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Abstract. Following TER nets, an approach to the modelling of time in high-level Petri nets, we
propose a model of time within (attributed) graph transformation systems where logical clocks are
represented as distinguished node attributes. Corresponding axioms for the time model in TER nets
are generalised to graph transformation systems and semantic variations are discussed. They are
summarised by a general theorem ensuring the consistency of temporal order and casual dependen-
cies.

The resulting notions oftyped graph transformation with timespecialise the algebraic double-
pushout (DPO) approach to typed graph transformation. In particular, the concurrency theory of
the DPO approach can be used in the transfer of the basic theory of TER nets.

1. Introduction

Recently, a number of authors have advocated the use of graph transformation as a semantic framework
for visual modelling techniques both in computer science and engineering (see, e.g., the contributions
in [4, 3]). In many such techniques, the modelling of time plays a relevant role. In particular, techniques
for embedded and safety critical systems make heavy use of concepts like timeouts, timing constraints,
delays, etc., and correctness with respect to these issues is critical to the successful operation of these sys-
tems. At the same time, those are exactly the systems where, due to the high penalty of failures, formally
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based modelling and verification techniques are most successful. Therefore, neglecting the time aspect
in the semantics of visual modelling techniques, we disregard one of the crucial aspects of modelling.

So far, the theory of graph transformation provides no support for the modelling of time in a way
which would allow forquantifiedstatements like “this action takes 200ms of time” or “this message will
only be accepted within the next three seconds”, etc. However, from a more abstract,qualitativepoint
of view we can speak of temporal and causal ordering of actions thus abstracting from actual clock and
timeout values. Particularly relevant in this context is the theory of concurrency of graph transformation,
see [13, 6, 1] or [2] for a recent survey.

It is the objective of this paper to propose a quantitative model of time within graph transformation
which builds on this more abstract qualitative model. Therefore, we will not add time concepts on top of
an existing graph transformation approach, but we show how, in particular, typed graph transformation
systems in the double-pushout (DPO) approach [6] can be extendedfrom withinwith a notion of time.
This allows both the straightforward transfer of theoretical results and the reuse of existing tools.

The idea is to use dedicated attributes of vertices as time stamps representing the ”‘age”’ of these
vertices, and to update these time stamps whenever a rule is applied. To verify the consistency of this
encoding with the causal dependencies between transformation steps, we prove the existence of a glob-
ally time-ordered sequence of transformations in every shift-equivalence class of sequences satisfying
some local axioms. In [11,?] we have outlined our approach, proposing several alternative definitions
and discussing their consequences with respect to the existence of a globally time-ordered sequences.

The following section outlines our general approach of the problem, which is motivated by a cor-
responding development in Petri nets, briefly to be reviewed in Section 3. Section 4 develops the basic
formalism of typed attributed graph transformation while graph transformation with time is introduced
and investigated in Section 5 while Section 7 concludes the paper.

2. From Nets to Graph Transformation, with Time

When trying to incorporate time concepts into graph transformation, it is inspiring to study the repre-
sentation of time in Petri nets. Nets are formally and conceptually close to graph transformation systems
which allows for the transfer of concepts and solutions. This has already happened for relevant parts of
the concurrency theory of nets which, as mentioned above, provides a qualitative model of time based on
the causal ordering of actions.

In particular, we will follow the approach of time ER nets [10]. These are simple high-level nets
which introduce time as a distinguished data type. Then, time values can be associated with individ-
ual tokens, read and manipulated like other token attributes when firing transitions. In order to ensure
meaningful behaviour (like preventing time from going backwards) constraints are imposed which can
be checked for a given net. The advantage of this approach with respect to our aims is the fact that time
is modelled within the formalism rather than adding it on top as a new formal concept.

Based on the correspondence of Petri nets and (typed) graph transformation, which regards Petri
nets as rewriting systems on multi-sets of vertices [5], we can derive a model of time within typed
graph transformation systems with attributes. The correspondence is visualised in Table 1. Besides (low-
level) place-transition nets and typed graph transformation systems, it relates (high-level) environment-
relationship nets to typed graph transformation with attributes. This relationship, which has first been
observed in the case of algebraic high-level nets [7] and attributed graph transformation [16] in [17],
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Table 1. Corresponding Petri net and graph transformation variants

Petri nets graph transformation systems

low-level PT nets typed graph transformation (TGT)

high-level ER nets typed graph transformation with attributes (TGTA)

with time TER nets typed graph transformation with time (TGTT)

shall enable us to transfer the modelling of time in time ER nets to typed graph transformation with
attributes.

Next, we review time environment-relationship (TER) nets [10] in order to prepare for the transfer to
typed graph transformation systems in Section 4.

3. Modelling Time in Petri Nets

There are many proposals for adding time to Petri nets. In this paper we concentrate on one of them,
time ER nets [10], which is chosen for its general approach of considering time as a token attribute with
particular behaviour, rather than as an entirely new concept. As a consequence, time ER nets are a special
case of ER nets.

3.1. ER nets

ER (environment-relationship) nets are high-level Petri nets (with the usual net topology) where tokens
are environments, i.e., partial functionse : ID → V associating attribute values from a given setV to
attribute identifiers from a given setID. A markingm is a multi-set of environments (tokens).

To each transitiont of the net with pre-domainp1 . . . pn and post-domainp′1 . . . p
′
m, an actionα(t) ∈

Envn × Envm is associated. The projection ofα(t) to the pre-domain represents the firing condition,
i.e., a predicate on the tokens in the given marking which controls the enabledness of the transition. If the
transition is enabled, i.e., in the given markingm there exist tokens satisfying the predicate, the action
relation determines possible successor markings.

