
1. INTRODUCTION

The introduction of the new European standards
for railway safety will significantly change the
method in the design procedures in all cases
when a new product of safety relevance is being
developed or an existing safety system is to be
upgraded.

In our case a new equipment has been
developed for upgrading existing relay-based
railway interlocking systems. In order to gain the
necessary approval of the authorities, the
appropriate safety level of the modified
interlocking system had to be proved. The
acceptance of the hardware structure selected for
the new equipment could be made without major
difficulties, since the design has met the
requirements of the UIC 738 recommendation.
There are other well-known methodologies to
prove the appropriate safety of the hardware.

Acceptance procedure for the software was
much different because it should have been
carried out (and is still being carried out)
according to EN 50126, EN 50128 and EN
50129, and it was a novelty both for the authority
and for the manufacturer. Validation and
verification processes involved lots of time-
consuming activities.

A significant but well-separated function of
the system, the permission-managing module

was developed by using UML, the Unified
Modeling Language (OMG, 2001). The UML
based design enabled us to apply formal
verification and validation techniques.

While a relevant effort is being devoted in
the software engineering industry to the
development of standardised design languages
and methods, such as UML, much less attention
has been dedicated up to now to the integration
of these design technologies with the verification
and validation techniques. Our approach aimed
at the extension of the UML-based design
process by model based mathematical analysis
and validation. The first kind of analysis checked
the completeness and consistency of the
behavioural description of the module, this way
reducing the potential safety problems
originating in an incomplete and ambiguous
specification. In the subsequent phases, the
functional design was enriched by modelling the
potential faults and their effects. This kind of
extension allowed the analysis of the error
propagation and testability in the case of the
anticipated faults.

In the following, first we present the
permission-managing module (its hardware
environment and software architecture) and
illustrate its UML-based design. Then the formal
analysis techniques are detailed. The paper is
closed by a short Conclusion.
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2. HARDWARE ENVIRONMENT OF THE
PERMISSION-MANAGING MODULE

There are more than 300 railway stations in
Hungary that are equipped with relay-based
interlocking systems. Their ages vary between
15-30 years, but due to the proper maintenance
done (and will be done) most of the systems has
an additional life span of 10-20 more years.

For providing the operability of those
systems as well as for expanding their
functionality to match state-of-the-art
requirements, a development project was started
3 years before.

The project has targeted to develop a new
equipment of safety relevance that can be used
−  to replace the existing MMI  (a traditional

push button operated, electromechanical
control desk with mimic panel) of the relay
interlocking,

−  to make remote supervision and control of
the interlocking system of a station possible,

−  to integrate and solve other control and data
acquisition tasks in the station, not closely
related to the interlocking system (e.g. track-
point heating subsystem,  air-line powering

system control etc.).
The project has come to a successful end and 18
pieces of the target product, called “electronic
control desk”, have recently been put into
operation at the railway stations of both
Hungarian railway companies (Várnai, 2001).

Concerning hardware, the electronic control
desk is a complex of modular industrial
microcomputers and high end commercial PCs.
The structure of the equipment is shown in
Figure 1.

The architecture of the electronic control
desk has been made to satisfy simultaneously
and in conformity with the requirements of the
functionality, the safety and the availability.

There are two levels of the electronic control
desk according to the differences of their
functions and due to the different locations
where the functions are realised:
−  the terminal (RTU) level, that is a modular,

industrial microcomputer, connected to the
I/O-s of the relay system, installed typically
into the relay room of the station and
assigned for the primary processing of the
site information;

−  the workstation (WS) level, that is a high
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end PC with LCD monitor, keyboard, track-
ball, and printer, connected serially to the
RTU level and through LAN/WAN to the
regional traffic supervisory and control
centres.

For meeting the requirements of the safety, the
processing of the signals coming from the
railway technology is redundant within an RTU,
i.e. a single information bit of an object generates
two inputs (true and false) for the RTU. In the
same way, an output control can only be
generated if two output channels operate
simultaneously but with opposite direction.
These two output signals are connected to the
coil of a relay providing “END” function and
outputting the real and safety output on its
contact if the coil is energised.

The 2 out of 2 safety criteria is realised on
the workstation level of the electronic desk as
well, due to the doubled database and the
simultaneously but independently processed
data. The man-machine interface functions
(display and control) can be executed only if the

results of the parallel processing, the databases
are equivalent.

The total hot-standby feature of the system
extended to both levels and realised by a
complete duplication fulfils the requirement of
availability.

3. SOFTWARE ENVIRONMENT AND
FUNCTIONS OF THE MODULE

The programs of the RTU-s run under a fast and
simple real-time operating system (ROS 186).
The software of the workstations is based on
Linux that makes the safety version of XGRAM
SCADA system running.

A simplified block diagram of the WS
software is shown in Figure 2.

