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ABSTRACT
Modern architectural styles, like the service-oriented style
underlying web services, are highly dynamic. This compli-
cates not only their practical application, but also the mod-
eling and prediction of their behavior. To account for this
problem, we propose to model architectures as graphs, rep-
resented as instances of UML class diagrams, and to describe
their reconfigurations by graph transformation rules. Based
on a sample model for service-oriented architectures, we dis-
cuss what properties are interesting to be analyzed and how
such analysis could be performed.

1. INTRODUCTION
Nowadays, applications have to be adaptable to changes

in (at least) two dimensions: Changing requirements, like
requests for new functions, may require to integrate new
components either statically or at run-time. Changing en-
vironments, like faulty communication channels or mobility
leading to a reduced bandwidth, may require to replace un-
reachable components.

Current component platforms like CORBA, EJB, or Web
Services provide the basic techniques to realize the required
flexibility through reconfiguration mechanisms, like dynamic
loading and binding of components. However, when using a
platform to implement an application, the more interesting
questions are non-technical ones, like:

• Is a desired configuration reachable from an initial con-
figuration?

• Is an application scenario realizable on the platform?

• Which sequence of operations is required to reach the
desired configuration / realize the scenario?
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In order to answer such questions, an architectural model
is required which allows to reason on a more abstract level,
disregarding implementation details like the technicalities of
the component model employed. Still, this abstraction must
not lead to ambiguity, as reasoning on complex problems
requires a high degree of precision. This is usually provided
by formal architectural description languages (ADLs) like
Wright [1] or Rapide [19].

On the other hand, some of the above questions require
knowledge of the problem domain. Therefore, the model
needs to be understood and validated by domain experts
with little or no background in formal specification. Here,
an explicit, visual representation of the architecture in some
diagrammatic languages like the Unified Modeling Language
(UML) [24] is often regarded as helpful, even if we risk to
trade this intuitive nature for ambiguity.

At the same time, both UML-based architectural models
and architectural description languages are not very good
at describing the highly dynamic nature of today’s architec-
tures, with unbounded creation and deletion of components
and connectors.

Based on this observation, we propose a combination of
UML modeling and graph transformation as a visual, yet for-
mal approach to model (and reason about) component archi-
tectures. In particular, we use transformation rules to spec-
ify architectural reconfiguration, but also possible changes
in the environment, by graphical pre/post conditions.

Since these models are executable, they support auto-
mated reasoning by means of simulation using graph trans-
formation tools like PROGRES [28] or Fujaba [10], e.g., in
order to check the applicability of a certain sequence of ba-
sic reconfiguration steps in a given situation. Moreover, the
theory of graph transformation provides the basis for static
analysis, like the computation of critical pairs to detect con-
flicts or causal dependencies [4], or model checking [31] to
answer questions about the reachability of configurations.

In this paper, we present an application of these ideas
to service-oriented architectures (SoAs) which are typical
for their dynamic nature, given the run-time detection of
components through registry services and subsequent dy-
namic binding. Our model for service-oriented architectures
is introduced in Section 2. Based on this model, Section 3
explores possibilities for automated analysis. Section 4 sur-
veys the related work while Section 5 concludes the paper
and discusses possible future work.



2. MODELING
In this section, we present our proposal for modeling archi-

tectural styles with UML diagrams and graph transforma-
tion rules. An architectural style includes a static and a dy-
namic specification. The static part, described in Section 2.2,
defines the set of possible components and connectors and
constrains the way in which these elements can be linked to-
gether. The dynamic part, described in Section 2.3, specifies
how a given architecture can evolve in reaction to planned
reconfigurations or unanticipated changes of the environ-
ment. For better understanding, we choose service-oriented
architectures as a case study for our proposal.

2.1 Service-oriented architectures
As shown in Fig. 1, taken from [6], service-oriented ar-

chitectures involve three different kinds of actors: service
providers, service requestors and discovery agencies. The
service provider exposes some software functionality as a
service to its clients. Such a service could, e.g., be a SOAP-
based web service for electronic business collaborations over
the Internet.

