
1

Software Diagnosis using
Compressed Signature Sequences

István MAJZIK

Technical University of Budapest, Hungary
Department of Measurement and Instrument Engineering

H-1521 Budapest, Müegyetem rkp. 9.
E-mail: majzik@mmt.bme.hu

Abstract: Software diagnosis can be effectively supported by one of the concurrent
error detection methods, the application of watchdog processors (WP). A WP, as a
coprocessor, receives and evaluates signatures assigned to the states of the program
execution. After the checking, the watchdog stores the run-time sequence of signa-
tures which identify the statements of the program. In this way, a trace of the state-
ments executed before the error is available. The signature buffer can be effectively
utilized if the signature sequence is compressed. In the paper, two real-time com-
pression methods are presented and compared. The general method uses predefined
dictionaries, while the other one utilizes the structural information encoded in the
signatures.

1 Introduction

Post-mortem diagnosis of embedded (real-time) application programs is often difficult, since
in most of the cases diagnosis is supported only by static information in some form of a
memory dump. The system designer would rather be interested in the trace of the erroneous
program, i.e. in the sequence of statements executed by the program before the error. To take
and store this trace, often complex and costly monitoring systems should be implemented
which may even modify the original operating environment and interfere with the timing of
the monitored programs. However, it has to be pointed out that the error detection mecha-
nisms implemented in highly dependable systems often provide mechanisms to derive the
trace of the program with minor cost and additional effort. Our goal is to show, that one of
the commonly used run-time error detection methods, the application of watchdog-proces-
sors, can be easily extended to support the trace based post-mortem diagnosis of the program.

Dependable applications require continuous, concurrent run-time error detection mechanisms
in order to highlight transient errors causing disturbances in data and control flow. Errors in
data can be effectively detected (and even corrected) by error detecting and correcting codes,
while one of the most efficient methods for the detection of control-flow errors is the appli-

2

cation of watchdog-processors. A watchdog-processor (WP [1]) is a relatively simple copro-
cessor monitoring the state of the system using signatures, compact abstractions of the
system state. In the assigned signatures method ([2]), the checked program is modified at
compilation time by a preprocessor in such a way, that during the run the signatures are trans-
ferred to the WP. (The preprocessor analyzes the high-level program text, labels the state-
ments of the program by signatures and inserts the signature transfer instructions.) The WP
evaluates the run-time sequence of signatures on the basis of a predefined reference. If a sig-
nature is found which is not a valid successor of the previous signature then a control-flow
error is detected: the program entered an erroneous state inconsistently with the control flow
graph.

The signatures assigned by the preprocessor uniquely identify the states of the program. In
the default case, each individual statement of the program is associated with an unique sig-
nature, but additional reduction phases can merge branch-free statement sequences into a
block labelled by a single, joint signature. In this way, the run-time sequence of signatures
contains the necessary information on which basis the execution of the program, the trace of
the statements can be later restored. However, the original error detection mechanism does
not store this sequence of run-time signatures in the WP. If a signature is accepted as a valid
one, then the next reference value is derived and the actual signature is deleted, the WP is
prepared to receive and evaluate the next signature.

If the run-time signature sequence is stored in the WP, then a complete log of the program
execution is available, the trace of executed statements can be restored. The difficulty is that
for practical programs this sequence is too long to store in full extent. Iteration loops, fre-
quently called procedures, synchronization cycles waiting for external events transfer a large
number of signatures to the WP preventing the storing of the entire sequence in a buffer of
limited size. A trade-off between the efficiency and moderate cost is to implement a logic
analyzer-like cyclic buffer storing a limited log of signatures transferred before an error was
detected. The utilization of the cyclic buffer can be further improved by some kind of infor-
mation compression on the signature sequence before storing the log, since the majority of
signatures originates from repetitive signature sub-sequences.

