
Modeling and Validation of Service-Oriented Architectures:
Application vs. Style ∗

Luciano Baresi
∗

baresi@elet.polimi.it
Reiko Heckel

†

reiko@upb.de
Sebastian Thöne

‡

seb@upb.de
Dániel Varró

§

varro@mit.bme.hu

ABSTRACT
Most applications developed today rely on a given middle-
ware platform which governs the interaction between com-
ponents, the access to resources, etc. To decide, which plat-
form is suitable for a given application (or more generally,
to understand the interaction between application and plat-
form), we propose UML models of both the architectural
style of the platform and the application scenario. Based on
a formal interpretation of these as graphs and graph trans-
formation systems, we are able to validate the consistency
between platform and application.

The approach is exemplified by means of an application
scenario from a supply chain management case study us-
ing the service-oriented architectural style. In particular,
we demonstrate the potential of model checking for graph
transformation systems for answering the above consistency
question.

1. INTRODUCTION
Nowadays, applications have to be adaptable to changes

in (at least) two dimensions: Changing requirements, like
requests for new functions or services, may require flexi-
ble business collaborations where components are integrated
at run-time. Changing contexts, like faulty communication

∗Research partially supported by the European Research
Training Network SegraVis (on Syntactic and Semantic In-
tegration of Visual Modelling Techniques)
∗Politecnico di Milano – Dipartimento di Elettronica e In-
formazione, piazza L. da Vinci, 32 I-20133 Milano (Italy)
†University of Paderborn – Department of Computer Sci-
ence, Warburger Str. 100, D-33098 Paderborn (Germany)
‡University of Paderborn – International Graduate School
Dynamic Intelligent Systems, Warburger Str. 100, D-33098
Paderborn (Germany)
§Budapest University of Technology and Economics – De-
partment of Measurement and Information Systems, Magyar
tudósok körútja 2, H-1521 Budapest (Hungary)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03,September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

channels or mobility leading to a reduced bandwidth may
require to replace unreachable components.

Component models like CORBA, EJB, or Web Services
provide the basic techniques to realize the required flexibility
through reconfiguration mechanisms, like dynamic lookup,
loading, and binding of components. However, the costs and
the level of support provided may differ between the plat-
forms, as well as the precise rules of interaction between
components. Choosing the right platform for a given appli-
cation is therefore a mission-critical question, especially as
later migration may be costly, if not impossible.

In order to reduce this risk, it is common to produce a
prototype implementation covering all critical application
scenarios and operations, like database access, user interac-
tion, communication with remote components, etc. In the
Unified Process [17], for example, this would happen in the
Elaboration phase with the objective to produce a stable
architecture of the system.

Following a model-based development approach, applica-
tion scenarios are expressed at a conceptual level, for ex-
ample, in terms of UML [23] use case and sequence dia-
grams. This representation allows to reason about require-
ments at a high level of abstraction, without considering
implementation-specific details.

Precise information on the properties and limitations of
a given platform, on the other hand, is often only available
at the level of framework APIs or implementation-oriented
infrastructure specification documents. What is largely miss-
ing is a conceptual model of the infrastructure which would
allow an understanding of the basic mechanisms, and their
suitability for a certain task, at a non-technical level.

Besides a general lack of understanding of the infrastruc-
ture level among managers and customers, this means that
in order to judge the realizability of a given application sce-
nario, we have to go right to the implementation level. If the
infrastructure at hand is not the one that is finally chosen,
much of this is wasted effort devoted to technical details that
might not even be relevant for the decision to be made.

To solve this problem, we propose to model the architec-
tural elements supported by a middleware platform along
with the associated constraints and reconfiguration rules as
an architectural style. Based on such a conceptual platform
model, we can try to answer questions like

• Is a desired configuration reachable from an initial con-
figuration?

• Is an application scenario realizable on the platform?

• Which sequence of operations is required to reach the

desired configuration / realize the scenario?

We have argued in [3] that, in order to answer such ques-
tions, an architectural model is required which allows to rea-
son at an abstract level, disregarding the technicalities of
the component model employed. Still, this abstraction must
not lead to ambiguity, as reasoning on complex problems re-
quires a high degree of precision. This is usually provided by
formal methods-based architectural description languages
like Wright [2] or Rapide [19].

On the other hand, some of the questions above require
knowledge of the problem domain. Therefore, the model
needs to be understood and validated by domain experts
with little or no background in formal specification. Here,
an explicit, visual representation of the architecture in some
diagrammatic language like the Unified Modeling Language
(UML) [23] is often regarded as helpful, even if we risk to
trade this intuitive nature for ambiguity.

At the same time, both UML-based architectural mod-
els and architectural description languages fail to describe
the highly dynamic nature of today’s architectures, with un-
bounded creation and deletion of components and connec-
tors.

Based on this observation, we propose a combination of
UML modeling and graph transformation as a visual, yet
formal approach to model (and reason about) component-
based architectures. In particular, we use transformation
rules to specify architectural reconfiguration, but also possi-
ble changes in the environment, by graphical pre/post con-
ditions.

Since these models are executable, they support auto-
mated reasoning by means of simulation using graph trans-
formation tools like PROGRES [24] or Fujaba [1], e.g., in
order to check the applicability of a certain sequence of ba-
sic reconfiguration steps in a given situation. Moreover, the
theory of graph transformation provides the basis for static
analysis, like the computation of critical pairs to detect con-
flicts or causal dependencies [5], or model checking [27] to
answer questions about the reachability of configurations.

In this paper, we present an application of these ideas to
service-oriented architectures (SoAs) which are typical for
their dynamic nature, given the run-time detection of com-
ponents through registry services and subsequent dynamic
binding. Our model for service-oriented architectures is in-
troduced in Section 2. Section 3 presents our application sce-
nario, a case study on supply chain management proposed
in [8]. Based on the two models, Section 4 describes the use
of model checking and simulation to validate the consistency
between the style and the application. Section 5 surveys the
related work while Section 6 concludes the paper discussing
possible future work.