In order to allow clients to access the service, the provider
also has to publish a description of the service. Since ser-
vice provider and service requestor usually do not know each
other in advance, the service descriptions are published via
specialized discovery agencies. They can categorize the ser-
vice descriptions and provide them in response to a query
issued by one of the service requestors. As soon as the ser-
vice requestor finds a suitable service description for its re-
quirements at the agency, it can start interacting with the
provider and using the service.
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Figure 1: Service-oriented architecture

Such service-oriented architectures are typically highly
dynamic and flexible because the services are only loosely
coupled and clients often replace services at run-time.
Firstly, this is advantageous if the new service provides a
better alternative to the former one concerning functional-
ity or quality of service. Secondly, this kind of reconfigura-
tion might become necessary if a service is not reachable any
longer because of network problems.

If a requestor wants to connect to a new service but re-
quires a certain level of quality from this service, it is imag-
inable that these quality properties can only be guaranteed
under certain assumptions. This means that the quality or
functionality of the provided service might depend on other
third-party services used by the service itself. For this rea-
son, the service provider might have to find suitable sub
services on its own before being able to confirm a request
for a certain level of quality.

2.2 Static model
UML class diagrams [24] model the static part of the ar-

chitectural style, which involves three different types of ele-
ments: structural elements, messages, and specification doc-
uments. These three groups are organized into individual
packages. Due to space limitations, Fig. 2 provides an inte-
grated overview of all three packages.

The structural elements like Component and Service are
obviously required for the static model. In our case, a Com-
ponent can play different Roles at the same time, i.e., a Ser-
viceProvider can also be a ServiceRequestor and vice versa.
The DiscoveryAgency is considered as subclass of Service-
Provider because it provides services dedicated especially to
publishing and querying the service specifications. A Ser-
viceRequestor interacts with a Service via a Session instance.
This session contains the information about the current state
of the interaction for each requestor since it is possible that
different clients interact with the same service simultane-
ously. Hence, the session represents the actual connection
between a requestor and a service.
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Figure 2: Service-oriented architectural style

Since a component that wants to initiate a certain re-
configuration usually has to communicate this to other af-
fected components, we also provide the necessary types of
messages: The Query message is used when searching the
discovery agency for certain service specifications, and the
Request and Disconnect messages are used for the creation
and cancellation of a session.

We also include representations of specification documents
in the static model. They are necessary to describe recon-
figuration operations in which a component is dynamically
searched at run-time and bound to certain requirements.
There are two types of specification documents: Require-
ments and ServiceSpecifications, which both contain a set
of Properties. In the case of a Requirements document, these
properties are required by a ServiceRequestor for the Service
it wants to use. In the case of a ServiceSpecification describ-
ing a particular service, these properties are guaranteed by
the ServiceProvider. In some cases this might only be possible
under certain assumptions (modeled by an assumes associa-
tion to new Requirements).

The associations between the classes define how the above



mentioned elements can be linked in a concrete architecture,
constrained by the given cardinalities1. Other constrains and
well-formedness rules can be added as OCL expressions [24].
For instance, the following expression restricts the allowed
implies links between Properties to those pairs which actually
satisfy a logical implication: 2

context Property inv:

self.implies->forAll(p|self.expression

implies p.expression)

An architecture compliant with the style can be regarded
as an instantiation of the class model like in Fig. 3: Compo-
nent comp2, which provides service s1 to the requestor sr1,
also plays the service requestor role sr2 and uses the service
s2. This is necessary to guarantee property p4 of the service
specification whose assumptions are satisfied by s2. In this
situation the session se2 is required to serve session se1. We
model this dependency as a requiredBy link between the two
sessions. This link can then serve as a reminder if somebody
wants to close se2 while se1 is still running.
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Figure 3: Example service-oriented architecture

2.3 Dynamic model
In order to reason about planned or unanticipated recon-

figurations of architectures, we use graph transformation
rules to capture the dynamic aspects of the architectural
style. There are (at least) two different ways of visualizing
a graph transformation rule. One is to present a rule as a
pair of two instance graphs of the architectural style de-
fined in Section 2.2. The graph on the left-hand side defines
the pre-conditions for the rule application, the graph on the
right-hand side defines the post-conditions. In order to apply
the rule, a matching of the left-hand side with a subgraph
of the actual architecture has to be found.