The basic idea is summarized as follows: The WP receives and compresses the run-time se-
quence of signatures. The compressed sequence is stored in a cyclic buffer. If an error is de-
tected then the application is stopped and the buffer can be read by the diagnosis program.
The content of the buffer is decompressed, the original signature sequence and the statements
identified by the signatures are derived. In this way the trace of the statements executed be-
fore the error is available for diagnosis purposes.

In Section 2 the compression of a general signature sequence is investigated. A dictionary is
constructed on the basis of the control flow graph (CFG) of the program to be monitored. It
contains the necessary program-specific information in order to ensure the optimal compres-
sion of the run-time signature sequence.
The special structure of the signatures used in theSignature Encoded Instruction Stream
(SEIS [3]) signature assignment method allows the definition of a general compression
scheme. In this case no dictionary is needed, the run-time signature sequence can be com-

3

pressed without downloading or building any program-specific dictionary. This interesting
(sub-optimal) compression is discussed in Section 3. At the end, measurement results (Sec-
tion 4) and the proposed diagnostic environment (Section 5) are presented.

2 Compression of the signature sequence using a predefined dictionary

The theoretical problem of the compression of the signature sequence is a problem of univer-
sal encoding. In our case, the message is the run-time sequence of signatures, the message
alphabet contains the valid signatures while the encoding alphabet consists of a fixed number
of characters. The signature sequence is divided intowords (sets of subsequent signatures)
of varying size and each word is encoded by a single character of the encoding alphabet. The
words and the corresponding characters form adictionary.

In the common universal encoding schemes (Adaptive Huffman, Lempel-Ziv I-II) the dictio-
nary is built in run-time. The run-time construction of the dictionary is time-consuming and
needs a fast, difficult and sophisticated hardware. We propose a method which allows a sim-
pler hardware compressor unit by using a predefined dictionary. The dictionary is built dur-
ing compilation, when the program is analyzed, the CFG is derived and the signatures are
assigned to the states of the program. Before the start of the program, the dictionary is down-
loaded into the WP. The compression mechanism operates on the basis of the predefined dic-
tionary: if a word is found in the signature sequence then the corresponding character is
stored in the buffer (in the case of repeating characters only a counter is increased). This ap-
proach ensures the simplicity of the compression hardware, however, the efficiency of the
compression depends on the definition of the dictionary, i.e. on the optimal selection of the
words.

The signature sequence is known completely only in run-time due to the data dependency of
the program run. But, since the control flow graph of the program is known, program paths
assumed to be executed multiple times (at a high rate) can be identified. In this way, signa-
ture sequences originating from the execution of these program paths should define the
words of the dictionary. The execution of the following structures can be taken into account:
- body of an iteration (loop);
- long (branch-free) sequences of instructions;
- normal branches of selections (exception should rarely occur);
- frequently called small procedures.
The preprocessor which analyzes the program text can identify these structures, derive the sig-
nature sequences associated with them and in such a way define the dictionary.

To compress a run-time signature sequence, an additional hardware unit (signature compres-
sor) is intended to be built in the WP. It receives the signatures, performs an on-line compres-
sion and stores the compacted sequence in the WP-internalcompression buffer. In the
following, first the structure of the predefined dictionary is given, then the compression algo-
rithm and its properties are presented.

4

2.1 The dictionary

The words of the dictionary are associated with frequently executed program paths, but do
not cover all of the possible paths of the program execution. The following considerations
ensure that signature sequences, belonging to paths not mapped directly to words, are stored
in the compression buffer as well:
- each valid (single) signature is encoded by a unique character;
- prefixes of the defined words are encoded by unique characters as well.

The structure of the dictionary is aset of trees representing words starting with a given signa-
ture. Each valid signature is a root of an individual tree, followed by its immediate successor
signatures according to the CFG and so on until the endpoints of the tree. In this way a node of
the tree identifies an unique signature sequence starting with the root signature and ending at
the given node.
The nodes of the trees - and, consequently, the signature sequences embedded in the signature
tree - are associated withunique characters of the encoding alphabet. The character associated
with a node encodes the signature sequence along the path from the root of the tree to the given
node (Figure 1). The above mentioned requirements are satisfied: each signature, as a root of a
tree, is encoded by a unique character, and prefixes of words are encoded by a single character
as well.