2. STYLE: SERVICE-ORIENTED ARCHI-
TECTURES

This section presents our proposal for modeling architec-
tural styles with UML diagrams and graph transformation
rules and exemplifies it for service-oriented architectures.
Nevertheless, the techniques are applicable to other plat-
forms and architectural styles as well.

An architectural style includes a static and a dynamic
specification. The static part, described in Section 2.1, de-
fines the set of possible components and connectors and con-
strains the way in which these elements can be linked to-

gether. The dynamic part, described in Section 2.2, specifies
how a given architecture can evolve in reaction to planned
reconfigurations or unanticipated changes of the environ-
ment.

As shown in Fig. 1, taken from [7], service-oriented ar-
chitectures involve three different kinds of actors: service
providers, service requesters and discovery agencies. The
service provider exposes some software functionality as a
service to its clients. Such a service could, e.g., be a SOAP-
based web service for electronic business collaborations over
the Internet. In order to allow clients to access the service,
the provider also has to publish a description of the ser-
vice. Since service provider and service requester usually do
not know each other in advance, the service descriptions are
published via specialized discovery agencies. They can cate-
gorize the service descriptions and provide them in response
to a query issued by one of the service requesters. As soon
as the service requester finds a suitable service description
for its requirements at the agency, it can start interacting
with the provider and using the service.

Discovery
Agencies

Service
Requestor

Service
Provider

Service
Description

Service
Description

Service

Client
Interact

PublishFind

Figure 1: Service-oriented architecture

Such service-oriented architectures are typically highly
dynamic and flexible because the services are only loosely
coupled and clients often replace services at run-time.
Firstly, this is advantageous if the new service provides a
better alternative to the former one concerning functional-
ity or quality of service. Secondly, this kind of reconfigura-
tion might become necessary if a service is not reachable any
longer because of network problems.

If a requester wants to connect to a new service but re-
quires a certain level of quality from this service, it is imag-
inable that these quality properties can only be guaranteed
under certain assumptions. This means that the quality or
functionality of the provided service might depend on other
third-party services used by the service itself. For this rea-
son, the service provider might have to find suitable sub
services on its own before it is able to confirm a request for
a certain functionality or level of quality.

2.1 Static model
We model the static part of the architectural style with

UML class diagrams [23]. The provided classes represent
three different kinds of elements: structural elements like
components and services, specification documents for de-
scribing services and requirements, and messages for model-
ing communication. Consequently, they are grouped into the
three packages Structure (see Fig. 2), Specification (Fig. 3),
and Messages (Fig. 4). Associations define how the elements
can be linked in a concrete architecture, constrained by the

given cardinalities1.

ServiceaccessesSession 1

isConnectedTo

DiscoveryService

requiredBy

Component
«Package» Structure

1

Figure 2: Package for structural elements

The package Structure contains the classes that form the
core of the architectural style. In the case of service-oriented
architectures, we define a Service as a special Component
which exposes its functionality to other components and
services. In the sense of an architectural connector, a Ses-
sion is used to connect a Component to a Service. It stores
the current state of the interaction between the service re-
quester and the service. Note that, since Service is a subclass
of Component, a Service can connect to another Service via
a Session, too. In a service-oriented architecture, discovery
agencies provide DiscoveryServices, which are special services
for querying a service catalog.

«Package» Specification

SpecificationDocument
contains

assumesimplication

Property
1

0..1
couldSatisfy

0..1
1

Requirements ServiceSpecification

Component
(from Structure)

knows

Service
(from Structure)

specifies

requiresServiceFor

0..1

Session
(from Structure)

satisfies
0..1

0..1

toConfirm

context Property
inv: self.implicationàforAll(p|self.expression implies p.expression)Figure 3: Package for specification documents

The package Specification adds specification documents to
the static model. They are necessary to describe reconfigu-
ration operations which dynamically search a component for
certain requirements at run-time. The package defines two
types of specification documents: Requirements and Service-
Specifications. Both of them contain a set of Properties as
inherited from the super class SpecificationDocument. In the
case of a Requirements document, these properties are re-
quired by a Component for the service it wants to use. In
the case of a ServiceSpecification describing a particular Ser-
vice, these properties are guaranteed by the service provider.
In some cases this might only be possible under certain as-
sumptions which are modeled as a link from the respective
Property to further Requirements. After a Session has been
successfully established for the Requirements, this is marked
by a satisfies link to this Session.

The self-related implication association of the Property
class indicates when a property logically implies another
1No explicit cardinality means 0..n by default.

one. This relation is used to correctly match requirements
and service specifications. In order to ensure the intended
semantics of the association, we add the following OCL [23]
constraint to the package:

context Property inv:

self.implication->forAll(p | self.expression

implies p.expression)

«Package» Messages

Message Session
(from Structure)

Success-
Notification

Failure-
Notification

Disconnect-
Request

Connect-
Request

ServiceSpecification
(from Specification)

QueryResultServiceQuery

Requirements
(from Specification)

Component
(from Structure)

sends

receives

0..1

0..1

sentVia 0..1

1 1

connectFor queryFor
contains

context Message
inv: self.sessionàisEmpty()

implies self.isTypeOf(ConnectRequest)

isResponseTo

0..10..1

candidate

Figure 4: Package for messages

Since the components and services are loosely coupled in
a service-oriented architecture, they interact by exchanging
messages. For this reason, the package Messages provides the
necessary classes for the communication. Therein, a Message
is sent and received by Components or, because of subtyp-
ing, by Services. Messages which are dedicated to reconfig-
uration purposes are defined as sub classes of Message. For
instance, a ConnectRequest message triggers the creation of
a new Session for particular Requirements. Except from Con-
nectRequest, all messages are sent via a valid Session.

