
Designing the Automatic Transformation of

Visual Languages

D�aniel Varr�o, Gergely Varr�o, and Andr�as Pataricza

Technical University of Budapest ?,
Department of Measurement and Infomation Systems
Budapest, 1111, M�uegyetem rakpart 3-11.
Hungary
e-mail: pataric@mit.bme.hu

Abstract. The process of developing depandable, safety{critical systems controlled
by computers requires a formal veri�cation of conceptual and architectural choices
by using di�erent mathematical tools. According to a novel approach of IT system
design, these input models to formal mathematical analysis are transformed auto-
matically from the system model. Up to now, the design and implementation of
such transformations was rather ad hoc missing any formal descriptions and meth-
ods. In this paper we present our e�orts towards a model transformation system
based on a powerful integration of graph transformation, planner algorithms and
deductive databases in order to obtain an automatically generated, provenly correct
and complete transformation code.

1 Introduction

For most computer controlled systems, especially dependable, real-time sys-
tems for critical applications, an e�ective design process requires an early
validation of the concepts and architectural choices, without wasting time
and resources before realizing whether the system ful�lls its objectives or
needs some re-design.

In order to increase the level of con�dence that can be put on a system
mathematical tools (based on formal veri�cation methods) are used to as-
sess the most important system parameters of timeliness, performability or
dependability.

Unfortunately, sophisticated veri�cation tools require a thorough knowl-
edge of underlying mathematics therefore special skills are needed for de-
pendable IT system designers. Moreover, faithfulness and consistancy of a
mathematical model can hardly be guaranteed.

In order to avoid these modeling problems, novel approaches concerned
with the process of IT system design have turned up recently ([BCLP99])
aiming at the integration of textual system speci�cation and system model
into a semi{formal system description based on the Uni�ed Modeling Lan-
guage (UML) (see [BJR99] for a complete reference).

? This work was supported by the Hungarian National Scienti�c Foundation Grant
OTKA T030804



2

The UML models of speci�c CASE tools (such as of Rational Rose and
Innovator) are transformed into a central repository (which is a standard
commercial database) for obtaining an open tool{independent architecture.

The mathematical models are planned to be automatically derived from
the UML{based system model, moreover, the results of the mathematical
analysis are also automatically back{annotated, therefore the problems (e.g.
a deadlock) turned up in the mathematical model can straightly be observed
in the system model.

The validation of designs described using UML is the main objective of the
European ESPRIT project HIDE (High-level Integrated Design Environment
for Dependability)[BCLP99] with the participation of the DMIS at TUB, Pisa
Dependable Computing Center, University of Erlangen and two UML tool
provider enterprises.

The purpose of HIDE is to allow the designer to use UML as a front-end for
the speci�cation of both the system and the user requirements, and to bridge
the gap between a practice-oriented CASE methodology and sophisticated
mathematical tools.

The step when the input language of a mathematical tool is generated
from the UMLmodel repository is called mathematical model transformation.
Several semi-formal transformation algorithms have already been designed
and implemented for e.g formal veri�cation of functional properties [LMM99]
and quantitative analysis of dependability attributes [BMM98] [CHK99].

Unfortunately, the conventional way (i.e. experiences in the experimen-
tal implementation process) of model transformation raised several problems
due to the openness of the HIDE architecture. (Openness means that the
mathematical models of di�erent veri�cation tools can be generated from the
central system model.)

{ No unique and formal description of transformation algorithms existed
therefore their implementation was hand{written and rather ad hoc (in-
convenient for implementing complex transformations).

{ As these scripts were usually written in PL/SQL their formal veri�ca-
tion (aiming to prove correctness and completeness) is almost impossible,
hence their quality is a bottleneck of the entire architectural approach.

{ However, the transformation algorithms have similar underlying algorith-
mical skeletons, each model has to be veri�ed individually.

2 Research Objectives

The aim of the current research is to provide a framework for the process
of designing general mathematical model transformations and to introduce a
novel approach of a translation system, which supports the automated gener-
ation of the transformation code of a proven quality.

