
Technical Report

An XML Schema Description of

Graph Transformation Systems

by

D�aniel Varr�o,

Andr�as Pataricza

December, 2000

Budapest University of Technology and Economics

Department of Measurement and

Information Systems

Abstract

XML Schema is a candidate recommendation of the World Wide Web Consortium intro-

duced to provide a type system that would enhance the construction and validation of XML

documents.

During the APPLIGRAPH Subgroup Meeting on Exchange Formats for Graph Transfor-

mation, the work package \XML Schema and its Conformance with MOF Metamodels" was

constituted in order to assess whether it is possible to make an XML Schema description for

graph transformation systems.

The current report summarizes our work on the topic in the following way.

� The main features of XML Schema documents are discussed from a modelling aspect.

� A sample XML Schema encoding of the improving metamodel of graph transformation

systems is provided. 1

Contents

1 Introduction 2

2 XML Schema: Basic Concepts 2

2.1 A Sample XML Document . 3
2.2 XML Schema Basics . 3
2.3 Element and Attribute Declarations . 4
2.4 Complex Type De�nitions . 4
2.5 Simple Datatypes . 6
2.6 Content Models . 6
2.7 Element and Attribute Cardinality . 7

3 XML Schema: Namespaces and Quali�cation 8

3.1 Target Namespace and Unquali�ed Locals . 8
3.2 Quali�ed Locals . 10

4 XML Schema: Advanced Modelling Concepts 11

4.1 Extension . 12
4.2 Restriction . 13
4.3 Abstract Elements and Types . 16
4.4 Summary of XML Schema . 16

5 An XML Schema Description of Graphs (GXL-GTXL) 17

5.1 The GXL Metamodel (Version 0.7.2) . 17
5.2 Attribute and Type System . 18
5.3 Graphs and Graph Elements . 19
5.4 Nodes and Edges . 20
5.5 Context and Links . 21

6 Conclusion 22

1This work was supported by the Hungarian National Scienti�c Foundation Grant OTKA T030804

1

1 Introduction

A �rst step towards a standardized, common model interchange format providing a uniform
graph description and rule representation [2] that is capable of handling the most fundamen-
tal concepts of graph transformation was carried out in during the APPLIGRAPH Subgroup
Meeting on Exchange Formats for Graph Transformation [1]. A potential candidate is the novel
standard of the web, the Extensible Markup Language (XML), which allows the interchange of
models in a distributed environment (i.e. Internet).

During the meeting a �rst version of a MOF metamodel for graph transformation systems
(GXL-GTXL) was constituted in the form of UML Class Diagrams. Unfortunately, high level
UML diagrams do not provide a straightforward encoding to DTDs (describing the structure of
XML documents).

� Automatically generated XMI descriptions (which provide the closest correspondence with
MOF metamodels with respect to modelling concepts) are verbose in contrast with manual
DTD encodings.

� Compact DTDs derived manually from the GXL-GTXL metamodel are inconsistent from
certain aspects with the original high abstraction level metamodel, which fact originates
in the lack of a �ne{grained type and inheritance system in DTDs.

At the Appligraph meeting, a work package was opened to reveal the possibilities and lim-
itations of the novel evolving method for document validation XML Schema. Additionally, a
correspondence was to be identi�ed between UML based MOF metamodels and XML Schema
constructs.

The aim of the current report is to give an overview on the major concepts of XML Schema,

moreover, to construct a partial encoding of the GXL-GTXL metamodel using XML Schema.

The current report is NOT

� a precise speci�cation of the XML Schema language;

� a complete description of XML Schema datatypes or structures;

� an exhaustive encoding of the GXL-GTXL metamodel.

It rather provides a general introduction of major concepts from a modelling point of view
by several examples taken from di�erent sorts of graphs. In addition, the sample XML Schema
description of graph transformation systems is just one possible (and partial) encoding mainly
for demonstration purposes. However, we tried to keep the GXL DTD and our XML Schema
description as consistent as possible.

The current report is structured as follows. From Section 2 to Section 4, a brief introduction
to the major concepts of XML Schema is provided with several examples. Section 5 contains
an XML Schema description of graphs conforming to the GXL-GTXL metamodel. Finally,
Section 6 concludes our paper.

2 XML Schema: Basic Concepts

XML Schemata are an XML dialect for describing and constraining the content of XML doc-
uments. XML Schemata are currently in the Candidate Recommendation phase of the W3C
development process which means that the XML Schema Working Group considers it to be
stable and encourages to comment on it.

2

2.1 A Sample XML Document

The concepts of writing an XML Schema are usually introduced through a sample XML docu-
ment. Let us take a graph model for our purpose.

Example 2.1. Our sample XML document contains a directed graph (g 0) with two nodes (n 1,

n 2) connected by an edge (e 3) leading from n 1 to n 2. A unique identi�er is attached to each

edge as indicated by the boolean attribute of graphs (edgeids).

<?xml version="1.0"?>

<!-- Ids are attached to edges in the current graph model -->

<Graph edgeids="true">

<!-- A node element of type SimpleState -->

<Node id="n_1">

<type>

SimpleState

</type>

</Node>

<!-- A node of type CompositeState -->

<Node id="n_2">

<type>

CompositeState

</type>

</Node>

<!-- An edge between node n_1 and n_2 -->

<Edge id="e_3" from="n_1" to="n_2" />

</Graph>

The example contains a main element Graph, and subelements Node and Edge, which may
contain in turn other subelements (e.g. Type). Identi�ers (id) are also attached to these
elements.