An architecture compliant with the style can be regarded
as an instantiation of the class model. This is exemplified
in Sec. 3. There, we present a simplified supply-chain man-
agement application that conforms to this service-oriented
architectural style. The following section extends the style
by adding a dynamic model which contains rules for the
specification of possible architectural reconfigurations.

2.2 Dynamic model
In order to reason about planned or unanticipated recon-

figurations of architectures, we use graph transformation
rules to capture the dynamic aspects of the architectural
style. There are two different ways of visualizing a graph
transformation rule. The first way is to depict a rule as a
pair of two instance graphs with the left-hand-side defining
the pre-conditions and the right-hand-side defining the post-
conditions of the transformation. Both graphs represent a
part of the configuration as an instance of the architectural
style defined in Section 2.1.

Figure 5 shows, as a first example, the rule sendConnec-
tRequest in which a Component, playing the role of a service
requestor, sends a request for connection to the Service it
would like to connect to. As precondition the requestor has
to know a ServiceSpecification which couldSatisfy its Require-
ments. As postcondition the request message is created and
linked to the receiver.

For conciseness, we propose as an alternative way of vi-
sualization to include both pre and post conditions into one
UML collaboration diagram [23]. Elements which are added

Transformation Rules for Connecting to a known Service:

1.1.) The service requestor sends a ConnectRequest:

req:ConnectRequest

sends

receives

connectFor

serviceRequestor
:Component

r:Requirements

spec:Service-
Specification

s:Service

couldSatisfy

knows

requires
ServiceFor

specifies

serviceRequestor
:Component

r:Requirements

spec:Service-
Specification

s:Service

couldSatisfy

knows

requires
ServiceFor

specifies

Figure 5: Transformation rule as pair of graphs

to the configuration graph by the rule are then tagged with
the label {new}, and elements which are deleted with the
label {destroyed}. Figure 6 shows the previous rule with the
new notation.

Transformation Rules for Connecting to a known Service:

1.1.) The service requestor sends a ConnectRequest:

req:ConnectRequest

sends

receives

connectFor

serviceRequestor
:Component

r:Requirements

spec:Service-
Specification

s:Service

couldSatisfy

knows

requires
ServiceFor

specifies
{new}

{new}

{new}

{new}

Figure 6: Condensed notation for sendConnectRequest

Because of space limitations we omit the rules which deal
with the just created request and summarize them textu-
ally: At first, the requested service has to prepare a Session
and to confirm all required properties. For this reason, the
properties are initially marked with a toConfirm link between
each Property and the Service. Whenever a property can be
confirmed, e.g., by comparison with the ServiceSpecification,
the toConfirm link for this property can be deleted.

Finally, when all toConfirm links have been successfully
removed, the Service can respond to the request by sending
a SuccessNotification as shown in Fig. 7. This rule contains a
negative application condition which prevents its application
if there is any Property in the requirements which still has
to be confirmed by the service.

serviceRequestor:Component

1.6.) After all properties of the requested service have been confirmed, the requestor is notified:

r:Requirements

s:Service

:Property
requiresServiceFor

req:ConnectRequest

toConfirm

sends

:Session
accesses

receives

connectFor

:SuccessNotification
sendsreceives

contains

sentVia

sentVia
isResponseTo

{new}

{new}

{new}
{new}

{new}

Transformation Rules for Connecting to a known Service:

Figure 7: Rule with negative application condition

After the reception of the notification message, the rule
connectToSession given in Fig. 8 can be applied to establish
the link between the serviceRequestor and the new Session. In
parallel, the request and notification messages are deleted,
since they are not used any more.

Altogether, the dynamic model contains about 20 trans-
formation rules which cover publishing a service description
to a discovery service, querying the service catalog of a dis-
covery service, connecting to a known service, interacting

serviceRequestor:Component

1.7.) After the requestor has receives the SuccessNotification, it connects to the Session:

r:Requirements

s:Service

requiresServiceFor

req:ConnectRequest
sends

:Session
accesses

receives

connectFor

:SuccessNotification
sendsreceives

sentVia

sentVia

satisfies

isConnectedTo

isResponseTo

{new}

{new}
{destroyed}

{destroyed}

{destroyed}

{destroyed}
{destroyed}

{destroyed}

{destroyed}
{destroyed}

{destroyed}

{destroyed}

Transformation Rules for Connecting to a known Service:

Figure 8: Transformation rule connectToSession

with the service by exchanging messages, and disconnecting
from an existing session. If a more complex reconfiguration
step requires a sequence of individual transformation rules,
these rules could be combined using explicit control flow
constructs. For instance, story diagrams [11] combine graph
rewriting rules based on UML collaboration diagrams with
control flow elements as provided by UML activity diagrams.

After the model of an architectural style has been com-
pleted including the dynamic part, it can be used to decide
whether or not the modeled style is suitable for the require-
ments of a particular application. As an example, the follow-
ing section presents a sample application whose architecture
could follow the service-oriented style.

3. APPLICATION: SUPPLY-CHAIN MAN-
AGEMENT

In this section, we want to apply the architectural style to
a concrete application scenario. For this purpose, we choose
the reference architecture for a supply chain management
system as proposed in [8] by the Web Services Interoperabil-
ity Organization. The scenario involves a consumer compo-
nent, a retailer service, a warehouse service, a shipping ser-
vice (this is an extension to the original example as given
in [8]), and a manufacturer service (see Fig. 9).