Formally, a transitiont is enabled in a markingm if there exists a tuple〈pre, post〉 ∈ α(t) such that
pre ≤ m (in the sense of multiset inclusion). Fixing this tuple, the successor markingm′ is computed, as
usual, bym′ = (m−pre)+post, and this firing step is denoted bym[t(pre, post)〉m′. A firing sequence
of s = m0[t1(pre1, post1)〉 . . . [tk−1(prek−1, postk−1)〉mk is just a sequence of firing steps adjacent to
each other.

3.2. Time ER nets

Time is integrated into ER nets by means of a special attribute, calledchronos, representing the time of
creation of the token as a time stamp. Constraints on the time stamps of both (i) given tokens and (ii)
tokens that are produced can be specified by the action relation associated to transitions. To provide a
meaningful model of time, action relations have to satisfy the following axioms with respect tochronos
values [10].
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Axiom 1: Local monotonicity For any firing, the time stamps of tokens produced by the firing can not
be smaller than time stamps of tokens removed by the firing.

Axiom 2: Uniform time stamps For any firingm[t(pre, post)〉m′ all time stamps of tokens inpost
have the same value, called thetime of the firing.

Axiom 3: Firing sequence monotonicity For any firing sequences, firing times should be monotoni-
cally nondecreasing with respect to their occurrence ins.

The first two axioms can be checked locally based on the action relationships of transitions. For
the third axiom, it is shown in [10] that every sequences where all steps satisfy Axioms 1 and 2 is
permutation equivalentto a sequences′ where also Axiom 3 is valid. Here, permutation equivalence is
the equivalence on firing sequences induced by swapping independent steps. Thus, any firing sequence
can be viewed as denoting a representative, which satisfies Axiom 3.

It shall be observed that TER nets are a proper subset of ER nets, i.e., the formalism is not extended
but specialised. Next, we use the correspondence between graph transformation and Petri nets to transfer
this approach of adding time to typed graph transformation systems.

4. Typed Attributed Graph Transformation

Typed graph transformation systems provide a rich theory of concurrency generalising that of Petri
nets [2]. In order to represent time as an attribute value, a notion of typed graph transformation with
attributes is required. In this section, we propose an integration of the two concepts (types and attributes)
which presents attribute values as vertices and attributes as edges.

The two basic ingredients are graphs, representing dynamic object structures, and algebras repre-
senting pre-defined abstract data types. Attributed graphs occur at two levels: the type level (modelling a
schema or class diagram) and the instance level (modelling an individual system snapshot).

Attributed graphs. By agraphwe mean a directed unlabelled graphG = 〈GV , GE , srcG, tarG〉 with
a set of verticesGV , a set of edgesGE , and functionssrcG : GE → GV and tarG : GE → GV
associating to each edge its source and target vertex. A graph homomorphismf : G → H is a pair of
functions〈fV : GV → HV , fE : GE → HE〉 preserving source and target.

To speak about algebras, throughout the paper we assume a many-sorted signatureΣ = 〈S,OP 〉
consisting of a set of sort symbolss ∈ S and a family of sets of operation symbolsop : s1 . . . sn → s ∈
OP indexed by their arities. An many sortedalgebraA = ((As)s∈S , (opA)op∈OP ) consists of a family
of carrier sets, indexed by sort symbols, and an operationopA : As1 × · · · ×Asn → s for each operation
symbolop : s1 . . . sn → s ∈ OP . A Σ-homomorphismfA : A1 → A2 is given as a family of mappings
fA = (fs)s∈S compatible with the operation ofA1 andA2.

Graphs and graph morphisms can be seen as algebras and homomorphisms for the signature with
sortsE, V and operation symbolssrc, tar : E → V .

Definition 4.1. (attributed graphs and morphisms)
An attributed graph (overΣ) is a pair〈G,A〉 of a graphG and aΣ-algebraA such that|A| ⊆ GV , where
|A| =

⋃
s∈S

As is the disjoint union of the carrier sets ofA, and such that∀e ∈ GE . src(e) 6∈ |A|.
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An attributed graph morphismf : 〈G1, A1〉 → 〈G2, A2〉 is a pair of aΣ-homomorphismfA =
(fs)s∈S : A1 → A2 and a graph homomorphismfG = 〈fV , fE〉 : G1 → G2 such that

• |fA| ⊆ fV , where|fA| =
⋃
s∈S

fs, and

• fA(A1) andfV (G2V ) are disjoint.

Attributed graphs and graph morphisms form thecategory ofΣ-attributed graphs. Often, we will fix
the data algebraA in advance—in this case we also speak of a graphs and graph morphisms attributed
overA.

Summarizing, data values are represented as vertices of graphs, henceforth calleddata verticesd ∈
|A| to distinguish them fromobject verticesv ∈ GV \ |A|. Object vertices are linked to data vertices by
attributes, i.e., edgesa ∈ GE with src(a) = v andtar(a) = d. Edges between object vertices are called
links. We assume that data vertices have no outgoing edges, and that morphisms of attributed graphs
preserve this separation.

Compared with other notions of attributed graphs, like [16], where special attribute carriers are used
to relate graph elements and external data values, in our presentation this connection is established by
edges within the graph. This simplifies the presentation because attributed graphs can be regarded as a
special case of ordinary graphs, subject to the above mentioned constraints. Notice, however, that this
limits us to attributed vertices while in [16] both vertices and edges may carry attributes.

Typed graphs. The concept of typed graphs [6] captures the well-known dichotomy between classes
and objects, or between database schema and instance, in the case of graphs. Below, it is extended to
attributed graphs.

Definition 4.2. (typed attributed graphs)
An attributed type graphoverΣ is an attributed graph〈TG,Z〉 overΣ whereZ is the finalΣ-algebra
havingZs = {s} for all s ∈ S.

An attributed instance graph〈AG, ag〉 overATG is an attributed graphAG over the same signature
equipped with an attributed graph morphismag : AG→ ATG. A morphism of typed attributed graphs
h : 〈AG1, ag1〉 → 〈AG2, ag2〉 is a morphism of attributed graphs which preserves the typing, that is,
ag2 ◦ h = ag1.