One can see from the diagram that the
function of permission-managing is not among
the real safety critical parts of the software, like
e.g. controls, though inappropriate handling of
train movements could cause delays in the traffic
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of passengers and goods.
The permission-managing function can

operate only between neighbouring stations,
which are equipped with the electronic control
desk and the stations are hooked up in a WAN.

In case of traditional equipment, permission
request for starting a train is carried out by voice
communication of the personnel through
telephone lines. No train can be started from a
station without the oral permission of the
neighbour.

The whole process of requesting and
granting the permission of train movements is
strictly governed by the requirements of “F2”
traffic regulation of MÁV, the Hungarian State
Railways. When changing from the traditional
verbal solution to the computerised version, the
instructions of F2 had to be considered as
functional specification of the permission-
managing module.

A permission request telegram from the
station of departure should include
−  the train number,
−  the mass, length and other characteristics of

the train,
−  the track, selected for the traffic, (right or

left),
−  the planned departure time.
The station of arrival can either grant or reject
the permission. Permission can be granted with
limitation or modification.

The personnel of the station can activate the
permission-managing function on the screen of
the workstation by clicking on the icon of
“Permission”. Blinking characters and sound
effects warn the operator if a permission request
arrives. Different colours of the train numbers
signalises on the screen if a train

−  has not yet requested to start,
−  is under the permission requesting process,
−  has got the permission to start,
−  has been rejected by the neighbour.

The permission-managing module is closely
connected to another module that handles the
train numbers. A permission request can be
issued only if the train to be started has a valid
train number and it is staying at the station.

The permission request and grant procedure
has to be continued either with the
acknowledgement, or with the cancellation of the
request reply of the requesting party. Finally the
communicating computers will make an end of
the process automatically, acknowledging the
arrival of the train at the neighbouring station.

The module generates a complete report on
the whole procedure of permission requesting
and granting, including all information of the
timing, the train and the personnel involved.

4. UML-BASED MODELLING

Several UML diagrams of the selected module
were elaborated by using Rational Rose as a
UML CASE tool. Use case diagrams were
applied to describe the main functions. Use cases
were refined by sequence diagrams depicting the
messages among the entities of the system. The
static structure of the module was specified by
class and object diagrams, while the dynamic
behaviour of the classes were given by statechart
diagrams. As an example, we present a class
diagram containing the classes belonging to the
conceptual model of the communication
subsystem (Figure 3). Main system components
are the Course and the Station. The graphical
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user interface (GUI) of the railway traffic control
system (installed in each station) is a main
environmental object.

In Figure 4 the statechart diagram of the
Course class is depicted which implements the
logic of the handshake protocol between two
stations. The source station requests a
permission, which can be rejected or granted by
the destination station. Permissions may be
cancelled or annulled by the source station.

5. ANALYSIS OF COMPLETENESS AND
CONSISTENCY

The implementation and even the detailed formal
analysis of the UML model of the target system
should be preceded by basic checks of the
completeness and consistency of the model.
These kinds of checks are motivated by
experience showing that most of the safety-
related malfunctions and accidents caused by
computer programs occur due to flaws in the
specification; mainly because of its
incompleteness and inconsistency (Heimdahl and
Leveson, 1996). The general well-formedness
rules of UML (often implemented in CASE
tools) are not enough to guarantee the
correctness: they allow non-determinism,
ambiguous "default behaviour" can be assumed
etc. The specification flaws occur most probably
in the statechart model, since it is the most
complex view of the system (defining state-based
behaviour) and its sophisticated constructs like
hierarchy of states, concurrent sub-automata,
priority relations among state transitions etc. are
not easy to be handled by the designer.

In the literature, 47 safety criteria were
collected as a general checklist for the
specification of software systems (Leveson,
1995). These criteria can be grouped into several
categories like state space completeness, input
variable completeness, trigger event
completeness, robustness, non-determinism, time
and value limits. Although the criteria were
specified for manual review, the most important
group of criteria, the consistency and
completeness rules can be checked mechanically.
Indeed, in this category it is crucial to have
mechanical tool support, because the manual
checking of the behaviour of a complex system
including hundreds of states and thousands of
state transitions is error-prone and extremely
time-consuming.

We have implemented tool support for the
checking of the following criteria:
1. Exactly one initial state exists in the model

and it is stereotyped as safe.
2. The system is deterministic: Two transitions

starting from the same state and triggered by
the same event are not enabled at the same
time. Moreover, in concurrent sub-automata
(pairs of) actions are not triggered by the
same event (otherwise their execution order
is non-deterministic).

3. The system is completely specified: For each
state, possible trigger event and guard
condition, there is a transition defined.

4. Each state is reachable (by state transitions).
5. Timeout transitions are defined in each state.
6. There is no transition in the model that is

continuously disabled by another transition
with higher priority. There is no transition
with a guard that is always false.