«service»
Manufacturer

Consumer «service»
Retailer

«service»
Shipper

«service»
Warehouse

«uses»

«uses»

«uses»

«uses»

Figure 9: Services involved in the scenario

A typical scenario of this application is given by the se-
quence diagram in Fig. 10. After the ConsumerUI has re-
ceived a product catalog from RetailerA, it can submit an
order for certain products by sending a submitOrderRequest.
Then the retailer service connects to its WarehouseA service
and inquires if the product is available from the warehouse.
After this has been confirmed, the retailer service orders the
shipping service to ship the goods. Meanwhile, the ware-
house might start to submit a purchase order to Manufac-
turerX, because the stock level of the sold product has fallen
below a certain limit.

There are several imaginable requirements which make
this scenario highly dynamic in terms of service connections:

• The consumer intends to choose the cheapest retailer.

ConsumerUI:Component

RetailerA:Service

ManufacturerX:Service

WarehouseA:Service

getCatalogRequest

getCatalogResponse

submitOrderRequest

submitOrderResponse

inquireGoodsRequest

inquireGoodsResponse

POSubmit

AckPO

Shipper:Service

shipGoodsOrder

ackShipGoodsOrder

Figure 10: A supply chain interaction scenario

• The same holds for the warehouse looking for a cheap
manufacturer.

• The retailer might run several warehouses and has to
find the right one for the requested product and loca-
tion.

• The consumer might impose certain time limits for the
product delivery which then affect the choice of the
shipping service.

To meet these requirements, most of the services are to
be discovered at run-time. Therefore, the sample application
is a good candidate to be realized in the above described
service-oriented architectural style. The model of the ar-
chitectural style supports the architect during the decision
whether the style is suitable for his application. He could,
e.g., specify a suitable initial configuration of the application
following the given architectural style. Then, the dynamic
model of the style is used to reason about possible recon-
figurations and to check if all required configurations of the
application are reachable. Figure 11 shows how an initial
configuration for the supply chain example might look like
based on the service-oriented architectural style described
in Section 2.

RetailerA:Service

UDDI:Discovery-
Service

s1:Service-
Specification

knows
Shipper:Service

s4:Service-
Specification

ManufacturerX
:Service

s5:Service-
Specification

WarehouseA
:Service

s3:Service-
Specification

knows

knows

p10:Property

p9:Property

s2:Service-
Specification

knows

knows

p4:Property

p5:Property

p6:Property

p7:Property

p8:Property

r3:Requirements

assumes

ConsumerUI
:Component

knows
p2:Property

p1:Property

r1:Requirementsrequires
ServiceFor

p3:Property

implicationr2:Requirements

requiresServiceForcould
Satisfy

implication

implication

implication

implication

Figure 11: An initial architectural configuration

p1 Service provides product catalog
p2 Service accepts purchase orders
p3 Maximum shipping time ≤ 72hrs
p4 Service provides product catalog
p5 Service accepts purchase orders
p6 Maximum shipping time ≤ 60hrs
p7 Service ships goods from A to B
p8 Maximum shipping time ≤ 60hrs
p9 Service ships goods from A to B
p10 Maximum shipping time ≤ 60hrs

Table 1: Properties

The configuration is depicted as a graph which represents
a valid instantiation of the static model of the architectural
style. It represents the initial architecture of the system in
a very abstract syntax. For better understandability, we are
working on a more convenient, concrete syntax with distinct
graphical symbols for the different elements.

In this case, the configuration comprises the involved ser-
vices of the supply chain including their specifications and
requirements. A DiscoveryService is added which knows all
the relevant ServiceSpecifications and can therefore serve as
a discovery agency for the participants of the supply chain.

For conciseness, the diagram shows only part of the prop-
erties contained in the specifications and requirements. At
this level of abstraction, we specify the properties informally
as indicated by Tab. 1. If one property implies the other, this
is shown as an implication link in the diagram. In order to
compute these implications dynamically at run time, a for-
malism for describing and reasoning about the properties
would be required. The lack of agreement on such a formal-
ism is one of the weaknesses of current implementations of
SoA, like web services, because this restricts the capabilities
for dynamic binding.

The following section discusses possible analysis tech-
niques which provide suitable support for validating the ar-
chitectural style in combination with a given application and
its initial configuration.

4. ANALYSIS
When using the SoA style in the supply chain manage-

ment application (in general, using an architectural style in
a certain application) one must ensure that the style is used
consistently by the application. In the current section, we
analyze the consistency of business communication scenar-
ios captured in the form of UML sequence diagrams (see
Fig. 10) with respect to the dynamic behavior of the SoA
style (see rules in Sec. 2.2) by model checking techniques.

For that purpose, we encode the specification of the ar-
chitectural style (consisting of the metamodel of the style,
a set of graph transformation rules capturing the dynamic
behavior and the model instance for the business applica-
tion) into a state transition system (following the guidelines
of [27,28]). Moreover, we formalize business application sce-
narios as (a set of) reachability properties, which is proved
automatically by the model checker Murφ by using assume-
guarantee reasoning. Finally, the results obtained from the
model checker can be further validated using simulation.

4.1 Transition systems
Transition systems (or state transition systems) are a

common mathematical formalism that serves as the input
specification of various model checker tools. They have cer-
tain commonalities (in many cases on the concrete language
level as well) with structured programming languages (like
C or Pascal) as the system/program is evolving by execut-
ing non-deterministic if-then-else like rules that manipulate
state variables. In all practical cases, we must restrict the
state variables to have finite domains, since model check-
ers typically traverse the entire state space of the system to
decide whether a certain property is satisfied.