2.2 XML Schema Basics

An XML Schema itself is a well{formed XML document thus it is composed of a hierarchy of

XML elements and XML attributes attached.

An XML Schema is embedded into a top{level schema element, which is enclosed between a
start and an end tag.

Example 2.2. A sample top{level XML Schema element (xsd:schema)

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

</xsd:schema>

The starting schema element has a pre�x xsd: which is associated with the XML Schema
namespace [4] by the attribute declaration

xmlns:xsd="http://www.w3.org/2000/08/XMLSchema";

3

that appears in the schema element. The pre�x xsd: is used by convention to denote the XML
Schema namespace (see Section 3 for namespaces in XML Schema), although any pre�x could
be used. The same pre�x, and hence the same association, will also appear in the names of
built-in simple types, like e.g. xsd:string.

2.3 Element and Attribute Declarations

The major drawback of DTDs originates in the lack of a �ne{grained type system which hinders
the use of object{oriented techniques and hierarchical composition for document design. To
avoid this drawback, the concepts of simple and compound types were introduced in XML
Schemata.

Hence, in XML Schema, there is a major distinction between de�nitions (which create new
types), and declarations which enable elements and attributes with speci�c names and types
to appear in document instances either by direct composition (i.e. embedded elements) or using
references (via e.g. the well{known IDREFS mechanism in instance document instances).

� New complex types are de�ned by using the complexType element and such de�nitions
typically contain a set of element declarations, element references, and attribute declara-

tions.

� The declarations are not themselves types, but rather an association between a name
and the constraints which govern the appearance of that name in documents.

Elements are declared using the element element, while attributes are declared using the
attribute element similarly to the well{known !ELEMENT and !ATTLIST tags in traditional
DTDs.

Example 2.3. Sample element declarations (Node, Edge, and Graph) and attribute dec-

larations (edgeids) are provided (where xsd:boolean is a built{in type, while the de�nitions

of NodeType, EdgeType and GraphType will come later).

<!-- Element declarations: Node, Edge, Graph -->

<xsd:element name="Node" type="NodeType"/>

<xsd:element name="Edge" type="EdgeType"/>

<xsd:element name="Graph" type="GraphType" />

<!-- Attribute declaration edgeids -->

<xsd:attribute name="edgeids" type="xsd:boolean"/>

Table 1 gives a guideline for distinguishing between types and elements, declarations and
de�nitions, XML Schemata and XML document instances (which all take the form of special
XML elements).

2.4 Complex Type De�nitions

As there is a large scale of possible current (and future) applications of XML documents, the
content of an XML element may also take its value from common basic types (like integers,
strings or e.g booleans), alternatively, they can be constructed from other (usually more basic)
elements in a hierarchical way following a strict tree structure.

Thus, in XML Schema, there is a basic di�erence between complex types (which are allowed
to contain subelements and carry attributes), and simple types (which cannot contain neither
subelements nor attributes but numbers, strings, dates, etc.).

4

XML Schema XML document (instance)

element declarations
(xsd:element name="Node")

elements
(<Node id="n1"> </Node>)

attribute declarations
(xsd:attribute name="edgeids")

attributes
(<Graph edgeids="true">)

simple type de�nitions
(xsd:boolean)

simple data values ("true")

complex type de�nitions
(xsd:complexType name="GraphType")

embedded elements
(<Graph> <Node> </Node> </Graph>)

Table 1: An overview of elements and types

� Each declared element is assigned to a speci�c (either simple or complex) type (de�ning
the content of the element in an instance document). In Example 2.3, a complex type
called NodeType was assigned to the Node element.

� Attributes are always associated with a simple type (either built{in or derived). In Exam-
ple 2.3, the attribute element edgeids had a built{in simple type.

New complex types are de�ned by using the complexType element, and such de�nitions
typically contain a set of element declarations, element references, and attribute declarations
(see Section 2.3 for these concepts).

Example 2.4. The following example is a complex type de�nition for graphs containing two

element references (Node and Edge indicated by the ref attribute of their element declaration)

and a boolean attribute called edgeids.

Please note that this de�nition is only valid if schema elements Node and Edge are declared

somewhere in the XML Schema (see Example 2.3 for their declarations).

<!-- Complex type definition: GraphType -->

<xsd:complexType name="GraphType">

<!-- Element contents should appear in the given sequence -->

<xsd:sequence>

<!-- A graph may contain an arbitrary number of Node elements -->

<xsd:element ref="Node" minOccurs="0" maxOccurs="unbounded"/>

<!-- ...followed by an arbitrary number of Edge elements

<xsd:element ref="Edge" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<!-- The boolean attribute edgeids has the default value false -->

<xsd:attribute name="edgeids" type="xsd:boolean"

use="default" value="false"/>

</xsd:complexType>

The previous type de�nition also sets up some special constraints on elements appearing in
instance documents, which restrictions are discussed later in more details.

5

� A Graph element of type GraphType may contain an arbitrary number of Nodes followed
by an arbitrary number of Edges.

� Such a Graph element may have a boolean attribute edgeids of type xsd:boolean. If the
attribute is omitted from an element in an instance document its value has to be considered
as false (indicated by the attributes use and value in the de�nition part prescribing a
default value for an attribute).

2.5 Simple Datatypes

In addition to embedded nodes and edges, an attribute called edgeids is also attached to a
graph controlling the use of identi�ers on edges. This attribute has a built{in simple type as
indicated by the xsd:boolean type, thus in instance documents, edgeids may take the value
of true or false.