Thus, elements ofZ represent the sorts of the signature which are included inTG as types for data
vertices. In general, vertices and edges ofTG represent vertex and edge types, while attributes inTG
are, in fact, attribute declarations.

Instance graphs will be usually infinite, e.g., if the data typeIlN of natural numbers is present, eachn ∈
IlN will be a separate vertex. However, since the data type part will be kept constant during transformation,
there is no need to represent this infinite set of vertices as part of the current state. The examples shown
contain only those data vertices that are connected to some object vertex.

Example 4.1. (attributed type and instance graphs)
The concepts introduced in this paper shall be illustrated by a small example of a communication system,
which modelsprocessessendingmessagesto each other viachannels. A message is sent via anoutput
channel of a process, whichstoresthe message until received via theinput channel of the other process.
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Fig 1: 
Attributed Type and Instance Graphs

Notation

Formal representation

Proc
chronos : time

Msg
chronos : time

Ch

p1:Proc
chronos = 10

m:Msg
chronos = 10c:Ch

p2:Proc
chronos = 3

typing

Proc

MsgCh

time

chronos

chronos
p1:Proc

m:Msgc:Ch

10:time
chronos

chronos

p1:Proc 3:time

chronos

typing

Figure 1. Attributed type and instance graphs: formal presentation (top) and UML-like notation (bottom)

The structure of our communication system is captured by the type graph in the top left of Fig. 1,
while a sample system containing only two processesp1 andp2 with a single channelc between them is
depicted on the right. We use UML notation for class and object diagrams.

The formal representation based on Definition 4.2 is shown in the bottom of Figure 1. Throughout
the paper we fix a signatureTime = 〈S,OP 〉 with sortsS = {time, bool} and operation symbolsOP
given by0 :→ time; + : time time → time; ≥: time time → bool; max : time time → time.
This signature is interpreted by the algebrasIlN of natural numbers andIlB of booleans, with the obvious
interpretation of≥ andmax.

All standard notions, like rule, occurrence, transformation, transformation sequence, etc. can be
transfered to the case with attributes. Also, relevant results like the Local Church-Rosser Theorem, the
Parallelism theorem, and the corresponding equivalence on transformation sequences based on shifting
or swapping independent transformations are easily transferred.

It is worth noticing that, in contrast to ER nets, attributes in our model are typed, that is, different
types of nodes may have different selections of attributes. However, like in ER nets, our data types have
no syntax: We only consider sets of values without explicit algebraic structure given by operations. As
a consequence, we do not explicitly represent variables within rules and variable assignments as part
of occurrences: A rule containing variables for attribute calculation and constraints is considered as a
syntactic abbreviation for the (possibly infinite) set of its instances where the variables and expressions
are replaced by concrete values.

Graph transformation. In the original formulation of the DPO approach [8] the notion of transfor-
mation is formalized by two gluing diagrams, called pushouts. Here we have chosen a set-theoretic
presentation.

Definition 4.3. (graph transformation and graph transformation system)
Given aΣ-algebraT , agraph transformation rulep = L → R overT consists of a pair of graphsL,R
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receive

p2:Proc
chronos=tp

m:Msg
chronos=tm

c:Ch

p2:Proc
chronos=t

c:Ch

p1:Proc
chronos=t

c:Ch

p1:Proc
chronos=t+1

m:Msg
chronos=t+1c:Ch

send

t = max{tp,tm}+2

Fig. 2: Attributed typed GT rules

Figure 2. Attributed typed graph transformation rules

attributed overT such that their unionL ∪R is a well-definedT -attributed graph.
Given graphsG andH, attributed over aΣ algebraA such thatG∪H is a well-definedA-attributed

graph, agraph transformationG
p(o)
=⇒ H is given by an attributed typed graph morphismo : L ∪ R →

G ∪H, calledoccurrence, such that

• o(L) ⊆ G ando(R) ⊆ H (the left-hand side of the rule is embedded into the pre-state and the
right-hand side into the post-state) and

• o(L \R) = G \H ando(R \L) = H \G (precisely that part ofG is deleted which is matched by
elements ofL not belonging toR and, symmetrically, that part ofH is added which is matched by
elements new inR).

A graph transformation systemGTS = 〈Σ, ATG,R〉 consists of a data type signatureΣ, an at-
tributed type graphATG overΣ, and a setR of graph transformation rules overATG.

A transformation sequenceG0
∗=⇒ Gn = G0

p1(o1)
=⇒ · · · pn(on)

=⇒ Gn in GTS is a sequences of
consecutive transformation steps using the rules ofGTS.

The union of two graphsL andR is well-defined if, e.g., edges which appear in bothL andR are
connected to the same vertices in both graphs, edges or vertices with the same name have the same type
and attribute values, etc.

The algebrasT used within rules will typically besyntactic, like theterm algebraTΣ(X) over a set
X of variables1, consisting of allΣ-terms with variables inX. To express equational application condi-
tions on attributes, the term algebra is replaced by its quotientTΣ(X)/E with respect to the congruence
generated by a set of equationsE. This is demonstrated in the example below.

Example 4.2. (attributed graph transformation rule)
Figure 2 provides an examples of attributed typed graph transformation rules over the signature and type
graph introduced in Example 1. The two rules model, respectively, the sending and receiving of messages
1An S-indexed family of sets of variablesX = (Xs)s∈S , to be precise.
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p1:Proc
chronos=t

c:Ch

p1:Proc
chronos=t+1

m:Msg
chronos=t+1c:Ch

send

Fig. 3: Transformation

P1:Proc
chronos = 10

C:Ch

P2:Proc
chronos = 3

P1:Proc
chronos = 11

M:Msg
chronos=11C:Ch

P2:Proc
chronos = 3

send

oL oR

Figure 3. Application of rulesend

by processes along channels. Both processes and messages have an attributechronos to record the time
of their last activity.