Formally, a transition system TS = (V, Dom, T, Init) is
a 4-tuple where (i) V = {v1, ...vk} is the set of state vari-
ables (ii) taking their values from the corresponding finite
domains Dom = {dom1, ...domi} (iii) T = {τ1, ..., τn} is
the set of transitions (guarded commands) which is of the
form guard −→ v′

1 := e1, ..., v
′
n := en (where the guard is a

boolean condition and an action v′
1 := e1 specifies new as-

signments (updates) for state variable) inducing a transition

relation actτ (V, V ′) defined as guard ∧
∧k

i=1 v′
i = ei; while

(iv) Init is a predicate defining the initial state.
For our convenience, we suppose that state variables can

be stored in state variable arrays ranging on the set of object
identifiers, and they can be referred as vj [i]. In the paper,
the Murφ notation is used as the concrete representation of
transition systems due to its rather self-explanatory syntax.

The requirements (or properties to be verified) for models
specified by a transition system are frequently captured by
some temporal logic formulae. However, since only reacha-
bility properties are being proved in the current paper, we
define these concepts without the use of temporal logic op-
erations. In fact, a reachability property can be interpreted
as a special transition in the transition system that imme-
diately interrupts the model checking process if its guard
expression, which refers to the class of states to be checked
for reachability, is ever satisfied.

Given (i) a system model in the form of a transition system
TS (with semantics defined as a Kripke structure), and (ii) a
reachability property φ, the model checking problem can be
defined as to decide whether the special transition for the
reachability property is fireable on at least one execution
path of the system (i.e., whether TS |= φ).

In the sequel, model checking is enabled for graph trans-
formation systems by automatically translating them into
transitions systems. The main challenge in such a transla-
tion is that a naive encoding of the graph representation
of application models would easily explode both the state
space and the number of transitions in the transition system
even for simple models, therefore sophisticated optimization
techniques are required.

4.2 Declaring state variables
From a verification point of view, the state space of the

supply chain management application is constituted from
the different instance configurations of components and ser-
vices. As such configurations are handled formally as di-
rected and attributed graphs, the encoding techniques of
[27, 28] are applicable to drastically reduce this state space
by introducing state variable arrays only for dynamic model
elements.

A model element (object, link or attribute) is considered
to be dynamic if there is at least one rule that potentially

modifies (creates, destroys, updates) the element. For in-
stance, a ConnectRequest object is a dynamic element as
it can be created by rule sendConnectRequest, on the other
hand, the assumes links are static as no rules are provided
to modify them.

The encoding of dynamic model elements into state vari-
ables is driven by the metamodel. We define

• a one-dimensional boolean state variable array (a
unary relation symbol) for each dynamic class (such
as ConnectRequest, Session, and ServiceQuery in our
running example);

• a two-dimensional boolean state variable array (a bi-
nary relation symbol) for each association (e.g., re-
quiresServiceFor, sends, etc.);

• a one-dimensional state variable array with enumera-
tion range for each attribute (no dynamic attributes
in the model this time).

For model checking purposes, we must restrict the dimen-
sion of each array and all the enumeration types to be finite
during type declaration. For the corresponding graph trans-
formation system, this restriction implies that there exists
an a priori upper bound for the number of objects in the
model for each class. In this respect, we suppose that when
a new object is to be created it is only activated from the
bounded “pool” of currently passive objects (deletion means
passivation, naturally), and the same applies to the interpre-
tation of links.

As a consequence, the transition system corresponding to
our supply chain management model contains the following
piece of Murφ code to declare state variable arrays and their
domains for the model (we only provide a partial encoding
of the model due to space limitations).

-- Declaring domains for state variable arrays

comp_dom : enum {UDDI, RetailerA, WarehouseA,

Shipper, ManufactX, ManufactY,

ConsumerUI};

-- constrained by static parts

reqr_dom : enum {r1, r2, r3, r4};

reqs_dom : 1..10; -- constrained by an explicit UB

-- Declaring state variable arrays themselves

ConnectRequest : array [reqs_dom] of boolean;

requiresServiceFor : array [comp_dom] of

array [reqr_dom] of boolean;

Note that while the domain (i.e., the potentially ac-
tive instances) of components (comp dom) and requirements
(reqr dom) are constrained by the static parts of the model,
the constraint imposed on the domain of requests (reqs dom)
only provides an a priori upper bound (which can be in-
creased at compile-time if we run out of request objects
during model checking).

One can notice that request is the state variable array
introduced for the dynamic class ConnectRequest, while re-
quiresServiceFor is the state variable array of the correspond-
ing association in the metamodel.

4.3 Encoding initialization
In general terms, the initial configuration of the applica-

tion model is projected into the initial state of the transition
system. In this respect, exactly those locations of state vari-
able arrays evaluate to true in the initial state for which the

related model elements are existent in the initial configura-
tion.

The initialization of the transition system generated for
the application model depicted in Fig. 11 is given below.

startstate

begin

for x : reqs_dom do

ConnectRequest[x] := false;

endfor;

for x : comp_dom do

for y : reqr_dom do

if (x = ConsumerUI & y = r1) |

(x = ConsumerUI & y = r2)

then requiresServiceFor[x][y] := true;

else requiresServiceFor[x][y] := false;

endif;

endfor;

endfor;

end;

Note that as no request objects are present in the ini-
tial configuration, all locations in the state variable array
ConnectRequest are initialized to false. On the other hand,
initially, ConsumerUI requires service for Requirements r1
and r3.

4.4 Encoding the rules
Potential applications of the graph transformation rules

that specify the dynamic behavior of the style are encoded
into transitions (guarded commands) of the corresponding
transition system.

Since the encoding only introduces state variables for dy-
namic model elements, we also have to eliminate conditions
that refer to the static parts of the model. For that reason,
the generation process of transitions is driven by a graph
pattern matching engine, which collects all the matching in-
stances of the static parts of the preconditions of a rule. If
the guard of a certain guarded command can never be sat-
isfied due to the failure of pattern matching in the static
structure then this transition is not generated at all in the
target transition system.