Such an automated transformation has to ful�l at least the following re-
quirements



3

{ The description of the problem has to be simultaneously natural and
mathematically precise;

{ On the other hand, this description has to be highly independent from
the target mathematical tools.

Overviewing the previous results in the literature the visual languages
and graph transformation assured the best �t to the purpose of trans-
lation rule description (TRD) (Sec. 3.1), as on one hand they preserve
the visual information stored in CASE models and on the other they �t well
to typical mathematical paradigms.

After a user has speci�ed his set of rules in the TRD typically two main
questions arise.

{ correctness problem: Whether this set of rules is correct in the sense
that it does not contain contradictions or ambiguous operations.

{ completeness problemWhether this set of rules is complete, i.e., each
situation allowed in the source (input) language is covered by a corre-
sponding rule.

As a novel idea, planner algorithms (introduced in Sec. 3.2) are used
as a core to prove correctness and completeness of a transformation therefore
there is an extensive increase in its reliability as only the design of elementary
rules needs intuition and the deep relationship between them is automatically
generated. Planner algorithms are well-known to arti�cial intelligence experts
and used for designing sequences of complex operations,

Mathematical transformations necessitate (as the entire transformation
is rule-driven) complex search operations. In order to avoid a reduction in
eÆciency in contrast with hand-written (therefore nearly optimal SQL) codes,
intelligent and e�ective search algorithms are needed. As a practical solution,
we carried out a deductive database (Sec. 3.3) placed above traditional
relational databases.

Figure 1 shows the proposed architectural framework of HIDE.
In the following section, the main features of our general purpose trans-

formation system will be introduced.

3 A Model Transformation System

Our desired model transformation system has to support at least the following
features:

{ Description of input and output (source and target) models;
{ Translation rule description (TRD);
{ An engine for proving correctness and completeness of TRDs;
{ A database for storing both the models and the rules;
{ A transformation engine built upon this database providing automatically
generated transformation code;



4

Fig. 1. Proposed architectural framework of the HIDE environment

{ An eÆcient back-annotation of mathematical analysis results to the sys-
tem model.

In the following sections we investigate how these requirements can be
ful�lled with the help of well-known approaches of computer science.

3.1 Visual Languages in Model Transformation

The system model in our �eld is based on object-oriented UML diagrams
such as Class Diagrams or Statecharts. These diagrams provide in the form of
graphical objects and diagrammatic techniques a uniform way for system en-
gineers to describe their ideas. The use of visual languages and graph transfor-
mation for describing the diagrams of object-oriented tools is a favourite can-
didate as several approaches concerned with related tasks (as e.g. [EEHT97])
already exist in the literature.

On the other hand the tools used for software veri�cation (e.g. SPIN
model checker [Hol97] or Petri Nets) also use visual objects in their mathe-
matical model therefore the usage of visual languages and graph grammars
for the purpose of describing the rules of a model transformation is rather
straightforward.

When a visual language is transformed from another visual language this
process might be called visual language translation according to the nota-



5

tion of mathematical linguistics (moreover to avoid confusion by overloading
the word 'transformation').

However, the same notation (graph translators) was used in [Sch94] for
describing a translation from syntax diagrams to control 
ow diagrams by
triple graph grammars. In his article Sch�urr pointed out several advantages
of his approach:

{ Triple graph grammars (with a correspondence graph in the kernel) allow
the same speci�cation for a bidirectional transformation.

{ The traditional common supergraph approach enforces the introduction
of embedded superstructures even in the case when the input and out-
put of translation are viewed as separate graphs and where �ne{grained
correspondences are of no importance afterwards.

Despite these disadvantages a common supergraph structure has been
chosen for translation rule description as our purpose is quite di�erent since
the correspondence between the source and target language is of crucial im-
portance due to the need for an eÆcient back{annotation of analysis results.

Moreover, the translation is usually tightening in a sense that UML system
models usually contain several attributes which are irrelevant for a speci�c
mathematical analysis.