• Sending messages:When processp1 aims at sending a message, a message objectm is generated
and placed into the output channelc. The application of thesendrule takes2 time units.

• Receiving messages:When a messagem arrives at the input port of a processp, then the pro-
cess receives the message by removing the message object from the channel and destroying it
afterwards. The application ofreceiverule takes2 time units as well.

Example 4.3. (attributed graph transformation)
Figure 3 shows an application of the rulesend in Figure 2.

Operationally, an attributed graph transformation is performed in three steps. First, find an occurrence
oL of the left-hand sideL in the given graphG. This includes an assignment of values from the semantic
algebraIlN to the variables occurring inL. In our case, the variablet associated with the attributechronos
of processp1 is assigned the value10.

Second, remove all the vertices, edges, and attribute links fromG which are matched byL \ R.
Make sure that the remaining structureD := G \ o(L \R) is still a legal graph, i.e., that no edges are left
dangling because of the deletion of their source or target vertices. (In this case, thedangling condition[8]
prohibits the application of the rule.)

Third, glueD withR\L to obtain the derived graphH. This includes the generation of new attribute
links to data vertices determined by the evaluation of attribute terms in the algebraA, based on the
assignment determined as part of the matching.

Thus, in our example, the attribute links from object vertexP1 to the data vertex10 would be
removed, and replaced by a link fromP1 to 12, the evaluation ofx+ 2 wherex is bound to10.

Shift equivalence On transformation sequences, a notion of equivalence is defined which generalises
the permutation equivalence on firing sequences: two sequences are equivalent if they can be obtained
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from each other by repeatedly swapping independent transformation steps. This equivalence has been for-
malised by the notion ofshift-equivalence[13] which is based on the following notion of independence

of graph transformations. Two transformationsG
p1(o1)
=⇒ H1

p2(o2)
=⇒ X areindependentif the occurrences

o1(R1) of the right-hand side ofp1 ando2(L2) of the left-hand side ofp2 do only overlap in objects that
are preserved by both steps, formallyo1(R1) ∩ o2(L2) ⊆ o1(L1 ∩R1) ∩ o2(L2 ∩R2). This is more so-
phisticated than the notion of independent firings of transitions which are required to use entirely disjoint
resources.

5. Modelling Time in Graph Transformation Systems

To incorporate time into typed graph transformation with attributes, we follow the approach of TER nets
as discussed in Section 3.

Definition 5.1. (type and instance graphs with time)
LetTime be the signature having sort symboltime and operation symbols+, 0,≥ of the obvious arities.
A time data typeT is an algebra over the signatureTime where≥T is a partial order with0T as its least
element. Moreover,〈+T, 0T〉 form a monoid (that is,+T is associative with neutral element0T) and
+T is monotone wrt.≥T.

A type graph with time〈Σ, TG〉 is an attributed type graph such thatΣ containsTime. An instance
graph with time over〈Σ, TG〉 for a given time data typeT is an instance graph〈〈A,G〉, ag〉 such that
A|Time = T.

Obvious examples of time data types include natural or real numbers with the usual interpretation of
the operations, but not dates in the YY:MM:DD format (since, due to the Y2K problem,0 is not minimal
wrt.≤).

In order to transfer the axioms for modelling time in ER nets to attributed graph transformations, we
introduce the following terminology: Given a graph transformation rulep = L → R over a type graph
with time, we say that

• p reads thechronos valuec of v if v ∈ L has achronos attribute of valuec, that is, there exists
an edgee ∈ L with src(e) = v andtar(e) = c ∈ Dtime.

• p writes thechronos valuec of v if v ∈ R has achronos attribute of valuec which is not present
in L, i.e., there exists an edgee ∈ L with src(e) = v andtar(e) = c ∈ Dtime ande 6∈ L.

Given a transformationG
p(o)
=⇒ H we say thatp(o) reads / writes thechronos value ofw if there exists

v ∈ L ∪R such thato(v) = w andp reads / writes thechronos value ofv.
It is important to note that, writing an attribute value of a vertexv which is preserved by the rule (i.e.,

it belongs both toL andR) means deleting the edge fromv to the old value and creating a new link to
another value. Therefore, writing implies reading the value.

The definition of graph transformation rules with time has to take into account the particular proper-
ties of time as expressed, for example, by the axioms in Section 3. The direct transfer of axioms 1 and 2
leads to the following well-formedness conditions.
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P1:Proc
chronos = 10

C:Ch

P2:Proc
chronos = 3

P1:Proc
chronos = 11

M:Msg
chronos=11

C:Ch

P2:Proc
chronos = 3

P1:Proc
chronos = 11

C:Ch

P2:Proc
chronos = 13

time = 13

Fig. 4: Transformation sequence

send receive

time = 11

Figure 4. A transformation sequence using the rules in Figure 2

Definition 5.2. (graph transformation system with time)
A graph transformation rule with timeis a graph transformation rule over a type graph with time satis-
fying the following conditions.

1. Local monotonicity:All chronos values written byp are not smaller than any of thechronos
values read byp.

2. Uniform duration:All chronos values written byp are equal.

Given a transformationG
p(o)
=⇒ H using rulep, the uniformchronos value of axiom 2 is called the

firing timeof the transformation, denoted bytime(p(o)).
A graph transformation system with timeis an attributed graph transformation system over a type

graph with time whose rules satisfy the conditions above.

Example 5.1. (graph transformation with time)
The attributed graph transformation system introduced in Example 4.2 is in fact a graph transformation
system with time. Figure 4 sequence shows a two-step transformation sequence where the firing time is
given below the arrow for each step.

One can easily check that both rules satisfy the well-formedness conditions for graph transformation
rules with time. Thesendrule computes its time from thechronos value of the sender processp1, while
thereceiverule takes its time from the maximum of the receiver processp2 and the message.