Although this compile-time preprocessing can be time-
consuming, since all the potential matches of a rule have to
be encountered, we only have to traverse a relatively small
part of the state space for this step as graph transformation
rules define local modifications to the system state thus it is
typically negligible when compared with the time required
for traversing the entire state space during model checking.

For instance, we would generate (amongst many others)
the following transition as a potential application of rule
sendConnectRequest.

rule "sendConnectRequest[sr=ConsumerUI, s=uddi,

r=r2,sp=s2]"

knows[ConsumerUI][s2] &

couldSatisfy[s2][r2] &

requiresServiceFor[ConsumerUI][r2] &

==>

begin

ConnectRequest[1] := true;

receives[1][uddi] := true;

sends[ConsumerUI][1] := true;

connectFor[1][r2] := true;

end;

end;

Note again that only dynamic concepts are contained by
transitions. Therefore, the guard of the transition corre-
sponding to the precondition of the rule is reduced to check
for the existence of dynamic links knows, couldSatisfy and re-
quiresServiceFor in the associated locations of state variable
arrays.

As a result, the action of the transition activates (creates)
the request object 1 with the corresponding links receives,
sends and connectFor. 2

For the current case study, a manual generation of the tar-
get transition system (strictly following the guidelines of the
translation algorithm presented in [28]) was feasible due to
the relatively small size of the application model. However,
we are in an advanced phase in building a tool that imple-
ments the translation algorithm to provide automation for
this step.

Additionally, rules containing multi objects were trans-
formed into separate rules without multi objects (but with
additional control conditions encoded as attributes) in order
to fit into the translation approach. Alternatively, one could
easily extend the original translation approach to generate
the corresponding set of transitions for multiobjects as well
by enumerating all the possible for matchings.

4.5 Reasoning on scenarios
The main task of our proposed analysis framework is to

prove that a business scenario captured in the form of UML
sequence diagrams (like the one in Fig. 10 for supply chain
management) is consistent with the dynamic semantics of
the architectural style.

Our proposal is to check the reachability of consecutive
configurations obtained from the sequence diagrams by hor-
izontal cuts after abstracting from application specific de-
tails of business messages. The basic idea is demonstrated
on the concrete example of Fig. 12.

ConsumerUI:Component

RetailerA:Service

getCatalogRequest

initial configuration

target configuration

Figure 12: Slicing sequence diagrams

Here we are interested in showing that starting from the
initial configuration (defined by Fig. 11) component Con-
sumerUI is able to connect to the service RetailerA and issue a
catalog request (see message getCatalogRequest) afterwards
by applying the graph transformation rules of the style in a
proper sequence.

However, as the application-specific contents of business
messages are hidden for an architectural analysis, we do
not know, for instance, how the elementary operations (i.e.,
graph transformation rules) provided by the style to sub-
mit a request are actually distributed between business mes-
sages.

2Note that a more sophisticated solution is applied in the
original encoding [28] for handling the creation of dynamic
objects.

But even analyzing a scenario at such a high level of ab-
straction, one can ask whether the application configura-
tion obtained after sending business message getCatalogRe-
quest is reachable from the initial configuration. In our con-
crete example, such a target configuration can be an existing
session object between component ConsumerUI and service
provider RetailerA. This reachability property is encoded as
a special error transition in Murφ as follows.

rule "reachability property"

exists s: sess_dom do

session[s] &

interactsWith[s][ConsumerUI] &

accesses[s][RetailerA]

endexists

==>

error "A session is established between

ConsumerUI and RetailerA"

end;

Note that error is a keyword in Murφ to prescribe that the
model checking process should be terminated if the transi-
tion is fired. In case of proving reachability properties, this
is a desired situation.

Murφ automatically found an “error” trace consisting of
37 rule applications that proves the reachability of this tar-
get configuration in (an average) 14.2 seconds by a depth-
first search (running on a 550 MHz Pentium III machine
with a limit of 16M of system memory).

After that, the rest of the scenario can be verified by a
kind of assume-guarantee reasoning in order to reduce the
computational complexity of individual verification steps.

1. We identify relevant intermediate configurations (after
each message sent for a worst case analysis) by slicing
the sequence diagram of the business scenario.

2. First we prove that the target configuration defined by
the first cut is reachable from the initial configuration
by model checking.

3. Supposing then that the system is in the configuration
reached at the first cut, we prove afterward that the
configuration at the second cut is reachable as well
(and so forth for additional neighboring cuts).

4. As a result, individual verification steps can be carried
out independently from each other.

Finally, we would like to emphasize that unsuccessful pre-
liminary model checking attempts were also useful from a
validation point of view, as they revealed several unexpected
side effects of graph transformation rules. Resolving these
problems required to refine the rules with additional (typi-
cally negative) application conditions.

4.6 Simulation
The model checking analysis can be complemented by sim-

ulation. Due to the state explosion problem and the resulting
limitation of the state space, a model checker cannot take
into account the internal state of the involved components
and services. Thus, it could happen that, although the model
checker returns a certain sequence of architectural reconfig-
urations steps in order to prove the reachability of a given
configuration, this sequence is not feasible according to the
specific requirements of the actual application.

But, nevertheless, the resulting trace of operations can be
validated by simulation taking the model and the sequence
of operations as input and executing (at the model level)
the individual reconfigurations. Since such simulations do
not have to cope with the state explosion problem, the spe-
cific application information and the internal state of the
components can now be added to the model.

Simulation requires a tool for executing graph transfor-
mation rules. The object-oriented modeling tool Fujaba [1]
suits this purpose very well, because it combines an edi-
tor for UML class diagrams and graph rewriting rules with
a dynamic object browser that visualizes the effect of the
rewriting rules on a given model instantiation.