The construction of the signature trees is optimized in the sense that a postfix of a word is rep-
resented by a path in the tree starting with the first signature of the postfix only if it is awaited
to occur separately in the signature sequence, not following its prefix in the original word. (E.g.
if the sequence of signaturess1-s2-s4-s7-s8 is a path in the tree starting withs1 ands4 always
follows s2, then the postfix s4-s7-s8 is not represented by a path in the tree starting withs4.)

Accordingly, most of the trees consists of only the root signature, but there are some signatures
which are represented by nodes in several signature trees (they are embedded in words starting
with different signatures). An additional reason of the repetition of signatures is that the imple-
mentation of the compression algorithm requires the limitation of the number of branches at a
given node of the tree. (The structural properties of the control flow graphs of programs enable
this limitation as most of the signatures have only a limited number of valid immediate succes-
sors, the practical limits are 2 or 3.) In Figure 1 an example CFG and the corresponding signa-
ture trees are given. The possible paths of the iteration are separately encoded since they are
expected to be executed multiple times. Two complete paths are also covered by words.

2.2 The compression algorithm

The task of the compression algorithm is to find the longest word which is encoded by a single
character. (In worst case, each signature is encoded by a separate character which corresponds
to the root of the tree associated with the signature.) If the maximal word is found then the en-
coding character is stored into the compression buffer. The compression buffer is a linear array
of elements, each element consists of two fields: a field storing the character and a second field
counting the subsequent occurrences of the character.

5

The compression algorithm starts in theStart phase then continues in the Encoding phase (sig-
natures are received and processed looking for the most feasible character which encodes the
sequence). The character encoding the maximal word is stored in theStoring phase.

1 Start phase: If the first signature of a word has been received then the tree associated with
this signature is selected. The actual node is the root node, the next signature is processed
in theEncoding phase.

2 Encoding phase: As the next signature is received, the successors of the actual node
(which corresponds to the previous signature) are addressed and compared with the actual
signature.
If one of them equals to the actual signature then the node corresponding to it becomes the
new actual node. The encoding of the word continues in theEncoding phase.
If none of them equals to the actual signature (or there are no successors in the tree) then
the actual word is ended. The character associated with the actual node is stored into the
compression buffer(Storing phase), the actual signature is processed in theStart phase.

3 Storing phase: If a word of maximum length (which is encoded by a single character) is
found then the character associated with the actual node is stored.
If the actual character is the same as the previous character stored in the buffer then only

Figure 1 A program CFG and the corresponding signature trees

s1 s2

s8

s3 s4 s5 s7 s8

s6 s7 s8s2

s3 s4 s5 s7

s6 s7

s4

s5

s6

s7

s8

c1

c2

c3

c4

c5

c9

c10

c11 c12 c14 c15 c16

c13 c17 c18

c19 c21 c22

c20 c23

c6 c8

c7

Signature sequence: Encoded by characters:
s1 - s2 - s8
s1 - s2 - s3 - s4 - s5 - s7 - s8
s1 - s2 - s3 - s6 - s7 - s8
s3 - s4 - s5 - s7
s3 - s6 - s7

c10
c16
c18
c22
c23

Run-time sequence:
s1-s2-s3-s4-s5-s7-s3-s6-s7-s3-s6-s7-s8

Compression buffer:
1xc15 2xc23 1xc8

s1..s8: signatures
c1..c23: characters

S1:
e=j+k;
S2:
while (c>e) {

S3:
if (c<d) {

S4:
d=d+k;
S5:
c=c-d

}
else {

S6:
c=c-d/2;

}
S7:
printf(“.”);

}
S8:
printf(“end”);

s1

s2

s3

s4

s5

s6

s7

s8

6

its counter has to be increased by one. Otherwise the actual character has to be stored in
the next element of the compression buffer (with1 as counter value).
The actual signature is processed as first signature of the next word (Start phase).