Init
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OntheWay

Granted

grant_ack / Log.write ^theDest:theGUI:grant_ack(theTrack)

canc elling / Log.wr ite t̂heDest:theGUI: cancel(theTrack )

granting / Log.write t̂heSource:theGUI:grant (theTrack)

cancelling / Log.write ^theDest:theGUI:cancel(theTrack)

rejecting / Log.write t̂heSource:theGUI:reject(theTrack)

requesting / Log.write t̂heDest:theGUI:request(theTrack)

annulling / Log.write ^theDest:theGUI:annull(theTrack)

Fig. 4. Statechart diagram of the Course object



These criteria can be verified by static checking
directly on the model, i.e. without the
construction of the global reachability graph of
the system. This way state space explosion due
to concurrent execution of sub-automata can be
avoided thus the time and memory requirements
of the checking can be drastically reduced.

The checking of these criteria is complicated
by the hierarchic and concurrent nature of the
statecharts, e.g. sub-states "inherit" the state
transitions of their parent states (which has to be
enumerated during the checking). Accordingly,
before executing the checking, the statechart
model has to be transformed to a reduced form
which is a flattened model without state
hierarchy and it contains only basic elements like
states, events, transitions, and actions (Pap et. al,
2001). Moreover, the guard conditions are
converted to a canonical form. The model
reduction and the subsequent checking are
performed automatically by approximately 60
rules in a general-purpose graph transformation
system (Csertán et al., 2002). The results of the
checking identify the model elements where the
rules are not satisfied.

Our checker is independent of the applied
UML CASE tool since it is based on the standard
XMI (XML Metadata Interchange) format of
UML models. Accordingly, any tool supporting
XMI can be used.

The checking of the statecharts of our
example required 2-5 minutes and highlighted
specification flaws like typing errors, malformed
guard conditions and missing transitions. These
flaws were corrected and the analysis was
repeated until a complete and internally
consistent model became available.

6. FAULT MODELLING

Usually, the UML models used in system design
describe the behaviour of the system in the fault-
free case. However, several analyses like
testability and error propagation analysis require
modelling the behaviour also in the presence of
faults. Fault modelling includes the description
of the behaviour of the components in faulty
cases and the description of the error propagation
among the (fault-free and faulty) components as
well (Pataricza, 2002). We ask the designer to
describe the effects of local faults (explicit fault
modelling) and assume non-deterministic
behaviour when an erroneous input is received
(implicit fault modelling).

We use stereotypes (the standard extension
mechanism of UML) and modelling conventions
to identify the additional aspects as follows:

Description of the erroneous behaviour(s).
In each component, error-free and erroneous
behaviours are integrated into a single statechart.
Modelling the effects of local permanent faults
necessitates introducing additional states, events
and messages. Erroneous states are identified by
the stereotype <<FaultModel>>. Since we intend
to support the analysis of testability and error
propagation, our approach does not cover the
modelling of internal transient faults and repair
actions.

Completing the model by the handling of
unexpected messages. When modelling
erroneous communication one have to consider
the reaction of receiver components to
unexpected messages. If a message could arrive
to the target both in erroneous and error-free case
then the reaction is already described (the

F_Init
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F_Requested

<<FaultModel>>

F_OntheWay
<<FaultModel>>

F_Granted

<<FaultModel>>

annulling / Log.write ^theDest:theGUI:annull(theTrack)

grant_ack / Log.write ^theDest:theGUI:grant_ack(theTrack)

cancelling / Log.write\\ ^theDest:theGUI:cancel(theTrack)

granting / Log.write ^theSource:theGUI:grant(theTrack)

cancelling / Log.write ^theDest:theGUI:cancel(theTrack)

rejecting / Log.write ^theSource:theGUI:grant(theTrack)

requesting / Log.write t̂heDest:theGUI:request(theTrack)

Fig. 5. Model of an erroneous behaviour of the Course object



completeness of the error-free description has
already been analysed). Otherwise by default a
non-deterministic state transitions is assumed.
When the receiver is to interpret invalid
messages, then the corresponding behaviour (e.g.
exception handling) has to be modelled
explicitly. If the target must not interpret a given
message, then the name of the message has to be
changed to InvalidMessage.

Labelling of components that cannot be
confused by invalid messages. In case of some
objects (e.g. hardware objects having a strictly
restricted set of inputs) there is no need to model
the effects of invalid messages. These objects are
identified by the stereotype <<InvalidProof>>.

Labelling of error correcting transitions.
When analysing error propagation, the analysis
tool distinguishes between faulty (direct or
indirect result of the erroneous operation of a
component) and non-faulty messages. (This
distinction, which is not apparent on the UML
level of modelling, is not to be mixed up with the
distinction between correct and invalid messages
discussed above.) The automated processing
requires the identification of the error correcting
actions of the objects. The transitions that
implement a correction are to be labelled with
the stereotype <<ErrorCorrecting>>. This means,
that the message sent by the given transition is
non-faulty even if the triggering one was a faulty
one.