XML Schema provides a large scale of built{in simple datatypes including for instance:

� string literals (xsd:string, etc.);

� number types (xsd:int, xsd:float, xsd:boolean, etc.);

� time values (xsd:time, xsd:date);

� XML types (xsd:Name, xsd:ID, xsd:IDREF);

New simple types can also be derived from existing simple types (built{in's and derived),
see Section 4.2 for details.

2.6 Content Models

In traditional DTDs, the construction of a content model (including complex elements) was
controlled by the sequence (,) and choice operators (|). For instance, a DTD prescribing that a
class element is composed of a teacher and list of pupils (either girls and boys) would take
the form:

<!ELEMENT class (teacher, (girl | boy)*) >

Naturally, the same concepts can be found in XML Schemata as well. XML Schema enables
a group of elements to be de�ned and named, so that the elements can be used to construct
complex types (thus mimicking common usage of parameter entities in XML).

� Contents of a sequence group are constrained to appear in the same order (sequence) as
they are declared.

In an instance document of the graph schema (Example 2.4), all the Node schema elements
embedded into a Graph element have to precede the �rst occurrence of an Edge element,
as prescribed by the built{in sequence schema element.

� The choice group element allows only one of its children to appear in an instance.

For instance, we may allow for a Graph to contain its Node and Edge elements in an
arbitrary order by the following group declarations:

6

<xsd:sequence>

<xsd:choice>

<xsd:element ref="Node" />

<xsd:element ref="Edge" />

</xsd:choice>

</xsd:sequence>

� The all group element (which provides a simpli�ed version of the SGML &-Connector)
allows all the elements in the group to appear simultaneously in a document or not at all,
and they may appear in any order.

2.7 Element and Attribute Cardinality

Elements As graphs typically contain plenty of node and edge elements, the type de�nition
for Graph elements should allow the embedding of nodes and edges in an arbitrary number into
them. On the other hand, special graph types can be derived by restricting that a graph should
contain at most 5 nodes or must not contain more than 28.

Such restrictions of element cardinality is indicated by two attributes: minOccurs and
maxOccurs prescribing that

� the minimum appearance of an element should be greater than or equal to minOccurs;

� the maximum appearance of an element should be less than or equal to maxOccurs.

The attributes minOccurs and maxOccurs extend the concepts of at{most{once (?), at{least{
once (+) and unbound (*) semantics widely used in traditional DTDs to restrict the appearance
of embedded elements by allowing to prescribe cardinalities of any positive integers.

Example 2.5. As a result of restrictions in Example 2.4, the appearance of a Node element in

a Graph element is optional, and its upper limit is not constrained.

<xsd:element ref="Node" minOccurs="0" maxOccurs="unbounded"/>

Attributes Attributes may appear once or not at all. Therefore the syntax for specifying
occurrences of attributes is di�erent from the syntax for elements. In particular, a use attribute
is used in an attribute declaration to indicate whether the attribute is required or optional,
and if optional whether the attribute's value is fixed or whether there is a default. A second
attribute, value, provides any value that is called for according to Table 2.

Attributes (use,value) Semantics

(optional, {) attribute may appear once and it may have any value

(required, {) attribute must appear once and it may have any value

(required, 19) attribute must appear once, its value must be 19

(�xed, 19) attribute may appear once; if it appears, its value must
be 19

(default, 19) attribute may appear once; if it does not appear, its
value is 19

Table 2: Restrictions on attributes

7

Example 2.6. For instance, the default value of edgeids in Example 2.4 is false (however,
it was rede�ned in the sample XML document of Example 2.1).

<xsd:attribute name="edgeids" type="xsd:boolean" use="default" value="false"/>

3 XML Schema: Namespaces and Quali�cation

XML Namespaces used in XML Schemata will surely play an important role in any standardiza-
tion process. At �rst, a standardization committee should create a common metamodel of the
�eld (e.g. graph transformation), Afterwards, they build up a standard XML Schema descrip-
tion containing a collection (denoted as standard vocabulary) of type de�nitions and element
declarations (whose names belong to a particular namespace) for the major constructs. Finally,
the committee should place the standard schema on the Web to be accessed by any application.

However, such a standard can never be complete (i.e. it will not contain those aspects of the
�eld that are completely novel and thus not theoretically stable). Moreover, a large document
standard surely decreases legibility and thus makes the construction of tools conforming the
standard more diÆcult.

The concepts of XML Schema combined with XML Namespaces encourage the creation of a
standard schema of medium size which can be extended by local declarations and type de�nitions
including mainly tool{speci�c attributes and elements. The use of target namespace enables
us to distinguish between de�nitions and declarations from di�erent vocabularies (e.g. one target
namespace for the standard and and another one for tool{speci�c local element declarations).

When the conformance of an instance document to one or more schemata is checked (through
a process called schema validation), we need to identify which element and attribute declara-
tions and type de�nitions in the schemata should be used to check which elements and attributes
in the instance document.

The schema author also has several options that a�ect how the identities of elements and at-
tributes are represented in instance documents. More speci�cally, the author can decide whether
or not the appearance of locally declared elements and attributes in an instance must be quali-
�ed by a namespace, using either an explicit pre�x or implicitly by default.q The schema author's
choice regarding quali�cation of local elements and attributes has a number of implications re-
garding the structures of schemata and instance documents. A good practice can be to qualify
the standard elements by a common pre�x while using local elements in an unquali�ed form.

3.1 Target Namespace and Unquali�ed Locals

In a new version of our sample graph schema, we explicitly declare a target namespace, and
specify that both locally de�ned elements and locally de�ned attributes must be unquali�ed.
The target namespace in Example 3.1 is http://www.example.hu/GXL-GXTL, as indicated by
the value of the targetNamespace attribute.