2.3 The enhanced compression algorithm

There are (longer) paths in the CFG which share common subpaths. Accordingly, the signature
sequences corresponding to these subpaths should be embedded in various longer words. In or-
der to reduce the size of the dictionary, theenhanced compression algorithm enables the use of
embedded characters. If a signature sequence is encoded by a character then instead of the se-
quence thecharacter can be placed into the dictionary. To keep the compression algorithm as
simple as possible, only those characters should be used as embedded characters which repre-
sent a path (signature sequence) from the root to the end of a signature tree.

Compared with the previous subsection, the signature trees are modified since characters can
be encoded by another characters if they are embedded in the signature sequence. The signature
trees depicted in Figure 2 illustrate how the size of the original dictionary is reduced.

Similarly to the previous algorithm, the compression begins in theStart phase then continues
in theEncoding phase. If a character is found that should be stored in the compression buffer
then theStoring phase is called. An additionalcharacter stack is maintained by the algorithm
(storing the predecessors of the embedded characters).

1 Start phase: If the first signature of a word has been received then the tree associated with
this signature is selected. The actual node is the root of this tree. The next signature can be
received and processed in theEncoding phase.

2 Encoding phase: The successors of the actual node (which usually corresponds to the
previous signature) are addressed.

Figure 2 Signature trees with embedded characters

s1 s2

s8

s3 s4 s5 s7 s8

s6 s7 s8

s3 s4 s5 s7

s6 s7

c1

c3

c9

c10

c11 c12 c14 c15 c16

c13 c17 c18

c19 c21 c22

c20 c23

s1 s2

s8

s8

s8

s3 s4 s5 s7

s6 s7

c1

c3

c9

c10

c13

c14

c15 c17 c19

c16 c18

Original signature trees Trees with embedded characters

c19
c11

c18
c12

Signature sequence Encoding
s1 - s2 - s8
s1 - s2 - s3 - s4 - s5 - s7 - s8
s1 - s2 - s3 - s6 - s7 - s8

c10
c13
c14

With embedded characters
s1 - s2 - s8
s1 - c19 - s8
s1 - c18 - s8

7

• If there are successors (signatures or characters) of the actual node then first the signa-
ture successors are read and compared with the actual signature:

• If there is a signature successor which equals to the actual signature then the node
corresponding to it becomes the new actual node. The next signature is received and
the encoding of the word continues in theEncoding phase.

• If none of the signature successors equals to the actual signature (or, there are no
signature successors at all) then

• if there is no character successor of the actual node, then the word is ended, the
actual character is stored in the compression buffer (Storing phase) and the ac-
tual signature is processed by theStart phase (as a first signature of a new
word).

• if there is a character successor of the actual node then an embedded word may
follow. The actual node is stored on thecharacter stack, the actual signature is
processed by theStart phase (looking for the word belonging to the embedded
character).

• If there are no successors (signatures or characters) of the actual node, then the actual
word is ended. It has to be examined whether it is an embedded word or not.

• If there is no node stored on the character stack then the actual word is an individual
word. The actual character is stored in the compression buffer (Storing phase), the
actual signature is processed by theStart phase (as a first signature of a new word).

• If there is a node stored on the character stack, then the actual word (represented by
the actual character) has to be examined whether it is the embedded word following
the node on the stack. The node stored on the character stack (the node before the
embedded character) becomes the actual node. The successor characters of the ac-
tual node are addressed and compared with the actual character.

• If there is a character successor of the actual node which equals to the actual
character then the embedded word has been found. The node corresponding to
the valid character successor becomes the new actual node, the top of the char-
acter stack is deleted, and the actual signature is processed by theEncoding
phase (continuing the encoding of the word).

• If there is no character successor of the actual node which equals to the actual
character then the actual word is not the embedded word: the original word is
ended and additionally a new word is found.
The characters of the character stack have to be stored in the compression buffer
(in the order they were written onto the stack,Storing phase), thereafter the ac-
tual character has to be stored in the compression buffer as well (Storing phase);
the actual signature is processed by theStart phase(as a first signature of a new
word).