For conciseness, we propose to integrate the two instance
graphs into one UML collaboration diagram [24]. Elements
which are then added to the architecture by the rule appli-
cation are tagged with the label {new}, and elements which
are deleted with the label {destroyed}. Unlabeled elements
together with the {destroyed} elements form the left-hand-
side, and the unlabeled elements together with the {new}
elements form the right-hand-side of the rule.

Figure 4 shows a first example of such a rule in which
a service requestor sends a request to the service it would

1No explicit cardinality means 0..n by default in Fig. 2.
2The first implies refers to the name of the association (see
Fig. 2), the second one refers to the reserved OCL operator.

like to connect to. As precondition the ServiceRequestor has
to know a ServiceSpecification which couldSatisfy its Require-
ments. As postcondition the Request is created and linked
to all Properties of the Requirements. This is done because
the service provider that receives the request has to confirm
all the required properties before a successful connection to
the service can be established.
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Figure 4: Creating a request for a known service

Due to space limitations we cannot present all reconfigu-
ration rules for the service-oriented architectural style, but
only a condensed excerpt. Therefore, we omit the rules which
deal with the just created Request and try to confirm all re-
quired properties on the service provider side. Each time, the
service provider can actually guarantee one of the required
properties, the link toConfirm between that Property and the
Request is deleted. Finally, if all properties have successfully
been confirmed to the ServiceRequestor, a new Session for
the Service is established as shown in Fig. 5.
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Figure 5: Create session and connect to the service

This rule contains a negative application condition which
prevents its application if there are no properties in the re-
quirements which still have to be confirmed by the provider.
Otherwise, the rule can be applied to the architecture. It
creates a new session instance which realizes the connection
between the requestor and the service. Since the request has
been fulfilled, the corresponding message can be deleted. Af-
ter that, the binding of the requestor to the new service has
been completed, and it can access the service.

The basic dynamic model consists of about ten more
transformation rules which cover publishing a service de-
scription to a discovery agency, querying the agency for a de-
scription, creating a request for the service aiming at a new
session, and disconnecting from an existing session. They do
not yet capture a fault model and related repair mechanisms.
If a more complex reconfiguration step requires a sequence
of individual transformation rules, these rules could be com-
bined using explicit control flow constructs. For instance,
story diagrams [9] combine graph rewriting rules based on
UML object diagrams with control flow elements as provided
by UML activity diagrams.



3. ANALYSIS
In this section, we identify automated means to formally

reason about the correctness and consistency of architec-
tural styles and concrete architectures captured by high-
level specifications in the form of structural UML diagrams
and graph transformation rules as discussed in Sec. 2.

3.1 Properties
Essentially, the analysis tasks we aim to carry out can be

grouped into three main areas (as summarized in Fig. 6).
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Figure 6: Analysis tasks

1. Conformance of the model of the architectural
style to the informal requirements. At first, we
have to show that the model of an architectural style
fulfills the informal requirements. In this respect, the
intuitively constructed graph transformation rules are
validated whether they faithfully capture the intended
dynamic behavior (i.e., the protocol or scenario) of the
style. As for our SoA example, one can be interested
in proving that, for instance, (i) each time a required
service is provided by a certain provider, a connection
will be built up sooner or later between the requestor
and provider components, and (ii) eventually, the re-
questor and provider will be disconnected.

2. Conformance of the implementation of the ar-
chitectural style to its model. A further analysis
task is to prove that a concrete implementation of an
architectural style (such as a specific middleware) cor-
responds to the formal model we constructed.

3. Consistency of an application and an architec-
tural style. From an application point of view, it is
much more important to prove that an architectural
style is properly used by the application. Hence we
need to show that the style and the application is con-
sistent from both a static (well-formedness constraints
are satisfied) and dynamic point of view (the applica-
tion implements the protocol soundly). For instance,
in a given application that uses the SoA style, one can
ask whether an execution sequence of the application
describing how to query a given service is consistent
with the protocol defined by the style. Here, we typ-
ically perform verification as the behavioral model of
the application is compared with a reference specifica-
tion defined by the architectural style.