The axioms of Definition 5.2 ensure a behaviour of time which can be described informally as fol-
lows. According to condition 1, an operation or transaction specified by a rule cannot take negative time,
i.e., it cannot decrease the clock values of the nodes it is applied to. Condition 2 states an assumption
about atomicity of rule application, that is, all effects specified in the right-hand side are observed at the
same time.

Due to the more general nature of typed graph transformation in comparison with ER nets, there exist
some additional degrees of freedom.

Existence of time-less vertex types:ER nets are untyped (that is, all tokens have (potentially) the same
attributes) while in typed graph transformation we can declare dedicated attributes for every vertex
type. Therefore, we do not have to assume an attributechronos for all vertex types, but could
leave the decision about how to distributechronos attributes to the designer. As we consider time
as a distinguished semantic concept, which should not be confused with time-valued data, we do
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not allow more than onechronos attribute per vertex. This does not forbid us to model additional
time-valued data by ordinary attributes.

Update ofchronos values for preserved vertices:The second degree of freedom comes from the
(well-known) fact that graph transformations generalize Petri nets by allowing contextual rewrit-
ing: All tokens in the post-domain of a transition are newly created while in the right-hand side
of a graph transformation rule there may be vertices that are preserved. This allows to leave the
chronos values of vertices inL ∩ R unchanged, creating new timestamps only for the newly
generated items.

The type graph in Figure 1 does not declare achronos attribute forCh vertices. ThusCh is a time-
less vertex type in the sense of the first item above. The transformation rules in Figure 4.2 based on this
type graph do update allchronos values they encounter, for both new and preserved vertices.

If we take in both cases the most restrictive choice, i.e.,chronos values for all typesandupdate of
chronos values for all vertices inR, we can show, in analogy with TER nets, that for each transformation
sequences using only rules that satisfy the above two conditions, there exists an equivalent sequences′

such thats′ is time-ordered, that is, time is monotonically non-decreasing as the sequence advances.
This is no longer true in general with the more liberal interpretations, as will be shown in Exam-

ple 5.2.

Theorem 5.1. (global monotonicity)
Given a graph transformation system with timeG such that

• its type graph declares achronos attribute for every vertex type

• its rules write thechronos values of all vertices in their right-hand sides.

In this case, for every transformation sequences in G there exists an equivalent sequences′ = G0
p1(o1)
=⇒

. . .
pn(on)
=⇒ Gn in G such thats′ is time-ordered, that is,time(pi(oi)) ≤ time(pi+1(oi−1)) for all i ∈

{0, . . . , n}.

Proof:
As a consequence of Theorem 5.2 below. ut

Thus, a safe solution to our counter example would be to declarechronos values for bothCh and
Msg vertices. However, the example system in Figure 1 and 2 suggests that we can do better than that.

In fact, the problem is to simultaneously ensure the consistency of causality and time in the sense
that, whenever two steps are causally dependent, they must communicate their clock values. This idea is
crucial to many algorithms for establishing consistent global time in distributed systems, based on logical
clocks. The next theorem formalises this statement.

Theorem 5.2. (global monotonicity)
Given a graph transformation system with timeG such that for all transformationsG

p1(o1)
=⇒ X

p2(o2)
=⇒ H

in G that arenot sequentially independent, there exists a vertexv ∈ o1(R1) ∩ o2(L2) whosechronos
value is written byp1 and read byp2. In this case, for every transformation sequences in G there exists

an equivalent sequences′ = G0
p1(o1)
=⇒ . . .

pn(on)
=⇒ Gn in G such thats′ is time-ordered.
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Proof:
The main line of the proof is as follows.

1. Our first observation is that the fact that two transformationsG
p1(o1)
=⇒ X

p2(o2)
=⇒ H arenot sequen-

tially independentimplies that they aretime ordered, i.e., time(p1(o1)) ≤ time(p2(o2)). This is
guaranteed by the existence of a common vertexv ∈ o1(R1)∩o2(l2) with achronos value written
by p1 and read byp2, which is

(a) exactlythe time of transformationp1(o1) (due to the“uniform duration” condition),

(b) at mostthe time of transformationp2(o2) (as a consequence of the“local monotonicity”
condition).

2. Then if two transformations arenot time orderedand they aresequentially independent, we swap
them in the rule application sequence2 . We continue the swap operation until no such transforma-
tion pairs can be found.

3. We state that after theterminationof this swapping algorithm, a time ordered transformation se-
quence is obtained.

(a) Let us suppose indirectly that there exist two transformationsG
pa(oa)
=⇒ X

pb(ob)=⇒ H that violate
the condition of time ordered sequences, i.e.time(pa(oa)) > time(pb(ob)).

(b) However, if these transformations aresequentially independentthen the algorithm in Item 2
can still be applied to them, which contradicts the assumption of termination.

(c) On the other hand, if transformationspa(oa) andpb(ob) arenot sequentially independent(but
they are not time ordered by the indirect assumption), then we have a contradiction with our
first observation, which established that two sequentially dependent transformations with a
common vertex are always time ordered.

ut

Notice that the condition above can be effectively verified by checking all non-independent two-step
sequences inG wherex = o1(R1) ∪ o2(L2).

Example 5.2. (a counter example)
The graph transformation system with time shown in Figure 5 provides us an example where the property
of global monotonicity is violated. It coincides with the example introduced in Figure 1 and 2 since the
type graph does not define achronos attribute for messages in this case. However, allchronos values
that are encountered are updated by the rules. While in the first system, every sequence is equivalent to
one which is time-ordered, this is not the case for the system in Figure 5.