3 Storing phase: If a character is found that encodes a maximum length of signature
sequence then it is stored in the compression buffer as follows:
If the actual character is the same as the previous character stored in the compression

8

buffer then only its counter has to be increased by one. Otherwise the actual character has
to be stored in the next element of the compression buffer (using1 as counter value).

2.4 Implementation of the dictionary

For the sake of effectiveness and high speed of the compressor hardware, the signature trees of
the dictionary are implemented aslinked listsin a common dictionary buffer (a conventional
memory array). Alist element (which is available at a given physical address of the buffer) rep-
resenting a node of a tree consists of the followingfields:
- the signature (or character) associated with the node;
- the number of successors stored in the signature tree (limited to 3);
- a mask defining whether the successors are characters or signatures;
- a pointer addressing the successor nodes (address of the list element representing the first

successor node; the other successor nodes are stored subsequently, after the first one); if
there is no successor then a null pointer is assigned.

The character which is associated with the node is the physical address of the list element, in
this way it has not be stored.

The placement of the linked lists in the dictionary buffer is performed by the preprocessor
which builds the dictionary:
- The characters associated with the root nodes of the trees are exactly the signatures asso-

ciated with these nodes (i.e., the physical address of a list element corresponding to a root
node is the signature which is associated with this node). In this way, in the start phase of
the compression algorithm, the signature tree is addressed directly by the signature.

- Since the nodes (which are not root ones) could be associated with arbitrary unique char-
acters, the dictionary buffer is fully utilized (Figure 3):
- list elements representing the root nodes are placed at the bottom of the buffer, at sub-

sequent addresses (determined directly by the value of the signature);
- list elements representing the successors of a given node are found at subsequent

(neighboring) addresses, in this way a single pointer defines the set of successors.

Figure 3 Implementation of the dictionary with embedded characters

addresses = characterssign. pointer

c2R2 s2 000

c1R1 s1 000

c9s2

c10000s8

c11c19

s1, s2,... signatures

c1, c2,... addresses,
code characters

R1, R2,... root nodes

mask

c9

011

000 c13

c12c18 000

0

1

0

count

3

1

1

c10

c14

c2R3 s3 0002 c15

9

2.5 Properties of the compression algorithm

The (enhanced) compression algorithm is real-time in the sense that the processing time of a
signature is limited, independently whether the signature is included in a word or it is encoded
separately. The transfer of signatures is not stopped or slowed down due to the difficulties or
special cases of the compression. Theoretically, the number of levels of the embedding (char-
acters in signature sequences encoded by other characters) is not limited. However, if a mis-
match is detected by the algorithm then the storing of the character stack needs extra time
proportional with the number of characters on the character stack. This is completely controlled
by the construction of the dictionary, in this way the real-time properties are not violated.

The efficient hardware implementation is ensured by the following properties:
- No run-time building and modification of the dictionary is needed (it is predefined).
- The dictionary is stored in a form fully utilizing the dictionary buffer.
- The root of a signature tree is addressed directly by the signature.
- The successors of a node in a signature tree are addressed by a stored pointer, they are avail-

able at subsequent addresses.
- The examination of the possible successors requires a limited number of comparisons.

3 Compression of the signature sequence in a SEIS WP

The previous section presented a compression scheme using a predefined dictionary which can
be easily derived analyzing the (high level) source text of the program to be executed. The dic-
tionary should be downloaded into the compressor before the program run. In this way, starting
new programs in the (multi-tasking) environment requires the downloading of new dictionaries
which results in time and hardware overhead (storage of multiple dictionaries).

This section proposes a compression scheme which retains the simplicity of the previous
scheme but universal in the sense that it does not need any predefined dictionary which is to be
downloaded. The scheme is based on the SEIS assignment of signatures, thus it can be com-
bined with signature checking by SEIS watchdog processors. In the following, first the SEIS
signature assignment is described then the compression algorithm, its requirements and limita-
tions are presented.

