving heavy workloads, but for small workloads clus-
ters built up from cheap servers can be used successfully.

6 Related Work

The model-driven analysis of QoS attributes of component-based systems under de-
sign has recently become a hot research topic. Primary focus is usually put on per-
formance issues such as, e.g., in [17,18,19]. The early assessment of traditional de-

96 A. Balogh, D. Varró, and A. Pataricza

pendability attributes is carried out in [20,21]. In most of these papers, a traditional
transformation-based approach is followed where the QoS parameters are generated
from a higher-level initial model (semi-)automatically. In contrast to these ap-
proaches, we focused on availability and cost parameters of deployment.

In [22], the authors define a method for dependability analysis of systems based on
UML models. The basic idea behind that method is the transforming UML models to
Timed Petri Nets (TPN). The starting point of the method is the architectural level
model, so it works on a static infrastructure and does not modify the systems
architecture.

In [23], the authors define a method for dependability analysis of systems based on
UML models. The basic idea behind that method is the transforming UML models to
Timed Petri Nets (TPN). The starting point of the method is the architectural level
model, so it works on a static infrastructure and does not modify the systems
architecture.

Probably, the most closely related work is that work of Bastaricca et al. [15], where
the authors describe two deployment optimization methods that can be used in a dis-
tributed component-based environment. Both algorithms do the optimization of the
deployment, but they work on a static infrastructure that cannot be modified. This
way, they cannot be used for infrastructure planning, only for deployment on existing
hardware environments. Moreover, the algorithms do not optimize for TCO, but for
network utilization.

7 Conclusion and Future Work

Enterprise services play an important role in today’s business environment. Besides
the functional requirements the quality-of-service attributes are also more and more
important. The most commonly used development environments do not support the
handling of QoS attributes like availability and performance requirements of services.

In the paper, we introduced an approach to generate the optimal deployment plan
for a set of enterprise services based on the UML model of the system and a hardware
specification catalog. Our method ensures that the deployed system will keeps the
availability and capacity constraints defined by the system model.

The current method is applicable only in design time, thus further improvements
has to be made to extend its capabilities to allow the runtime reconfiguration of the
systems. This will enable the automatic tuning of system availability and performance
reflecting to the changes in the environment (the growth of the workload or the per-
manent fault of a server node).

To achieve this functionality, our optimizer need to be connected to a systems
management software such as IBM Tivoli [16] that collects runtime information about
the usage statistics and state of services and hardware nodes.

Further research has to be done for discovering methods to a finer granularity
workload prediction that relies on the behavioral model of the services (for example it
discovers that a service uses another several times). Other methods has to be devel-

 Model-Based Optimization of Enterprise Application and Service Deployment 97

oped to predict the relative weights of service executions to distinguish more complex
services as they cause higher workload as simple services.

References

1. The Object Management Group, MDA Information Portal, http://www.omg.org/mda
2. The Object Management Group, UML2 Superstructure specification, August 2003

http://www.omg.org/
3. Steve Graham et al, Building Web Services with Java: Making sense of XML, SOAP,

WSDL and UDDI, 2002.
4. Microsoft, IBM, BEA, et al. Business Process Execution Language for Web Services

Specification. 5 May 2004.
5. Sun Microsystem. Java 2 Platform Enterprise Edition Specification v1.4. November 2003.

http://java.sun.com/j2ee
6. Jim Conallen, Building Web Applications with UML, Addison-Wesley, 1999.
7. The Object Management Group, UML Profile for Schedulability, Performance, and Time

Specification, January 2005.
8. The Object Management Group, UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Metrics, September 2004.
9. D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual

languages. Science of Computer Programming, vol. 44(2):pp. 205-227, 2002.
10. D. Varró, A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework

for describing mathematical domains and UML, Journal of Software and Systems Model-
ing vol. 2 pp. 187-210, 2003.

11. D. Varró, A. Pataricza. Generic and Meta-Transformations for Model Transformation
Engeering. In Proc. UML 2004: 7Ih international Conference on the Unified Modeling
Language

12. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.). Handbook on Graph Gram-
mars and Computing by Graph Transformation, vol. 2: Applications, Languages and
Tools. World Scientific, 1999.

13. E. Börger and R. Stark. Abstract State Machines. A method for High-Level System Design
and Analysis. Springer, 2003.

14. The Eclipse Framework. http://www.eclipse.org
15. M. Bastarrica et al. Two Optimization Techniques for Component-Based Systems Deploy-

ment, Proceedings of the Thirteenth International Conference on Software Engineering and
Knowledge Engineering, pp. 153-162, 2001

16. IBM Corporation, IBM Tivoli Software Homepage, http://www.ibm.com/software/tivoli/
17. S. Chen, I. Gorton, A. Liu, and Y. Liu, Performance Prediction of COTS Component-

based Enterprise Applications, CBSE5, Orlando, Florida, USA, May 2002.
18. A. Bertolino, R. Mirandola Software performance engineering of component-based sys-

tems. Proceedings of the Fourth Int. Workshop on Software and Performance, pp. 238 –
242, 2004.

19. J. Skene, W. Emmerich. Model Driven Performance Analysis of Enterprise Information
Systems, In Proc. of the Int. Workshop on Test and Analysis of Component Based Sys-
tems, Warsaw, Poland, April, ENTCS vol. 82, num. 6, 2003.

20. V. Grassi. Architecture-based Dependability Prediction for Service-oriented Computing.
In Proc. of WADS 2004,

98 A. Balogh, D. Varró, and A. Pataricza

21. V. Cortellessa, H. Singh, B. Cukic: Early reliability assessment of UML based software
models. Proceedings of the Third Int. workshop on Software and Performance, pp. 302 –
309, ACM Press, 2002.

22. István Majzik, András Pataricza, and Andrea Bondavalli. Stochastic dependability analysis
of system architecture based on UML models. In Rogerio de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting Dependable Systems, volume LNCS-2677,
pages 219-244. Springer, 2003.

23. István Majzik, András Pataricza, and Andrea Bondavalli. Stochastic dependability analysis
of system architecture based on UML models. In Rogerio de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting Dependable Systems, volume LNCS-2677,
pages 219-244. Springer, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