The sequence in Figure 6 gives a counter example. It is not time-ordered because the first step has a
higher firing time than the second. Now observe that the two steps are not sequentially independent be-
cause the message consumed by the second step has to be generated by the first. Therefore, no equivalent
sequence exists where the rules are applied in the reverse order.
2This algorithm is, in fact, conceptually similarly to the trick applied in the construction of a shift equivalent transformation
sequence.
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Fig 5: Another GTS

p1:Proc
chronos = t

c:Ch

p1:Proc
chronos=t+1

m:Msgc:Ch

send

c:Ch
receive

m:Msg c:Ch

p2:Proc
chronos = t

p2:Proc
chronos = t+2

Proc
chronos : time

MsgCh

Figure 5. Another graph transformation system with time

p1:Proc
chronos = 10

c:Ch

p2:Proc
chronos = 3

p1:Proc
chronos = 11

m:Msgc:Ch

p2:Proc
chronos = 3

p1:Proc
chronos = 11

c:Ch

p2:Proc
chronos = 5

send

time = 11

receive

time = 5

Fig. 6: A sequence that is not time-
ordered

Figure 6. A sequence in the GTS of Figure 5 that is not time-ordered
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The conceptual explanation is that, since no timestamps are attached to messages, the receiver cannot
synchronize its clock to the sender when the message is processed. In fact, the problem does not occur
in the (otherwise similar) sequence in Figure 4 because, in this system,Msg has achronos attribute as
well.

This time, our global monotonicity theorem trivially holds, since thechronos value of eachmes-
sage object is written by thesend rule and read by thereceive rule. Thus in a transformation sequence
where a certain application ofsend precedes the application ofreceive, the time ofreceive cannot be
less then the time ofsend due to the well-formedness conditions 1 and 2.

6. Strong Semantics

In applications it is often desirable to enforce a certain order of actions, e.g., to ensure that messages
are delivered in the same order in which they are sent. In many cases, such requirements can be coded
into the model by additional vertices and edges serving as control structures. Heavily used, however, this
leads to cluttered and unreadable models. Thus, in this section, we will discuss semantic solutions to this
problem, again following the line of TER nets.

The basic idea of strong semantics is to give priority to transformations with smaller firing time. That
is, before choosing a transformation which is bound to occur at a later point in time, all possible earlier
transformations should be performed. In this way, for example, the global preservation of message order
can be enforced at a semantic level.

Example 6.1. (motivating example)
For a motivating example, let us consider the communication process depicted in Fig. 7. Note that not
the entire state space of the system is depicted to improve the clarity of the figure, i.e., executable trans-
formation sequences are missing.

Our (first) objective for introducing strong semantics of graph transformation is to semantically en-
sure that the messageM1 sent by processP1 at time unit1 is received earlier by processP3 than message
M2 issued by processP2 at time unit5 supposing that the load of communication channels is equally
balanced (i.e., driven by graph transformation rulessend and receive of Fig. 2). In this respect, the
result graphIG5a shows a desired situation, while graphIG5b depicts an undesired execution.

Note that while the sending of messages is independent of each other (stepssend(M1) and
send(M2)), there is a potential conflict in receiving messages since thechronos attribute of process
P3 is shared.

Now, let us define globally strong transformation sequences in a formal way.

Definition 6.1. (globally strong sequences)
A transformation sequences = G0

t1=⇒ G1
t2=⇒ · · · tn=⇒ Gn in GTS is called (globally) strong if for all

i = 1 . . . n and transformationsGi
t′i=⇒ G′i in GTS: time(ti) ≤ time(t′i).

Example 6.2. (a globally strong sequence)
We can easily notice that the transformation sequences1 = IG1

t1=⇒ IG2
t2=⇒ IG3a

t3=⇒ IG4a
t4=⇒

IG5a is globally strong, as at each step, we selected the transformation with the minimal firing time
(time(send(M1))=3, time(receive(M1))=5, time(send(M2))=7, time(receive(M2))=9, respectively).
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Unsurprisingly, this transformation sequence is time-ordered as well, which turns out to be a general
property of globally strong sequences generated by our well-known subclass of graph transformation
systems with time.

Theorem 6.1. (globally strong is time ordered)
Let G be a graph transformation system with time such that for all transformationsG

p1(o1)
=⇒ X

p2(o2)
=⇒ H

in G that arenot sequentially independent, there exists a vertexv ∈ o1(R1) ∩ o2(L2) whosechronos
value is written byp1 and read byp2 (i.e., identical to the assumption of Theorem 5.2).

Let s be a transformation sequence in such aGTS. If s is globally strong thens is time ordered.

Proof:
This theorem can be proved by induction on the length of the globally strong sequences.

1. Any globally strong sequence of length1 is time-ordered by definition.

2. Let us suppose that sequences is provenly time ordered up to lengthi. Now we prove that it
remains time ordered at lengthi+ 1.

(a) We suppose by contradiction thatti+1 violates the condition of time orderedness, i.e.,
time(ti+1) < time(ti).

(b) The selection mechanism of globally strong transformation sequences guarantees that at each
steptj of a globally strong transformation sequences, tj can be a member of the sequence
only if its time time(tj) is less than or equal to the time of any transformation stept′j that is
enabled and executable. As a consequence, the occurrence ofti+1 was non-existent at stepi
(i.e., prior to the application ofti), otherwiseti+1 would have been selected insteadti at this
previous step (more precisely, atsomeprevious step).

(c) Equivalently speaking, the execution of stepti generated some new elements of the graph
required for the successful matching ofti+1, thereforeti+1 is not sequentially independent
on ti. However, according to our first observation in the proof of Theorem 5.2, in such a
casetime(ti) ≤ time(ti+1) (due to the existence of a vertex written byti and read byti+1),
which contradicts our indirect assumption and thus finishes the proof.

ut

Note, however, that globally strong transformation sequences and time-ordered transformation se-
quences are not equivalent. In other words, there may exist time-ordered sequences that do not conform
to the globally strong semantics.