From the trace returned by the model checker, one can de-
rive a simulation driver which automatically instantiates the
initial configuration (see Fig. 11) and applies the given trace
of transformation rules to this configuration. With such a
driver the simulation is easier to handle and to repeat af-
ter some changes of the model. This is comparable to a test
driver, only that we are not testing an application, but only
simulating the execution at the model level. In a similar way,
the model checker could be used for the generation of test
cases for the actual implementation.

5. RELATED WORK
The work presented in this paper has been influenced by

several different proposals. First of all, we must say that the
idea of working on modeling and analyzing software archi-
tectures came from the many ADLs (Architectural Descrip-
tion Language) like Rapide [19], Wright [2], Darwin [20],
C2 [26], and xADL [9]. In all these approaches, we noticed
a mismatch between the abstraction level at which we usu-
ally model the software architectures of our systems and the
abstraction level offered by these languages. Our opinion
is that, while the semantics of concepts is clear and well-
defined, the concrete representation does not always offer
“usable” means to reason on complex architectures.

Our proposal overcomes the problem by pairing a well-
known notation, like UML, to represent concepts and sup-
ply a usable means, and graph transformation to formally
specify the way these elements can be composed and inter-
act. Also Medvidovic et al. [21] use UML to suitably render
software architectures. Their proposal emphasizes the defi-
nition of suitable stereotypes to represent the peculiar con-
cepts, but does not consider the problem of analyzing and
validating designed models.

Even more attention to the representation of concepts is
payed by Garlan et al. in [12], where they propose several
different alternatives for modeling architectural structures
using UML. They present a systematic approach to the use
of UML and describe the strength and weaknesses of adopt-
ing a particular modeling strategy. The main goal of our
work is not on rendering architectural concepts with UML,
thus we can say that this work can be seen as a complement
to our proposal to better address the concrete syntaxes of-
fered to users.

The formal foundation and analysis capabilities of our ap-
proach come from both graph transformation as a means
to reason on software architectures and model-checking as a
way to assess their quality. In this context, we must mention
the CHAM approach [16], in which architectural reconfigu-
ration is studied in terms of molecules and reactions, and
the proposals that represent architectural styles by means

of graph grammars [15,18,25,29] and reason on changes and
evolution with respect to structural constraints.

Some of these approaches, use a graph grammar to specify
the class of admissible configurations of the style. Our pro-
posal utilizes a static model – class diagrams along with
constraints – to identify valid instances of a given style.
Graph transformation rules model only the dynamic aspects
like evolution and reconfiguration. The advantage is that a
declarative specification is more abstract and easier to un-
derstand, even if constructive/operational ones are better
for analysis and tools.

In fact, the use of model checking techniques for graph
transformation seems to be original. In the area of soft-
ware architectures, Muccini, in his Ph.D. thesis [22], pro-
poses a way to transform architectural descriptions into
suitable SPIN specifications. The three-step approach starts
with transforming architectural models, which describe the
behavior of components, into a Promela specification. This
specification can be enriched by adding information on the
communication type that can be obtained from the scenarios
associated with the architecture. In the second step, scenar-
ios are translated into LTL formulae and – as third step
– he uses SPIN to check if the LTL formulae are verified
on the obtained global model. The main difference is that
he models behavioral aspects through state-based machines
and scenarios which are not directly able to model dynamic
reconfiguration, but only the communication among compo-
nents. In our case, scenarios are only used to encode reach-
ability properties while graph transformation rules specify
the reconfiguration explicitly.

Self-adaptive and self-healing systems [13] is the last do-
main with which we think that we should compare our work.
For example, Georgiadis et al. [14] model structural architec-
tural styles for these systems by means of Alloy. The model
is neat and elegant, but again we think that a clear and
separate representation of how the system can adapt or re-
pair itself is important to make designers fully understand
how their models can evolve and try to identify – through
suitable analysis – possible problems.

6. CONCLUSION
The paper presents an approach to modeling and analyz-

ing software architectures based on modeling the architec-
tural style through class diagrams – along with constraints –
and the dynamic behavior using a graph transformation sys-
tem. The whole approach is instantiated on service-oriented
architectures to better exemplify presented concepts. Be-
sides modeling the style, we exemplify our approach by
means of a simple supply chain management system. This is
intended to both show how a particular architecture should
look like and to exemplify the analysis capabilities that we
have associated with our approach. The model of the style
and configurations specific to the application are encoded
in a way suitable to the Murphφ model checker. Scenarios,
modeled as sequence diagrams, become reachability proper-
ties on which we want to validate the model.

The first results on applying the approach are giving en-
couraging results, but our current work is mainly devoted at
refining our proposal. The elements on which we are working
are:

• Different solutions – besides those presented in the pa-
per – for expressing rules, constraints, etc. to find the

right balance between expressiveness and analyzabil-
ity. This includes alternative control mechanisms for
graph transformation, like priorities or explicitly pro-
grammed control.

• Extensions to address adaptability and the capabil-
ity of automatic recovery [13]. Rules offer a clean and
neat way to specify how the architecture should react
to the different stimuli, and the analysis capabilities
allow the designer to predict the behavior of specified
architectures.

• Implementation issues. The graph transformation sys-
tem can be seen as the coordinator that supervises the
adaptation process. In this context we do not want
to discuss all related problems, but rather we want to
identify the possibility of using the same technology
both as modeling means and as run-time supervisor.

• Derivation of suitable test cases. We would like to use
the graph transformation system to derive both suit-
able test cases and model-based oracles to assess the
quality of test results. The two aspects can be tack-
led independently: Test case generation for architec-
tures is nothing new (see for example [4]), the novelty
is the rule-based derivation. To the best of authors’
knowledge, there are no proposals to derive test cases
from graph transformation systems, but grammar-
based test case generation has been already proposed
if we consider pure textual grammars ([6]).

• Tool support. Any methodology must be suitably sup-
ported by tools. In this case, we are planning to ex-
tend some open-source environments like eclipse, along
with its UML add-ins, to model software architectures
and directly integrate with Murpφ or another model-
checker.