As a conclusion, in our desired model transformation system both the
rules constructing the source and target models and the TRDs are well{
formed graph grammar rules, however, (as it is mentioned in Sec. 3.3) the
process of these rules are quite di�erent from the traditional context{sensitive
graph parsing approach ([RS95]).

3.2 Planner Algorithms in Model Transformation

Planner algorithms (most important lectures e.g.: [Wel94],[PW92], are com-
plex (and usually hierarchical) problem solving procedures of arti�cial intel-
ligence subdividing the original problem into smaller parts before trying to
solve them (according to the "divide and conquer" principle). Finally, these
partial solutions are merged yielding the solution of the original problem.

The input of these algorithms are expressions describing the initial and
goal state (usually �rst{order logic formulae) while the output is a correct
plan, which is a sequence of permitted operations providing a trajectory from
the initial state to the goal state.

The operations are structured as a precondition and an action part,
where preconditions describe the (positive or negative) conditions that must
stand before performing the speci�c operation while action part describes the
necessary changes to the next state of the world.

One might notice that a graph transformation rule can also be regarded
as a planner operation where the left hand side (LHS) of a rule is responsible
for the preconditions and the right hand side (RHS) (or rather the di�erence
set of LHS and RHS) describes the next state.



6

When a user de�nes his TRD the questions of correctness and complete-
ness arise. After having considered graph grammar rules for both the source
and target model and TRDs these problems gain a novel interpretation.

{ Correctness: A translation is correct if the target{like model generated
by transforming a source model by translation rules (TRDs) can also be
generated from scratch by the original grammar rules of the target model.

{ Completeness: A translation is complete if the TRD covers all the possible
source models de�ned by their grammar rules.

In such an environment as HIDE a constructive proof was required, which
also discloses those parts of the system where correctness and completeness
do not stand therefore the traditional algebraic double pushout approach was
insuÆcient (especially when regarding the questions of completeness).

Our novel approach uses a planner for constructively proving correctness
and completeness of a given TRD for a speci�c source and target model.
(Each grammar and translation rules are interpreted as a planner operation
as described above.)

Under certain conditions correctness and completeness of a translation
can be proven independently from input models by regarding only TRDs
and the grammar rules of input model, which might provide TRD libraries
of a proven quality on one hand and a cheaper proof generation on the other.

Moreover, since the automatic generation of transformation code requires
an appropriate ordering of the application of translation rules, planner algo-
rithms can be applied for this purpose as well, however, an explicit ordering
(i.e. given by the user) of translation rules usually simpli�es the occurring
problems (such as termination of transformation algorithm).

In our opinion, the integration of planner algorithms and graph trans-
formation provides an engine for proving correctness and completeness of a
TRD with an easy{to{comprehend mathematical background even for those
who are not particularly skilled in the traditional underlying mathematics of
algebraic graph transformation. However, a formal description and proof of
the integration is still needed.

3.3 Deductive Databases in Model Transformation

As it was previously stated in Sec. 2, grammar rules of large complexity
manipulate the source and target models (which are stored in a traditional
relational database) therefore intelligent and e�ective database search algo-
rithms are needed.

Therefore we have implemented a deductive database (theoretical back-
ground in e.g. [Rei84]) with a so-called tightly coupled architecture where the
original relational database calls are covered hence these searches are de�ned
in higher{level query language. Prolog has been chosen for this purpose due
to its poweful pattern{matching and uni�cation methods.



7

Deductive databases are composed of facts (as e.g. 'parent' relation de-
scribing a pedigree) and deduced relations(as e.g. 'grandparent' relation).
This kind of structuring can also be interpreted in the HIDE environment in
a sense that an automatically generated transformation algorithm is a set of
translation rules (as deduced relations) built upon basic model elements (as
facts).

A description of a visual language usually consists of several layouts (e.g.
graphical or logical as in [BT97]) where the logical layout of the (source or
target) grammar rules is suitable for an automatic derivation of an adequate
Entity{Relationship (ER) diagram describing the storage of a speci�c model.

The models and rules are stored in the same way since there is no real
di�erence in their syntax as a pattern (a rule) is a special instance with
unbound variables as attributes.