Quali�cation of local elements and attributes can be globally speci�ed by a pair of attributes,
elementFormDefault and attributeFormDefault, on the schema element, or can be speci�ed
separately for each local declaration using the form attribute. All such attribute values may be
set to unqualified or qualified (in other words pre�xed), to indicate whether or not locally
declared elements and attributes must be quali�ed.

In Example 3.1, the quali�cation of elements and attributes are globally speci�ed by setting
the values of both elementFormDefault and attributeFormDefault to unqualified. (Strictly
speaking, these settings are unnecessary because these values are the defaults for the two at-
tributes.)

8

The example also demonstrates the concepts of locally and globally declared elements.
The Node and Graph are global elements as they are declared in the context of the schema as
a whole rather than within the context of a particular type. Meanwhile the Edge element is
declared as local, in the context of the Graph element.

Example 3.1. A graph schema demonstrating the use of target namespaces

("http://www.example.hu/GXL-GXTL"), quali�ed (e.g. Node) and unquali�ed names (e.g.

Edge).

<!-- Declaring namespaces (target, default) and unqualified element names -->

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:gxl="http://www.example.hu/GXL-GXTL"

targetNamespace="http://www.example.hu/GXL-GXTL"

elementFormDefault="unqualified"

attributeFormDefault="unqualified">

<!-- Globally declared elements -->

<element name="Node" type="gxl:NodeType"/>

<element name="Graph" type="gxl:GraphType" />

<complexType name="GraphType">

<sequence>

<element ref="Node" minOccurs="0" maxOccurs="unbounded"/>

<!-- Locally declared element -->

<element name="Edge" type="gxl:EdgeType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

...

</schema>

� Starting from the end of the schema, a type called GraphType is de�ned �rst that consists
of the globally declared Node and locally declared Edge elements. One consequence of this
type de�nition is that the GraphType type is included in the schema's target namespace.

� Please note that the type references in the element declarations are pre�xed, i.e.
gxl:GraphType, gxl:NodeType, gxl:EdgeType, and the pre�x is associated with the
namespace http://www.example.hu/GXL-GTXL. This is the same namespace as the
schema's target namespace, therefore a processor of this schema will know to search within
this schema for the de�nition of the type GraphType and the declaration of the element
Node.

� It is also possible to refer to types in another schema with a di�erent target namespace,
hence enabling re-use of de�nitions and declarations between schemas.

� Please also note, that the XML Schema elements are not pre�xed this
time, as the default namespace (xmlns) of the document is associated with
"http://www.w3.org/2000/10/XMLSchema".

When such a schema is populated into a conforming document instance (Example 3.2), the
following changes can be observed.

9

Example 3.2. A document instance of the XML Schema of Example 3.1 with quali�ed Node

elements and unquali�ed local Edge elements.

<?xml version="1.0"?>

<!-- An explicitly given namespace -->

<Graph xmlns:gxl="www.example.hu/GXL-GTXL" edgeids="true">

<!-- Global elements are qualified (prefixed) -->

<gxl:Node id="n_1" />

<gxl:Node id="n_2" />

<!-- The local Edge element is not prefixed -->

<Edge id="e_3" from="n_1" to=""n_2" />

</Graph>

The instance document declares one namespace, http://www.example.hu/GXL-GTXL, and
associates it with the pre�x gxl:. This pre�x applies to the global elements (Graph and Node).
Furthermore, elementFormDefault and attributeFormDefault require that the pre�x is not
applied to any of the the locally declared elements such as Edge, and it is not applied to any of
the attributes.

When local elements and attributes are not required to be quali�ed, an instance author may
require more or less knowledge about the details of the schema to create schema valid instance
documents. More speci�cally, if the author can be sure that only the root element (such as
Graph) is global, then it is a simple solution to qualify only the root element.

Alternatively, the author may know that all the elements are declared globally, and so all
the elements in the instance document can be pre�xed, perhaps taking advantage of a default
namespace declaration.

3.2 Quali�ed Locals

Elements and attributes can independently be required to be quali�ed, although the quali�cation
of local elements are only described in the paper. To specify that all locally declared elements
in a schema must be quali�ed, the value of elementFormDefault should be set to quali�ed.

Example 3.3. Declaring quali�ed local elements (indicated by the true value attached to

elementFormDefault)

<!-- Elements have to be qualified in a conforming document -->

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:gxl="http://www.example.hu/GXL-GXTL"

targetNamespace="http://www.example.hu/GXL-GXTL"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!-- Globally declared elements -->

<element name="Node" type="gxl:NodeType"/>

<element name="Graph" type="gxl:GraphType" />

<complexType name="GraphType">

<sequence>

<element ref="Node" minOccurs="0" maxOccurs="unbounded"/>

10

<!-- Locally declared element -->

<element name="Edge" type="gxl:EdgeType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

...

</schema>

In a conforming documents, all the elements have to be quali�ed explicitly (Example 3.4),
alternatively, the explicit quali�cation of every element can be replaced with implicit quali�cation
provided by a default namespace (Example 3.5).

Example 3.4. A document with explicitly quali�ed elements (gxl:Graph, gxl:Node and

gxl:Edge).