Example 6.3. (strong sequences vs. time-orderedness)
For instance, both transformation sequencess1 = IG1

t1=⇒ IG2
t2=⇒ IG3a

t3=⇒ IG4a
t4=⇒ IG5a and

s2 = IG1
t1=⇒ IG2

t′2=⇒ IG3b
t′3=⇒ IG4b

t′4=⇒ IG5b in Fig. 7 are obviously time ordered, however,s2

is not globally strong since when transformation stept2 is applied on graphIG2, time(t′2 > time(t2)
which contradicts the previous definition.

In fact, there are no other globally strong transformation sequences in Fig. 7.
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Despite globally strong semantics of rule applications looks rather intuitive at first sight, unfortu-
nately, the condition potentially violates the concurrent character of graph transformation. This is based
on the fact that when considering concurrency, the applicability of a rule depends only on local informa-
tion, i.e., the firing times of independent matchings are incomparable.

Example 6.4. (globally strong vs. shift-equivalent sequences)
To demonstrate the problem, we show two shift-equivalent sequences in Fig. 7, one of which is ruled out
by the global priority while the other one is not.

Consider, for instance, transformation sequencess1 = IG1
t1=⇒ IG2

t2=⇒ IG3a
t3=⇒ IG4a

t4=⇒
IG5a ands2 = IG1

t1=⇒ IG2
t3=⇒ IG3b

t2=⇒ IG4a
t4=⇒ IG5a. Sincet2 andt3 are independent of each

other (as demonstrated by the white and the grey shaded matchings inIG2 which are not overlapping)
sequencess1 ands2 are shift equivalent.

However,s2 is ruled out by the globally strong semantics as the sending of messageM2 at time unit
7 cannot happen before the receiving of messageM2 at time unit6 regarding from a global point of view.

As a consequence, we propose a weakening of the condition which does only apply the priority to
such transformations which are in conflict. This condition, called locally strong, is shown to be compat-
ible with shift-equivalence.

Definition 6.2. (locally strong sequences)
A transformation sequences = G0

t1=⇒ G1
t2=⇒ · · · tn=⇒ Gn in GTS is called locally strong if for all

i = 1 . . . n and transformationsGi−1
t′i=⇒ G′i inGTS whereti is in conflict witht′i time(ti) ≤ time(t′i).

Unsurprisingly, the set of locally strong and time-ordered sequences for a given GTS with time are
incomparable, i.e., locally strong transformation sequences are not required to be time-ordered, and on
the other hand, there may be time-ordered sequences which are not locally strong.

Example 6.5. (locally strong vs. time-ordered sequences)
To demonstrate the difference, we show two sequences in Fig. 7, one of which is not locally strong while
the other one is not time-ordered.

Consider, for instance, transformation sequencess1 = IG1
t1=⇒ IG2

t2=⇒ IG3b
t3=⇒ IG4a

t4=⇒
IG5a ands2 = IG1

t1=⇒ IG2
t2=⇒ IG3b

t′3=⇒ IG4b
t′4=⇒ IG5b. Since thet3 and t′3 are in conflict

(because of the conflicting firing times inIG3b) transformationt3 takes priority overt′3 according to the
locally strong semantics, therefore, sequences2 is not locally strong.

However, when regarding the firing times ofs1 we easily notice thats1 is not time ordered since
time(t2) = 7 while time(t3) = 6.

This notion of strong semantics provides a satisfactory compromise between our original goal of
enforcing priority of earlier steps and the local nature of matching and rule application. This is true as
long as we consider rules with a fixed firing time. However, if the firing time isflexible(e.g., the precise
time to deliver a message is unknown, except for an upper and lower bound), the present condition would
lead to a behavior where, not only earlier steps have priority over later ones, but where everything would
happen as soon as possible.

For example, the rule in Figure 8 models a receive operation with a delivery time between 2 and 6
seconds. The inequationmax(tp, tm)+2 ≤ t ≤ max(tp, tm)+6 can be expressed by the two equations
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t = max(tp, tm)+2+x andx+y = 4. Thus, formally we stay in the framework of rules attributed with
a quotient term algebraTΣ(X)/E . If we require locally strong semantics, the message would always take
exactly 2 seconds to deliver because the two applications of the rule, which differ only for the assignment
of values tox andy, are in conflict. Hence we call this version of strong semantics theeagerone.

To recover the desired flexibility, we introduce a notion of non-eager strong semantics, based on
the concept of the maximal firing time of a step. This is the latest point in time at which a transforma-
tion using a given rule and match may happen according to the constraints expressed on thechronos
attributes.

Definition 6.3. (maximal possible firing time)
Given a transformation (step)G

p(o)
=⇒ H in GTS, its maximal possible firing time is defined as

maxtime(t) = max{time(t′) | t′ = G
p(o′)
=⇒ H ′ whereo′L,G = oL,G}.

Recall thato′L,G, oL,G denote the graph components of the attributed graph morphismso′L, oL, re-
spectively. That is, the maximal firing time of a step is the maximum of all firing times of steps with the
same matching of the left-hand sides graphL, thereby implicitly enforcing the assignment of all variables
occurring inL. The point is that variables likex andy in the rule of Figure 8 remain unconstrained—
therefore the firing times of the steps may still vary.

In practice, possible firing times of a transformation step are frequently represented as firingintervals
although the definition does not require to use intervals. For informal discussions and illustrations, we
this intuitive interpretation shall be helpful.

Now the non-eager version of strong semantics requires that if (the graphical components of) a
matching of a transformation step is enabled, and remains enabled for all possible time values at which
it can be executed then itmustbe executed.

Definition 6.4. (globally strong sequences, lazy)
A transformation sequences = G0

t1=⇒ G1
t2=⇒ · · · tn=⇒ Gn in GTS is called globally strong and lazy

if for all i = 1 . . . n and all applicable transformationsGi−1
t′i=⇒ G′i inGTS: time(ti) ≤ maxtime(t′i).