3.1 The SEIS signature assignment

In order to keep the evaluation of the run-time signatures simple, the SEIS signatures represent
not only the statements of the program but also contain information about the valid (run-time)
immediate successor signatures. Each SEIS signature (as a statement label) consists of 3 indi-
vidual parts calledsublabels. A signature is valid successor of a previous signature if and only
if one of its sublabels is valid successor of one of the sublabels of the previous signature. The
successor function of the sublabels is the natural function increasing the value of the sublabels
by one.

A valid path in the CFG is represented by a sequence of signatures where each signature is a
valid successor of the previous one. In this sequence, the subsequent signatures are connected

10

by successor sublabels (an edge of the CFG is associated with two unique sublabels, a startpoint
sublabel and an endpoint sublabel in the signatures belonging to the connected nodes). Consid-
er a signature in the run-time sequence. If the same sublabel connects the predecessor signature
to the actual one and the actual signature to the successor one then the actual signature is called
anordinary signature in the sequence.

3.2 Compression algorithm

Each sublabel is unique in the signature set (within the limitations of the number of bits in the
signature word), in this way one of the sublabels of a signature identifies the complete signature
and thus a node of the CFG. Based on this fact, a run-time sequence of signatures can be easily
compressed if all signatures in the sequence are ordinary ones. In this case, the sequence of sig-
natures can be reduced to the sequence of the sublabels which connect the subsequent signa-
tures. This sequence of sublabels is identified by the first and the last sublabel in the sequence
(due to the deterministic successor function), in this way it can be encoded by these two values,
independently of the number of sublabels in the sequence (Figure 4).

S1:
e=j+k;
S2:
while (c>e) {

S3:
if (c<d) {

S4:
d=d+k;
S5:
c=c-d

}
else {

S6:
c=c-d/2;

}
S7:
printf(“.”);

}
S8:
printf(“end”);

Signature sequence Compressed information
s1 - s2 - s8
s1 - s2 - s3 - s4 - s5 - s7 - s8
s1 - s2 - s3 - s6 - s7 - s8
s3 - s4 - s5 - s7
s3 - s6 - s7

(1 ; 3)
(5 ; 11)
(13 ; 18)
(7 ; 10)
(15 ; 17)

Figure 4 Assignment and compression of SEIS signatures

Executed path:

Sublabel sequence: 13 14 15 16 17 18

s1 s2 s3 s6 s7 s8

Encoded by: 1 x (13;18)

s1

s2

s3

s4

s5

s6

s7

s8

1 5 13

2 6 14

21 7 15

16 16 16

9 9 9

8 8 8

10 17 20

3 11 18

11

The compression algorithm examines whether the actual signature is an ordinary one. If it is
ordinary then the sequence may continue, otherwise the actual sequence is reduced to a subla-
bel sequence which is encoded by its first and last sublabels. The compressed sequence (the pair
of the two sublabels) is stored into the compression buffer.

1 Start phase: The first signature of a sequence is stored in a temporary buffer. The next sig-
nature is received immediately. The sublabel of the first signature which connects it to this
next one is stored asstart sublabel, its successor in the next signature is marked as the
actual sublabel. The following signature is processed in theEncoding phase.
If there is no sublabel that connects the first signature to the next one (e.g. this later one is
an initial signature of a procedure called by the previous statement) then the first signature
is stored (Storing phase, selecting an arbitrary sublabel of it) and the next one is processed
in the Start phase as first signature of a new sequence.

2 Encoding phase: As the actual signature is received, it is examined whether the previous
signature is an ordinary one.
If the previous signature is connected to the actual signature by the actual sublabel then it
is an ordinary signature. The successor of the actual sublabel becomes the new actual sub-
label, the next signature is received and processed in theEncoding phase.
If the sublabel of the previous signature, which connects it to the actual signature, is not
the actual sublabel then the sublabel sequence is terminated. The encoded sequence is
stored into the compression buffer (Storing phase). The actual signature is processed in
theStart phase as first signature of a new sequence.