Distinguishing environmental objects. From
the point of view of error propagation the
interface between the system and its environment
is of central interest. UML models are usually
open models containing no description of the
environment. However, the subsequent analysis
steps (Section 7) require a closed model where
each input and output message has its source and
target, respectively. Accordingly, the modeller
has to include environmental objects labelled by
stereotype <<EnvironmentalObject>>.

The fault modelling approach is illustrated in
Figure 5. This statechart diagram extends the
error-free behaviour presented previously in
Figure 4 by including the model of a potential
erroneous behaviour. The diagram models the
case when the handshake protocol is failed due to
an erroneous control flow (in the event handler)
that interprets rejection as granting. The UML
stereotype <<FaultModel>> is used to
distinguish the erroneous states.

Typically, statechart level extensions are
used to model the effects of physical faults
occurring in the used resources.

7. ANALYSIS OF TESTABILITY AND
ERROR PROPAGATION

The enriched UML model (containing the fault
model) allows, among others, the following two
kinds of analysis:
−  Testability analysis shows whether the faulty

components can be identified by testing, i.e. by
applying specific test data to the input of the
system. This analysis characterises a fault as
being testable (if its effects are observable on
the primary or test outputs) or as being
diagnosable (if its effects are specific, i.e. the
fault can be identified on the basis of the
outputs). In a properly designed system all
faults are testable and diagnostic resolution
correlates with the smallest replaceable
(repairable) units. The analysis requires test
generation and the simulation of the behaviour
of the system under test in the case of the
anticipated faults. In this way the quality of a
test set in terms of coverage and redundancy
can be estimated as well.

−  Analysis of error propagation is used to asses
the effects of local faults to system service
(outputs) during operation. In this way
propagation paths without proper error
detection (or fault tolerance) and catastrophic
consequences of a fault can be examined. This
kind of analysis is performed by (parallel)
simulation of the faulty behaviour.

Test generation and simulation are complex and
time-consuming tasks. We were looking for a
method that supports abstraction and successive
refinement. Abstraction is needed to simplify the
analysis tasks, moreover, it is required in the
early phases of the design when a precise
behavioural model is not available (but the
architecture has to be established and the
propagation paths and the error detection have to
be estimated).

The basis of these analysis steps is the
transformation of the UML model to a data flow
network. Objects of the UML model are mapped
to nodes while links among them are mapped to
unidirectional channels connecting these nodes.
In this representation, the fault effects and their
propagation appear similarly to the flow of data
in the functional model (Csertán, 1997). Tokens
representing the data can be marked ("coloured")
as correct or faulty. A set of error propagation
paths can be estimated by tracing the token flow
from the faulty component (data flow node) to
the outputs of the network. Conditional error
propagation can also be modelled.



This kind of tokenised approach of
modelling data has several advantages.
−  It supports abstraction. In the early phases of

the design, when no precise behavioural
description is available, modelling by using
tokens like "good data", "corrupt data" and
"missing data" already allows to estimate
propagation paths and the required error
detection. Later, as the behavioural diagrams
will be available, more sophisticated classes of
tokens can be defined. The refinement of the
model can be driven by the analysis results
available in the more abstract phase. This kind
of abstraction delivers a superset of the
propagated faults, thus in the model all
potential consequences of a fault can be
estimated.

−  Data flow networks allow relatively simple
simulation and test set generation. The
algorithms well known in the logic gate
design, e.g. PODEM (Goel, 1981) can be
easily adapted and implemented (Csertán,
1997).

In our framework UML models of the system are
transformed to data flow networks automatically,
by using the graph transformation system
mentioned in Section 5. The test set generation
and simulation are performed on the resulting
data flow network and the results of the analysis,
like the test set, the set of faults that cannot be
tested, and the effects on the outputs are reported
to the designer in terms of the UML model
elements. The data flow representation is
available for simulation-based debugging
purposes.

8. CONCLUSIONS

UML based design of a system enables formal
analysis through mathematical formalisms like
automata and data flow networks. We have
implemented (1) a set of automatic model
transformations in order to avoid the manual re-
modelling of the system for analysis and (2)
methods to perform the required analysis. In this
way completeness and consistency of the
specification, testability of anticipated faults and
effects of error propagation could be established.

The formal analysis methods were applied
successfully to a specific module of the railway
control software. The early detection of the
safety-related specification flaws and testability
deficiencies contributed to the reduction of the
costs related to the necessary corrections in later

design phases or before the acceptance
procedure.

Our future work will include the analysis of
the logic correctness of the control flow by
model transformations from UML statecharts to
the input formalisms of model checker tools.
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