7. REFERENCES

[1] From UML to Java and Back Again: The Fujaba
homepage. www.fujaba.de.

[2] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, School of Computer Science, Carnegie Mellon
University, 1997.

[3] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Modelling
and analysis of architectural styles based on graph
transformation. In Proc. 6th ICSE Workshop on
Component-Based Software Engineering (CBSE6):
Automated Reasoning and Prediction, 2003. To appear.

[4] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini.
Deriving test plans from architectural descriptions. In
Proceedings of the 22nd International Conference on
Software Engineering, pages 220–229. ACM Press, June
2000.

[5] P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of
Visual Languages based on Critical Pair Analysis and
Contextual Layered Graph Transformation. In Proc. IEEE
Symposium on Visual Languages, September 2000. Long
version available as technical report SI-2000-06, University
of Rom.

[6] A. Celentano, S. Crespi Reghizzi, P.L. Della Vigna,
C. Ghezzi, and F. Savoretti. Compiler testing using a
sentence generator. Software — Practice & Experience,
10:897–918, 1980.

[7] M. Champion, C. Ferris, E. Newcomer, and D. Orchard.
Web Service Architecture, W3C Working Draft, 2002.
http://www.w3.org/TR/2002/WD-ws-arch-20021114/.

[8] M. Chapman, M. Goodner, B. Lund, B. McKee, and
R. Rekasius. Sample Application Supply Chain
Management Architecture. Web Services Interoperability
Organization, 2002. http://www.ws-i.org/
SampleApplications/SupplyChainManagement/2002-11/SC%
MArchitecture-0-11-WGD.pdf.

[9] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. An
infrastructure for the rapid development of XML-based
architecture description languages. In Proceedings of the
24th International Conference on Software Engineering
(ICSE-02), pages 266–276, New York, May 19–25 2002.
ACM Press.

[10] H. Ehrig, G. Engels, H-J. Kreowski, and G. Rozenberg,
editors. Handbook on Graph Grammars and Computing by
Graph Transformation, volume 2: Applications, Languages
and Tools. World Scientific, 1999.

[11] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language. In G. Engels and G. Rozenberg,
editors, Proc. of the 6th International Workshop on Theory
and Application of Graph Transformation (TAGT),
Paderborn, Germany, LNCS 1764. Springer Verlag, 1998.

[12] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling
The Needs of Architectural Description with
Object-Modeling Notations. Science of Computer
Programming, 44(1):23–49, July 2002.

[13] D. Garlan, J. Kramer, and A.L. Wolf, editors. Workshop on
Self-Healing Systems, 2002.

[14] I. Georgiadis, J. Magee, and J. Kramer. Self-Organising
Software Architectures for Distributed Systems. In
Proceedings of WOSS’02: Workshop on Self-Healing
Systems, pages 33–38, 2002.

[15] D. Hirsch and M. Montanari. Synchronized hyperedge
replacement with name mobility. In Proc. CONCUR 2001,
Aarhus, Denmark, volume 2154 of Lecture Notes in
Computer Science, pages 121–136. Springer-Verlag, August
2001.

[16] P. Inverardi and A. Wolf. Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model. IEEE Transactions on Software
Engineering, 21(4):373–386, April 1995.

[17] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified

Software Development Process. Addison Wesley, 1999.
[18] Le Métayer, D. Software architecture styles as graph

grammars. In Proceedings of the Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
volume 216 of ACM Software Engineering Notes, pages
15–23, New York, October 16–18 1996. ACM Press.

[19] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
and W. Mann. Specification and analysis of system
architecture using rapide. IEEE Transactions on Software
Engineering, 21(4):336–355, April 1995.

[20] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
Proceedings the 5th European Software Engineering
Conference, volume 989 of Lecture Notes in Computer
Science, pages 137–153. Springer-Verlag, September 1995.

[21] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E.
Robbins. Modeling software architectures in the Unified
Modeling Language. ACM Transactions on Software
Engineering and Methodology, 11(1):2–57, January 2002.

[22] H. Muccini. Software Architecture for Testing,
Coordination and Views Model Checking. PhD thesis,
Universtà degli Studi di Roma “La Sapienza”, 2002.

[23] Object Management Group. UML specification version 1.4,
2001. http://www.omg.org/uml/.

[24] A. Schürr, A.J. Winter, and A. Zündorf. In [10], chapter
The PROGRES Approach: Language and Environment,
pages 487–550. World Scientific, 1999.

[25] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change
manegement by distributed graph transformation: Towards
configurable distributed systems. In Proceedings TAGT’98,
volume 1764 of Lecture Notes in Computer Science, pages
179–193. Springer-Verlag, 2000.

[26] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J.
Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy, and
D.L. Dubrow. A component- and message-based
architectural style for GUI software. IEEE Transactions on
Software Engineering, 22(6):390–406, June 1996.

[27] D. Varró. Towards symbolic analysis of visual modelling
languages. In Paolo Bottoni and Mark Minas, editors, Proc.
GT-VMT 2002: International Workshop on Graph
Transformation and Visual Modelling Techniques,
volume 72 of ENTCS, pages 57–70, Barcelona, Spain,
October 11-12 2002. Elsevier.

[28] D. Varró. Towards automated formal verification of visual
modeling languages by model checking. 2003. Extended
version of [27]. Submitted.

[29] M. Wermelinger and J.L. Fiadero. A graph transformation
approach to software architecture reconfiguration. In
H. Ehrig and G. Taentzer, editors, Joint
APPLIGRAPH/GETGRATS Workshop on Graph
Transformation Systems (GraTra’2000), Berlin, Germany,
March 2000. http://tfs.cs.tu-berlin.de/gratra2000/.