Definition 6.5. (locally strong sequences, lazy)
A transformation sequences = G0

t1=⇒ G1
t2=⇒ · · · tn=⇒ Gn in GTS is called locally strong and lazy

if for all i = 1 . . . n and transformationsGi
t′i=⇒ G′i in GTS whereti is in conflict with t′i time(ti) ≤

maxtime(t′i).

In other terms, lets = G0
t1=⇒ G1

t2=⇒ · · · ti=⇒ Gi, i ≥ 0 be a strong lazy firing sequence in
GTS and let us examine which transformation step may be executed at this point. Any enabled step

Gi
ti+1=⇒ Gi+1 can be chosen to be applied if for allenabledandconflictingstepsGi

t′i=⇒ G′i, the actual

firing time ti of stepGi
ti+1=⇒ Gi+1 is less than the maximal firing time oft′i. Or equivalently, if there

exists no other enabled stepsGi
t′i=⇒ G′i such that the maximal firing time oft′i is less thanti.

Example 6.6. The intuitive meaning of locally strong and lazy semantics is demonstrated in Fig. 9,
where a timing diagram is depicted to guide the execution of conflicting transformation stepsre-
ceive(M1) andreceive(M2) applied to the instance graphIG3b of Fig. 7.
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Timing constraints are those expressed in the rulereceive depicted in Fig. 8. Therefore, we can
conclude that the maximal possible firing time ofreceive(M1) is 10, while the respective parameter of
receive(M2) is 13.

Let τ denote the time when, according to locally strong and lazy semantics, the next transformation
step is scheduled for execution.

• If τ < 3, then none of the matchings are existent therefore nothing happens.

• If 3 ≤ τ < 6, then the matching ofreceive(M1)) becomes existent but this step is not allowed
to be executed asτ < max(3, 4) + 2 = 6 (which is the earliest time point in the possible firing
interval ofreceive(M1)).

• If 6 ≤ τ < 7, thenreceive(M1) can fire at any time, since there are other no conflicting matchings
(note that messageM2 is not available yet in the channel).

• If 7 ≤ τ < 9, then the matching ofreceive(M2)) becomes existent, butreceive(M1) can still fire
at any time, since while the graphical parts of stepsreceive(M1) andreceive(M2) are in already
in conflict, the transformation stepreceive(M2) is not executable yet (not within its due time).

• If 9 ≤ τ < 10, then both transformation stepsreceive(M1) andreceive(M2) can fire since none of
the maximal possible firing time points have arrived (both of them are within their firing interval).

• If 10 ≤ τ then the maximal possible firing time ofreceive(M1) has arrived, therefore, wemust
execute this transformation step. Otherwise the axiom of locally strong lazy semantics would be
violated sincereceive(M1) is a transformation step that is in conflict withreceive(M2), but the
execution timeτ > 10 of receive(M2) is greater than the maximal possible firing time ofre-
ceive(M1).

Next we show that locally strong sequences (eager and lazy) are compatible with shift-equivalence.

Theorem 6.2. (locally strong is closed under shift)
Let s ands′ be transformation sequences inGTS. If s is locally strong ands′ is equivalent tos, thens′

is locally strong.

Proof:
By way of contradiction, assume transformation sequencess ands′ in GTS that are shift-equivalent,
and wheres is locally strong whiles′ is not. We will show thats′ not locally strong implies thats is not
locally strong.

By definition of shift-equivalence,s can be obtained froms′ by a finite number of swaps of se-
quentially independent steps. Ifs = s′, this number is zero and the statement follows trivially. Oth-
erwise, there existss′′ equivalent tos′ by means ofn swaps and such thats can be obtained from

s′′ by another swap. In particular, lets′′ = (G0
∗=⇒ Gn

p(o)
=⇒ Gn+1

q(m)
=⇒ Gn+2

∗=⇒ Gn+k) and

s = (G0
∗=⇒ Gn

q(m′)
=⇒ G′n+1

p(o′)
=⇒ G′n+2

∗=⇒ Gn+k). The relevant steps are depicted in Figure 10.

By induction hypothesis,s′′ is not locally strong. Therefore, for some stepGi−1
ti=⇒ Gi there exists

a conflicting stepGi−1
t′i=⇒ G′i in GTS such thattime(ti) > maxtime(t′i).
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If i < n or i ≥ n+ 2, it follows directly thats is not locally strong. It remains to analyzei = n and
i = n+ 1.

ut

7. Conclusion

The ability to specify time-dependent behavior is an important feature for any modeling technique aiming
at concurrent and safety-critical systems. In this paper, we have developed a model of time in attributed
graph transformation systems inspired by the concepts of TER nets, a notion of high-level Petri nets with
time.

We have discussed several semantic choices and their consequences, leading to aglobal monotonicity
theoremwhich provides conditions for the existence of time ordered transformation sequences. This
theorem generalizes the idea behind familiar algorithms for establishing consistent logical clocks via
time stamps in distributed systems [15].

Further, we have investigated a stronger semantic model where, by assumption of a local or global
scheduling mechanism, steps with an earlier firing time are granted priority. The local version is shown
to be compatible with the concurrency theory of graph transformation.

Future work will include a deeper analysis of applications, in particular, the semantics of time in di-
agrammatic techniques like statecharts or sequence diagrams and their formalization using graph trans-
formation (cf. [9, 12, 14]).

Acknowledgement. We wish to thank Luciano Baresi for his introduction to Petri nets with time.
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Figure 7. Strong semantics vs. time-orderedness
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receive

p2:Proc
chronos=tp

m:Msg
chronos=tm

c:Ch

p2:Proc
chronos=t

c:Ch

max(tp, tm)+2 <= t <= max(tp, tm)+6

Figure 8. A rule with flexible firing time

receive(M1)
possibly fires

possibly fires
receive(M2)

fires?
which one

3 4 5 6 7 8 9 10 11 12 13 t

M2 arrived

M1 arrived

Figure 9. An intuitive interpretation of lazy semantics
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Figure 10. Swapping independent of transformation steps