3 Storing phase: The compressed signature sequence is stored as the pair of the start subla-
bel and the actual sublabel.
If this pair is the same as the previous one stored in the buffer then only its counter has to
be increased by one. Otherwise the actual pair has to be stored in the next element of the
compression buffer (with1 as counter value).

3.3 Properties and limitations of the SEIS compression

The construction of the SEIS CFG does not take into account the requirements of the compres-
sion as the edge sequences are defined mainly in the order of the syntactic occurrence and it is
not guaranteed that ordinary signatures are assigned. However, the efficiency of the above de-
fined SEIS compression can be further improved. Preferred paths of the program execution
which are expected to be executed frequently (belonging to the words of the dictionary as de-
fined in the previous Section) can be distinguished by assigning subsequent ordinary signatures
to the nodes (path optimization). To do this, transformations have to be executed on the CFG
before the assignment of the sublabel values, still preserving the structural properties of the
CFG (i.e. not introducing additional paths). The following steps can be defined (Figure 5):
- Shuffling the output edges of a node, i.e. transposing the startpoint sublabels in the corre-

sponding signature.
- Shuffling the input edges of a node, i.e. transposing the endpoint sublabels in the corre-

sponding signature.
- Introducing duplicated edges between nodes of the CFG.

12

The first two transformations produce ordinary signatures in a given path. The third transfor-
mation (which can be followed by the first two ones) enables a signature to be embedded in
multiple different signature sequences. In the actual implementation of SEIS, the following
constraints have to be taken into account during the path optimization:
- The number of sublabels of a signature is limited to 3, thus the number of input/output edg-

es of a node is limited as well. (This limit of sublabels is proved to be satisfactory for pro-
grams in common structural languages like C, Pascal, Modula-2). Consequently, a
signature can be embedded in maximum 3 different compressible run-time sequences.

- The number of input/output edges of nodes belonging to special statements (exception cas-
es in the structural languages, likegoto, break etc.) is further limited. Additionally, in these
nodes the order of the edges (how the output edges follow the input edges) is constrained.
Due to these constraints, in most of the cases the necessary transformations can not be ex-
ecuted thus the signatures belonging to these nodes terminate the signature sequences.
The special statements and the constraints of the input/output edges are analyzed in details
in [4].

Due to the limitations of the path optimization in the SEIS CFG, the optimal path selection and
encoding can not be performed in all cases. The drawback is especially significant if there are
more than 3 execution paths (of about the same probability) in the body of a frequently execut-
ed iteration. In these cases the general compression algorithm provides better results since there
are no limitations in the path selection and encoding. However, the lack of dictionary and in-
formation downloading makes the SEIS compression still attractive.

4 Preliminary measurement results

The real-time signature compressor is intended to be built using an FPGA circuit (Xilinx 3000
series) which needs only an interface to receive signatures and a memory array to store the
compression buffer (and the dictionary in the general case). Since the FPGA is programmable
in run-time, both structures can be downloaded and evaluated. The fast compression algorithm
and the low hardware overhead enable the circuit to be built into the conventional watchdog-
processor unit [5]. The preliminary measurements were performed using software simulation.

Figure 5 Path optimization in the SEIS CFG

Shuffle of output edges Shuffle of input edges Duplication of edges

13

4.1 Compression of general signatures

The effectiveness of the compression depends heavily on the optimal selection of the words,
i.e. on the construction of the dictionary. To highlight this effect, the compression rate was mea-
sured building dictionaries of different size. The benchmark program was a multigrid based
solver of differential equations, with reduced number of signatures (in average, every 5th state-
ment was associated with a signature). First the paths inside of the iteration loops were encoded
then additional paths as well. The results are given in Table 1. The iteration loops of the solver
are relatively small, thus the compression rate is sensitive for small changes in the dictionary
(as new paths are entered). The run of the iterations is data dependent since for different input
parameters (number of levels), the same changes in the dictionary result in different effects.