In the presence of faults, a carefully constructed fault
model (captured (i) on the model level by additional graph
transformation rules or (ii) on the requirements level by fur-
ther assumptions) aims at formalizing what changes in the

context are encountered. Afterwards, we can first assess the
fault-tolerant capabilities of the style itself by proving con-
sistency when certain well-formedness constraints are not
satisfied by the application or the context. After identifying
the dependability bottlenecks where certain repair actions
are indispensable, new rules can be introduced to the opera-
tional description of the style to provide such repair mecha-
nisms. Thus, the model checking process may continue with
an extended rule set.

Below, we provide a brief overview of automated valida-
tion (Sec. 3.2) and verification (Sec. 3.3) techniques that
we want to use to assess the correctness and consistency
analysis of graph transformation based descriptions of ar-
chitectural styles.

3.2 Validation
For the validation of the graph transformation rules aim-

ing to capture the dynamic behavior of the architectural
style, we propose two different techniques (with sufficient
tool support):

• Interactive simulation. Many existing graph trans-
formation tools (like Fujaba [10] or PROGRES [28])
offer an interactive visual environment for simulating
the rules in order to estimate the behavior of an appli-
cation in various situations. Simulation allows design-
ers to play with “what if” scenarios and to concentrate
on the key aspects of the particular architecture. Re-
sults are not as complete as with analysis, but they are
readily available and more interactive.

• Critical pair analysis. Critical pair analysis [4] is
a powerful technique to statically detect potentially
conflicting rule pairs by automatically generating sam-
ple models for which the application of the two rules
would be in conflict. Afterwards, the validator inves-
tigates these problematic situations to decide whether
they really cause problems.

3.3 Verification
For the consistency verification of architectural styles, we

propose:

• Reachability analysis by graph parsing. Many
verification problems can be formulated as the reacha-
bility (or non-reachability) of a given configuration of
the system. Built upon the technique of graph pars-
ing, one can decide whether the target configuration
can be generated by the graph transformation system
if started from a specific initial model, thus providing
means to backward reachability analysis.

• Model checking graph transformation systems.
Given the structural description of the architectural
style, the graph transformation system, and an arbi-
trary (bounded) model instance of a given application,
we can automatically generate a state transition sys-
tem [31] and verify properties by model checking.

While previous techniques for validation preserve all
information of the modeled system, in the model
checking case only dynamic parts of the application
(i.e., those that can be altered by a rule) are projected
into the target transition system while static parts are



simplified by a compile time preprocessing in order to
obtain a manageable state space.

Properties to be verified are captured in the specifica-
tion language of the model checker tool, which typi-
cally take the form of temporal logic formulae (as in
the case of SPIN [16] or SAL [2]), or simple transitions
that are not allowed to fire during model evolution
(e.g., in Murφ [23]).

4. RELATED WORK
Several proposals have influenced our work. First of all, we

should mention the many ADLs (Architectural Description
Language): Rapide [19], Wright [1], Darwin [20], C2 [30], and
xADL [7] that gave us the first impulse. All these approaches
mainly concentrate on concepts, which are well-defined, but
in too many cases, the languages that render them are too
difficult for the user. This is why we decided for a well-known
representation of concepts, paired with a formal definition
of their interaction and composition. Given the UML-like
representation, we must mention the works by Medvidovic
et al. [21] and by Garlan et al. [11]. They both study the
suitability of UML to represent software architectures and
identify some different alternatives. They can be seen as
complement – instead of alternatives – to our proposal: We
do exploit UML class diagrams to define the style of the
architecture, but we do not address the problem of ascribing
these concepts with a concrete syntax as proposed by the
two aforementioned papers.

If we move to modeling the dynamic aspects, we must
mention the CHAM approach [17], in which architectural
reconfiguration is studied in terms of molecules and reac-
tions, and the proposals that represent architectural styles
by means of graph grammars and reason on changes and
evolution with respect to structural constraints. Some ap-
proaches [18,29,32] assume a global point of view when de-
scribing reconfiguration steps which, in a real system, cannot
be taken for granted. Other approaches (for example [15])
model reconfiguration from the point of view of individual
components which synchronize to achieve non-local effects.
Here, locality corresponds to context-freeness, that is, a rule
is local if it accesses only one component (or connector) and
their immediate neighborhood. Synchronization of rules is
expressed in the style of process calculi.