<?xml version="1.0"?>

<!-- Elements with explicit qualification -->

<gxl:Graph xmlns:gxl="www.example.hu/GXL-GTXL" edgeids="true">

<gxl:Node id="n_1" />

<gxl:Node id="n_2" />

<gxl:Edge id="e_3" from="n_1" to=""n_2" />

</gxl:Graph>

Example 3.5. A document with implicit quali�cation provided by default namespace

xmlns="www.example.hu/GXL-GTXL"

<?xml version="1.0"?>

<!-- Elements with default namespace -->

<Graph xmlns="www.example.hu/GXL-GTXL" edgeids="true">

<Node id="n_1" />

<Node id="n_2" />

<Edge id="e_3" from="n_1" to=""n_2" />

</Graph>

In the latter case, all the elements in the instance belong to the same namespace, and
the namespace statement declares a default namespace that applies to all the elements in the
instance. Hence, it is unnecessary to explicitly pre�x any of the elements.

4 XML Schema: Advanced Modelling Concepts

Beside its type constructs, another major advance in XML Schema is its partial support for
inheritance mechanisms widely used in object{oriented modelling. XML Schema allows to form
more complex types from a base type by means of extension, or more speci�c types by restriction.
In addition to these concepts, elements can be declared abstract thus preventing them to appear
in instance documents.

Therefore, when local, tool{speci�c elements are derived from a global standard vocabulary,
the derivation process is characterized by extending or restricting the existing element types to
obtain the new local constructs. With this respect, local non{standard elements derived from
standard ones can be used in document instances whenever a basic, standard element is expected
without con
icts during the validation.

11

4.1 Extension

When a complex type is derived by extension, its e�ective content model is the content model
of the base type plus the content model speci�ed in the type derivation. Furthermore, the two
content models are treated as two children of a sequential group.

The concepts of extension in XML Schemata resembles to extensional inheritance in object{
oriented modelling where a new class is derived from existing ones by adding new properties
and methods.

Extensions are declared by using a complexContent and an embedded extension element,
which has a base attribute to indicate the base type from which the extended type is derived.

Continuing our graph example, the notion of graph elements will be introduced with tex-
tually typed nodes and edges. As types can be attached to both nodes and edges, a \common

superclass" GraphElement is declared and Node and Edge elements are derived from them by
extension.

Example 4.1. A graph schema allowing the construction of (textually) typed graph elements

(nodes and edges) by introducing the attribute Type.

<!-- Graph -->

<xsd:element name="Graph" type="GraphType" />

<xsd:complexType name="GraphType">

<xsd:sequence>

<xsd:element ref="GraphElement" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="edgeids" type="xsd:boolean"

use="default" value="false"/>

</xsd:complexType>

<!-- Common superclass: GraphElement -->

<xsd:element name="GraphElement" type="GraphElementType"/>

<xsd:complexType name="GraphElementType">

<xsd:attribute name="Type" type="xsd:string"/>

</xsd:complexType>

<!-- Node element derived by extension-->

<xsd:element name="Node" type="NodeType" />

<xsd:complexType name="NodeType">

<xsd:complexContent>

<!-- Extension is based on Graph Elements

<xsd:extension base="GraphElementType" />

</xsd:complexContent>

</xsd:complexType>

<!-- Edge element derived by extension -->

<xsd:element name="Edge" type="EdgeType" />

<xsd:complexType name="EdgeType">

<xsd:complexContent>

<xsd:extension base="GraphElementType">

<!-- Adding new attributes -->

12

<xsd:attribute name="from" type="xsd:IDREF" />

<xsd:attrubute name="to" type="xsd:IDREF" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

The original graph concept (Example 2.4) is altered, graphs contain GraphElements instead
of Nodes and Edges distinctly. However, as nodes and edges are an extension of graph elements,
they can be used to as a substitution for their \supertyped" objects.

This declaration also implies that nodes and edges can be embedded in a Graph element
in an arbitrary order as only a sequence of GraphElements are prescribed in the GraphType

de�nition. As a result, the following document conforms to the schema of Example 4.1.

Example 4.2. An XML document conforming to the schema of Example 4.1. Please note that

this time nodes and edges can be listed in an arbitrary order inside a Graph element.

<?xml version="1.0"?>

<Graph edgeids="true"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">

<!-- Graph element first contains a Node,

the explicit indication of Node type is required (xsi:type)) -->

<Node id="n_1" xsi:type="Node">

<Type>

SimpleState

</Type>

</Node>

<!-- Secondly, Graph element contains an Edge -->

<Edge id="e_3" from="n_1" to=""n_2" xsi:type="Edge"/>

<!-- ... finally, another Node -->

<Node id="n_2" xsi:type="Node">

<Type>

CompositeState

</Type>

</Node>

</Graph>

XML Schema allows to de�ne the Node and Edge elements as GraphElement types in order
to use instances of Nodes and Edges in place of instances of GraphElement. In other words,
an instance document whose content conforms to e.g. the Node type will be valid if its content
appears within the document at a location where a GraphElement is expected.

In order to identify exactly which derived type is intended to be used, the derived type must
be identi�ed in the instance document. The type is identi�ed using the xsi:type attribute
which is part of the XML Schema instance namespace. In Example 4.2, the use of Node and
Edge derived types is identi�ed through the values assigned to the xsi:type attributes.

4.2 Restriction

In addition to deriving new complex types by extending content models, it is also possible in
XML Schema to derive both simple and complex types from existing types by restriction.

13

Although restrictive inheritance (e.g. a Baby is a Person whose ages is less than 2) in
object{oriented modelling is not recommended to be used, it is still a common practice in XML
Schemata.

Deriving simple types A common example, let us consider that only a subset of strings can
be used as type names in Example 4.1 like SimpleState, CompositeState, etc. In this case, we
may introduce a new simple type containing the enumeration of the strings allowed.