4.2 Compression of SEIS signatures

The effectiveness of the SEIS compression depends on the structure of the CFG, i.e. on the path
optimization. The following measurements were made using various benchmark programs
without additional path optimization (only the original SEIS encoding algorithm was executed
which encodes the paths looking for maximum loops in the CFG in the order of syntactic oc-
currence). The results are satisfactory even in this case (Table 2). Signature sequences belong-
ing to simple iterations and long statement sequences are compressed effectively (the
compression becomes better increasing the number of steps in the iteration of the multigrid
benchmark). Nested loops and complex control structures make the compression difficult.

Benchmark
Without

compression

Dictionary size

85 89 95 116

multigrid 3 1,715

100%

1,181

69%

776

45%

692

40%

607

35%

multigrid 5 32,391

100%

15,914

49%

4,622

14%

4,118

13%

3,981

12%

Table 1 Size of the compressed trace vs. dictionary size

Benchmark
Number of

run-time signatures

Size of the

compressed trace
Compression rate

multigrid 3 3,993 932 23%

multigrid 5 79,005 12,884 16%

multigrid 7 1,254,821 157,936 13%

whetstone 119,633 38,893 33%

dhrystone 100 12,288 3,803 31%

linpack 11,825,895 728,441 6%

Table 2 SEIS compression results

14

5 Support of diagnosis

The compression buffer stores a limited number of signatures in a compacted form. If an error
is detected, the execution of the program is stopped and the compression buffer can be accessed
by the checked computer or by external devices as part of the diagnostic procedure. The signa-
ture sequence preceding the error is available, in this way the sequence of statements executed
before the error can be derived and analyzed.

The following considerations can help the successful diagnosis:

• If the error is reproducible then the dictionary can be redefined on the basis of the contents
of the compression buffer (new paths can be encoded which were not included in the dic-
tionary), in this way a longer signature sequence can be stored.

• If the program reaches a well-defined stable point (e.g. after a commitment; after a check-
point generation; if the initial state is reached again) then the compression buffer can be re-
set and the compression is restarted. In this way the compression buffer contains exactly
the signature sequence after the stable point in the execution.

• If a selected set of the input events of the checked program (e.g. interrupts, communication
with other processes, input from peripherals, time events) is associated with signatures then
input-specific or real-time constraints can be diagnosed as well.

The statements executed before the error are presented in a graphical environment similar to
the one of the common debuggers: the statements or statement sets of the program execution
are highlighted in the source text simulating an automatic trace or a single step execution con-
trolled by the user.

The above mentioned environment can help the input-domain based test of programs as well.
Since the signatures identify the possible paths of the program execution, it can be investigated
whether a given test set covers all of the possible branches of the program. The signaturesnot
transferred to the WP during the test identify the branches/paths which were not executed.

References

[1] Mahmood, A.; McCluskey, E. J.: Concurrent Error Detection Using Watchdog Processors - A
Survey. IEEE Transactions on Computers 37, 160-174 (1988)

[2] Lu, D. J.: Watchdog Processors and Structural Integrity Checking. IEEE Trans. on Comp. 31,
681-685 (1982)

[3] Pataricza, A.; Majzik, I.; Hohl, W.; Hönig, J.: Watchdog Processors in Parallel Systems. Mi-
croprocessing and Microprogramming Vol. 39 (Proc. Euromicro'93, 19th Symposium on Mi-
croprocessing and Microprogramming, Barcelona, 1993), pp 69-74, 1993

[4] Majzik, I.: SEIS: A Program Control-Flow Graph Encoding Algorithm for Control Flow
Checking. Technical Report No. TUB-TR-94-EE14, Technical University Budapest, Hungary,
66 pages, 1994

[5] Majzik, I.; Pataricza, A.; Dal Cin, M.; Hohl, W.; Hönig, J.; Sieh, V.: Hierarchical Checking of
Multiprocessors using Watchdog Processors. Springer LNCS 852, Springer Verlag, Berlin
Heidelberg, pp 386-403, 1994