Finally, the model transformation algorithm itself is also a Prolog program
performing deductive database calls and structured as planner operations
(with precondition and action part) to increase legibility and veri�cation of
the code.

Summarizing our reasons for integrating visual languages and deductive
databases, obviously, the implementational questions played the main role.
After having transformed a model into a deductive database the pattern{
matching algorithms (within their limits) are cheaper than those sophisti-
cated graph parser algorithms.

4 Conclusion and Future Work

In this current paper our research e�orts towards an implementation of a
general purpose transformation engine performing model transformations has
been summarized. For this speci�c purpose we integrated the powerful tech-
niques of visual languages, planner algorithms and deductive databases in
order to obtain a provenly correct and complete and automatically generated
transformation code.

As the transformation algorithms arising in our environment are usu-
ally structure{driven therefore an automatic transformation code generation
(based on our integrated method) is a real opportunity.

A sample transformation has already been implemented and investigated
as a benchmark of our research environment, with promising results. A source
model of 2000 database objects was transformed within 15 minutes. Since the
analysis of a user model by mathematical tools using our transformed model
as input must handle extremely large problem spaces, therefore, according to
our experiments, this model transformation does not take more than a few
percentage of the total time.

The implementation of our model transformation system is still in an
early phase, therefore further future work is needed at least in the following
areas:



8

{ A graphical framework supporting
� model and rule de�nitions
� the generation of transformation code
� an interface to existing planners

{ Optimizing the transformation code by
� query re{ordering
� supporting complex (SQL) database queries

{ A more formal description of our system

However, a demonstration and a �rst implementation of the graphical
framework is already in progress.

References

[BCLP99] A. Bondavalli, M. Dal Cin, D. Latella, A. Pataricza: High-level
Integrated Design Environment for Dependability. Invited paper to
WORDS'99, 1999 Workshop on Real-Time Dependable Systems (1999).

[BJR99] G. Booch, I. Jacobson, J. Rumbaugh: The Uni�ed Modeling Language
Reference Manual. Addison-Wesley, (1999).

[BMM98] A. Bondavalli, I. Majzik, I. Mura: Automatic dependability analyses for
supporting design decisions in UML, (1998).

[BT97] R. Bardohl, G. Taenzer: De�ning visual languages by algebraic speci�cation
techniques and graph grammars. Technical report, Technical University of
Berlin, (1997).

[CHK99] M. Dal Cin, G. Huszerl, K. Kosmidis: Evaluation of safety{critical system
based on guarded statecharts. In Proc. HASE'99 4th IEEE International
Symposium on High Assurance Systems Engineering, (1999).

[EEHT97] H. Ehrig, G. Engels, R. Heckel, G. Taenzer: A view{oriented approach
to systme modelling based on graph transformation, (1997).

[Hol97] G. Holzmann: The model checker SPIN. IEEE Transactions on Software
Engineering, 23: 279{295, (1997).

[LMM99] D. Latella, I. Majzik, M. Massink: Towards a formal operational seman-
tics of UML Statechart Diagrams. In Proc, IFIP TC6/WG6.1, 3rd Inter-
national Conference on Formal Methods for Open Object{Oriented Dis-
tributed Systems, February, (1999).

[PW92] J. S. Penberthy, D. Weld: UCPOP: A sound, complete partial order plan-
ner for ADL. In Proc. 3rd Int. Conf. on Knowledge Representation and
Reasoning. pages 103{114, October, (1992).

[Rei84] R. Reiter: Towards a logical reconstruction of relational database theory.
In On Conceptual Modelling, Springer-Verlag, (1984).

[RS95] J. Rekers, A. Sch�urr: A parsing algorithm for context{sensitive graph gram-
mars. Technical report. Leiden University, (1995).

[Sch94] A. Sch�urr: Speci�cation of graph translators with triple graph gram-
mars. Technical Report, RWTH Aachen, Fachgruppe Informatik, Germany,
(1994).

[Wel94] D. Weld: An introduction to least commitment planning. AI Magazine,
(1994).