Our proposal differs from the others since we do not use
a grammar to generate the particular architecture. We use
a model (i.e., class diagram and constraints) to express the
valid instances of a given style. Graph transformation rules
are exploited only to render the dynamic aspects like evolu-
tion and reconfiguration. The advantage is that a declarative
specification is more abstract and easier to understand, even
if a constructive/operational one is better for analysis and
tools. As to the use of graph transformation, this approach
is clearly inspired by what presented in [14] where the same
ideas are applied to modeling the dynamic evolution of Web
applications.

The most comprehensive work on analyzing architectures,
is the Ph.D. thesis by Muccini [22] which offers a wide and
complete presentation of the efforts on modeling, analyzing,
and testing software architectures. He also proposes model-
checking as a means to analyze architectures, but we start
from two different perspectives. He directly models the par-
ticular instances as automata and their communication us-

ing message sequence charts; we adopt a wider approach and
concentrate on evolution at style level. Architectures can
evolve only because they are instances of particular styles.

We also want to take into account implementation-
oriented approaches and proposals on self-adaptive and self-
healing systems [12]. In the first set, we want to mention
the work by Rutherford et. al. [27] that uses Enterprise Jav-
aBeans as the underlying component model. It is interesting
because of the “concrete” viewpoint, but they do not main-
tain a neat architecture model as we propose. In the second
set, Oreizy et al. [25] discuss the problem and identify a set
of significant needs. Georgiadis et al. [13] model structural
architectural styles by means of Alloy: Their models are con-
cise and elegant, Alloy supports automatic analysis, but the
expressiveness of these models is not self-evident.

5. CONCLUSIONS AND FUTURE WORK
The paper presents a case study on modeling and analyz-

ing architectural styles with graph transformation, exempli-
fied on service-oriented architectures.

Our current work is on experimenting different solutions
– besides that presented in the paper – to express rules,
constraints and control mechanisms to find the right balance
between expressiveness and analyzability.

Rules can be extended to address adaptability and the ca-
pability of automatic recovery ( [12]). If we consider modern
scenarios where applications are ubiquitous and they must
adapt their behavior to the context in which they are exe-
cuted, a disciplined approach to modeling these aspects is
essential. Rules offer a clean and neat way to specify how
the architecture should react to the different stimuli, but the
analysis capabilities – both model-checking and simulation
– complement the design with the capability of automatic
reasoning and predicting the behavior of specified architec-
tures. In a similar way, rules can specify the self-healing
capabilities associated with the specific style or family of
architectures.

Notice that the graph transformation system can also be
seen as the coordinator that supervises the reconfigurations.
In this context we do not want to discuss all related prob-
lems and implementation issues, which would be premature,
but rather to pinpoint the possibility of using the same tech-
nology both as modeling means and as run-time supervisor.

If we do not embed the graph transformation system in the
running environment, we can use it to test the architecture.
Plans here cover the derivation of both suitable test cases
– at architecture level – and model-based oracles to assess
the quality of test results. The two aspects can be tack-
led independently: Test case generation for architectures is
nothing new (see for example [3]), the novelty is the rule-
based derivation. To the best of authors’ knowledge, there
are no proposals to derive test cases from graph transfor-
mation systems, but grammar-based test case generation is
almost standard practice if we consider pure textual gram-
mars ( [5]).

Similar considerations apply to oracle generation: model-
based oracles are well-known (e.g., [26]), but the use of a
graph transformation system as abstract level is innovative.
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[31] D. Varró. Towards symbolic analysis of visual modelling
languages. In Paolo Bottoni and Mark Minas, editors, Proc.
GT-VMT 2002: International Workshop on Graph
Transformation and Visual Modelling Techniques,
volume 72 of ENTCS, pages 57–70, Barcelona, Spain,
October 11-12 2002. Elsevier.

[32] M. Wermelinger and J.L. Fiadero. A graph transformation
approach to software architecture reconfiguration. In
H. Ehrig and G. Taentzer, editors, Joint
APPLIGRAPH/GETGRATS Workshop on Graph
Transformation Systems (GraTra’2000), Berlin, Germany,
March 2000. http://tfs.cs.tu-berlin.de/gratra2000/.