Restrictions are declared via the element xsd:restrictionwhere its base attribute indicates
the base type restricted to gain a new type.

Example 4.3. Deriving a simple enumeration type (TypeEnum) by restriction from

xsd:Strings.

<!-- Declaration for GraphElement -->

<xsd:element name="GraphElement" type="GraphElementType"/>

<xsd:complexType name="GraphElementType">

<!-- Attribute Type is of type TypeEnum -->

<xsd:attribute name="Type" type="TypeEnum"/>

</xsd:complexType>

<!-- Simple type TypeEnum is derived by restriction -->

<xsd:simpleType name="TypeEnum">

<!-- ... from the built-in string type -->

<xsd:restriction base="xsd.string">

<!-- Allowed values for enumaration -->

<xsd:enumeration value="SimpleState"/>

<xsd:enumeration value="CompositeState"/>

<xsd:enumeration value="Transition"/>

</xsd:restriction>

</xsd:simpleType>

An additional use of simple type restrictions is to prescribe a legal range of values for the
new type derived from an existing simple type (e.g. Integer).

Supposing that we need to create a new type of integer called myInteger whose range of
values is between 10000 and 99999. Such an integer type can be de�ned on the base of the
built-in simple type integer, but the range of the integer base type is restricted by employing
minInclusive and maxInclusive attributes:

Example 4.4. De�ning a new simple type myInteger for holding values between 10000 and

99999 in instance documents.

<xsd:simpleType name="myInteger">

<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="10000"/>

<xsd:maxInclusive value="99999"/>

</xsd:restriction>

</xsd:simpleType>

14

XML Schema also has the concept of a list type. A list can be created from most of the
atomic types, moreover, one can create new list types by a derivation from existing atomic (thus
non{complex) types.

Example 4.5. A list of myIntegers

<xsd:simpleType name="listOfMyIntType">

<xsd:list itemType="myInteger"/>

</xsd:simpleType>

Restricting complex types In addition to deriving new complex types by extending content
models, it is also possible to derive new types by restricting the content models of existing types.

A complex type derived by restriction is similar to its base type, except for that its declara-
tions are more limited than the corresponding declarations in the base type. In fact, the values
represented by the new type are a subset of the values represented by the base type. In other
words, an application prepared for the values of the base type would not be surprised by the
values of the restricted type.

When a complex type is derived by restriction, we may attach types or defaults to the new
type which were unde�ned in the base type, or constrain the cardinality de�nition of the base
type to a more restrictive one (in the new type).

For instance, we may de�ne UMLGraphElementTypes as a restriction of GraphElementTypes
constrained by allowing only UML types attached to nodes and edges and the presence of at
least one Node or Edge element in NEGraphType (non{empty graph) elements are also prescribed.

Example 4.6. Deriving complex types by restriction. A NEGraphType (non{empty graph) must

contain at least one GraphElement, and UMLGraphElementTypes are allowed to have node and

edge types of TypeEnum. (The de�nitions and declarations of Example 4.1 are referred.)

<!-- A new complex type for Non-Empty Graphs (containing at least one node) -->

<xsd:complexType name="NEGraphType">

<xsd:complexContent>

<!-- Restriction is based on GraphType

<xsd:restriction base="GraphType">

<xsd:sequence>

<!-- Cardinality is altered -->

<xsd:element ref="GraphElement" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="edgeids" type="xsd:boolean"

use="default" value="false"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="GraphElementType">

<!-- Attribute type of Type is currently undefined -->

<xsd:attribute name="Type" />

</xsd:complexType>

15

<xsd:complexType name="UMLGraphElementType">

<xsd:complexContent>

<xsd:restriction base="GraphElementType">

<!-- Attribute type of Type is defined -->

<xsd:attribute name="Type" type="TypeEnum/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

Please note that types derived by restriction must repeat all the components of the base
type de�nition.

4.3 Abstract Elements and Types

XML Schema provides a mechanism to force the substitution for a particular element or type
for a similar purpose to the abstract class declarations in object{oriented languages.

� When an element is declared to be \abstract", it cannot be used in an instance document.

� When an element's corresponding type de�nition is declared as abstract, all instances
of that element must use xsi:type to indicate a derived type that is not abstract (See
Section 4.1 for the use of xsi:type).

For instance, in our graph example, a Graph element should normally contain Nodes and
Edges, while instances of GraphElements in graph documents should not be allowed.

Example 4.7. An element declaration forbidding the appearance of GraphElements in instance

documents. (A substitution of GraphElement in Example 4.1)

<!-- A GraphElement must not appear in a valid document -->

<xsd:element name="GraphElement" type="GraphElementType"

abstract="true"/>

Please remember that the type of elements in the role of a GraphElement (i.e. nodes and
edges) has to be indicated in instance documents by the xsi:type attribute.

4.4 Summary of XML Schema

This section provided an introductory overview of constructing XML Schemas and documents
conforming to a speci�c schema. Major concepts were discussed on an evolving example describ-
ing graph documents advancing step by step to an XML Schema speci�cation of GXL-GTXL
models.

However, the current paper is supposed to introduce the XML Schema speci�cation from a
modelling aspect, thus several concepts omitted from the paper (as not required to build a �rst
version of GraTra XMLSchema model) are listed below.

� mixed content, empty content, null values

� rede�ning types and groups,

� substitution groups

16

� controlling type derivation, importing types

� specifying uniqueness

For these concepts, see [5, 6] for details.

5 An XML Schema Description of Graphs (GXL-GTXL)

In the current section, an XML Schema description of graphs is provided on the basis of the
evolving GXL-GTXL metamodel of graph transformation systems. As the GXL-GTXL meta-
model is under a rapid development, we have chosen to implement some core constructs, i.e. the
description of graphs, which had already gone through a thorough discussion thus considered to
be more or less stable for the graph transformation community.

5.1 The GXL Metamodel (Version 0.7.2)

At the APPLIGRAPH Subgroup Meeting on Exchange Formats for Graph Transformation [1]
it was started to sketch a conceptual model to describe those aspects of a graphs which have to
be exchanged by a common graph interchange format. Figure 1 and 2 show these conceptual
models for graphs and the attribute structure (a slightly reduced version of [3]).

Node

LocalConnection

directed

Context

role
direction

0..*0..*

11

{ordered} {ordered}

RelationEdge
Link

role
direction

0..*0..*

GraphElement

11

+to

11

+from

11

AttributedElement

Graph
hyperedges
edgeids

0..*0..*GXLDocument 11

TypedElement

id
directed

TypeLabel

document
id

11

0..10..1

instanceType

11

Figure 1: Major graph concepts

In the following sections, a XML Schema implementation of this metamodel is introduced
step by step. Please note that several basic data types (included in the original GXL metamodel
[3]) are not considered this time.

17

AttributedElement TypeLabel

Attribute

name
kind

0..*0..*

0..10..1

valueType

Value0..10..1

Figure 2: Graph attributes

5.2 Attribute and Type System

The top{most (abstract) class of the metamodel is AttributedElement, which is composed of
an arbitrary number of Attributes and declared to be abstract.

GXL-GTXL Schema 1. The abstract class AttributedElement

<xsd:element name="AttributedElement" type="AttributedElementType"

abstract="true"/>

<xsd:complexType name="AttributedElementType">

<xsd:sequence>

<xsd:element ref="Attribute" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

The Attribute element is constructed from the elements Type and Value (values may contain
any type of elements), thus further embedded attributes (for storing e.g. layout information) is
not modelled currently. Name and Type attributes are both NMTOKENs to conform with the GXL
DTD. Element Value is not currently elaborated in details.

GXL-GTXL Schema 2. The class Attribute and Value

<!-- Attribute -->

<xsd:element name="Attribute" type="AttributeType"/>

<xsd:complexType name="AttributeType">

<xsd:sequence>

<xsd:element name="Type" type="TypeLabelType" />

<xsd:element ref="Value" />

</xsd:sequence>

<xsd:attribute name="name" type="xsd:NMTOKEN" use="required"/>

<xsd:attribute name="kind" type="xsd:NMTOKEN" />

</xsd:complexType>

<!-- Value -->

<xsd:element name="Value" type="xsd:anyType" />

The TypedElement is an abstract subclass of AttributedElement. It contains an identi�er
as an attribute (id), and at most one type (type) can also be embedded.

The purpose of directed attribute will be introduced later.

18

GXL-GTXL Schema 3. The abstract class TypedElement

<xsd:element name="TypedElement" type="TypedElementType" abstract="true" />

<xsd:complexType name="TypedElementType">

<xsd:complexContent>

<xsd:extension base="AttributedElementType">

<xsd:sequence>

<xsd:element name="type" type="TypeLabelType" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attribute name="directed" type="GraphDirectionType"

use="default" value="directed"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="GraphDirectionType">

<xsd:restriction base="xsd.string">

<xsd:enumeration value="directed"/>

<xsd:enumeration value="undirected"/>

</xsd:restriction>

</xsd:simpleType>

The TypeLabel element (attached to TypedElements) is a reference to graphs (represented
as web documents), or graph elements (nodes, edges, hyperedges).

GXL-GTXL Schema 4. The class TypeLabel.

<xsd:element name="TypeLabel" type="TypeLabelType"/>

<xsd:complexType name="TypeLabelType">

<xsd:attribute name="id" type="xsd:ID" />

<xsd:attribute name="document" type="xsd:CDATA" />

</xsd:complexType>

5.3 Graphs and Graph Elements

A GXL document contains exactly one graph.

GXL-GTXL Schema 5. The class GXL.

<xsd:element name="GXL" type="GXLType" />

<xsd:complexType name="GXLType">

<xsd:sequence>

<xss:element ref="Graph" />

</xsd:sequence>

</xsd:complexType>

A Graph element extends the class TypedElement and it is composed of GraphElements (of
an arbitrary number).

� The edgeids attribute is true for graphs where Edges and Rels possess their own identi�ers.

19

� The hypergraph parameter allows the existence of hyperedges if its value is "true". Hy-
peredges are general relationships which connect an arbitrary number of elements instead
of two elements (in the case directed or undirected edges).

� The direction attribute indicates whether the graph or hypergraph should be interpreted
as directed (default) or undirected graph or hypergraph. This feature holds for all Nodes,
Edges or Rels in the graph or hypergraph unless it is overwritten for these graph elements.

GXL-GTXL Schema 6. The class Graph

<xsd:element name="Graph" type="GraphType" />

<xsd:complexType name="GraphType">

<xsd:complexContent>

<xsd:extension base="TypedElementType">

<xsd:sequence>

<xsd:element ref="GraphElement" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="edgeids" type="xsd:boolean"

use="default" value="false"/>

<xsd:attribute name="hypergraph" type="xsd:boolean"

use="default" value="false"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

GraphElement is an abstract class representing nodes, edges and hyperedges (relations).

GXL-GTXL Schema 7. The abstract class GraphElement.

<xsd:element name="GraphElement" type="GraphElementType" abstract="true"/>

<xsd:complexType name="GraphElementType">

<xsd:complexContent>

<xsd:extension base="TypedElementType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

5.4 Nodes and Edges

Node element represents an ordinary graph node and extends GraphElement.

GXL-GTXL Schema 8. The class Node

<xsd:element name="Node" type="NodeType" />

<xsd:complexType name="NodeType">

<xsd:complexContent>

<xsd:extension base="GraphElementType">

<xsd:sequence>

<xsd:element ref="Context" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

20

An Edge (an extension of GraphElement) is the special binary relationship between Nodes.

GXL-GTXL Schema 9. The class Edge

<xsd:element name="Edge" type="EdgeType" />

<xsd:complexType name="EdgeType">

<xsd:complexContent>

<xsd:extension base="GraphElementType">

<xsd:attribute name="from" type="xsd:IDREF" use="required"/>

<xsd:attrubute name="to" type="xsd:IDREF" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

The Rel element (derived from GraphElement) allows the de�nition of n{ary relationships,
which connect n (instead of two) graph elements. In graph theory, these relationships are usually
called hyperedges.

<xsd:element name="Rel" type="RelType" />

<xsd:complexType name="RelType">

<xsd:complexContent>

<xsd:extension base="GraphElementType">

<xsd:sequence>

<xsd:element name="link" type="LinkType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

5.5 Context and Links

Context elements describe the incidence to a certain node. Incidences can be incoming or
outgoing. All context elements of a node can be grouped together to indicate the ordering of
incidences.

GXL-GTXL Schema 10. The class Content

<xsd:element name="Context" type="ContextType" />

<xsd:complexType name="ContextType">

<xsd:complexContent>

<xsd:extension base="AttributedElementType">

<xsd:attribute name="ref" type="xsd:IDREF" />

<xsd:attribute name="role" type="xsd:NMTOKEN" />

<xsd:attribute name="direction" type="DirectionType" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="DirectionType">

21

<xsd:restriction base="xsd.string">

<xsd:enumeration value="incoming"/>

<xsd:enumeration value="outgoing"/>

</xsd:restriction>

</xsd:simpleType>

Link elements describe the tentacles of Rel elements. Both, Context and Link elements can
be associated with role attributes to distinguish di�erent kinds of connections between Nodes,
Edges, and Rels.

GXL-GTXL Schema 11. The class Link

<xsd:element name="Link" type="LinkType" />

<xsd:complexType name="LinkType"

<xsd:complexContent>

<xsd:extension base="AttributedElementType">

<xsd:attribute name="ref" type="xsd:IDREF" />

<xsd:attribute name="role" type="xsd:NMTOKEN" />

<xsd:attribute name="direction" type="DirectionType" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

6 Conclusion

Advantages of XML Schema In the current paper, the major concepts using XML Schema
as a representation and validation method for XML documents were brie
y introduced. On
that basis, a sample XML Schema encoding of MOF{based GXL-GTXL metamodel (constituted
during and after [1]) was given. Though this implementation did not cover all the constructs in
the metamodel, they demonstrated several advantages of XML Schema.

� XML Schema provide a �ne{grained type concept (the content of each XML element
is validated with respect to a simple or complex type) which was a major de�ciency in
traditional DTDs.

� Moreover, its extension and restriction mechanism makes the encoding of MOF metamod-
els easier and more consistent.

� Abstract elements can be introduced to support abstract metaclasses in metamodels.

� The type system of XML Schema conforms with XML, thus the same XML document can
be checked against both an appropriate DTD and an XML Schema.

Disadvantages of XML Schema However, XML Schema has certain disadvantages origi-
nating mainly in its complexity.

� Too complex constructs are de�ned (datatypes, restrictions, extensions, etc.)

� There are diÆculties in implementation (in fact, there is no tool conforming to the entire
standard, one of the best tools is XML Spy).

22

� XML Schema is not a standard yet, just a candidate recommendation, which means that
the XML Schema Working Group considers it to be stable and encourages comment on
it. However, according to [5] \Should this the associated speci�cation prove very diÆcult

or impossible to implement, the Working Group will return the speci�cation to Working

Draft status and make necessary changes."

As a result, we make the following statements to discuss before the subsequent Appligraph
Meeting in Bremen:

1. XML Schema clearly provides closer correspondence to a high{level MOF metamodel with
respect to modelling concepts than pure DTDs, thus it is a promising candidate for a
future representation method.

2. A automatic generation approach (from UML Diagrams to XML Schema) is easier to be
built.

3. XML Schema may also serve as an intermediate description in an automatic DTD gener-
ation process.

References

[1] APPLIGRAPH Subgroup Meeting on Exchange Formats for Graph Transformation Systems,
Paderborn, September 2000.

[2] APPLIGRAPH. XML-based Exchange Formats for Graphs and Graph Transformation Sys-

tem. http://tfs.cs.tu-berlin.de/.

[3] A. Sch�urr, S. E. Sim, R. Holt, and A. Winter. The GXL Graph eXchange Language.
http://www.gupro.de/GXL/.

[4] World Wide Web Consortium. XML Namespaces. http://www.w3.org/TR/REC-xml-
names/.

[5] World Wide Web Consortium. XML Schema Part 0: Primer, October 2000.
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/.

[6] World Wide Web Consortium. XML Schema Part 1: Structures, October 2000.
http://www.w3.org/TR/2000/CR-xmlschema-1-20001024/.

23

