
Under consideration for publication in Formal Aspects of Computing

Automatic Veri�cation of a behavioural
subset of UML Statechart Diagrams
using the SPIN model-checker1

Diego Latella1, Istvan Majzik2 and Mieke Massink1

1Consiglio Nazionale delle Ricerche

Area della Ricerca di Pisa, Istituto CNUCE

Via Al�eri 1, Loc. Ghezzano, I56010 S. Giuliano T. (PI), ITALY
2Technical University of Budapest

Dept. of Measurement and Information Systems

Pazmany st. 1/d, H1521 Budapest, HUNGARY

Keywords: UML Statechart Diagrams; Model-checking; Program Transforma-
tion; PROMELA; SPIN

Abstract. Statechart Diagrams provide a graphical notation for describing dy-
namic aspects of system behaviour within the Uni�ed Modelling Language (UML).
In this paper we present a translation from a subset of UML Statechart Dia-
grams - covering essential aspects of both concurrent behaviour, like sequential-
isation, parallelism, non-determinism and priority, and state re�nement - into
PROMELA, the speci�cation language of the SPIN model checker. SPIN is one
of the most advanced analysis and veri�cation tools available nowadays. Our
translation allows for the automatic veri�cation of UML Statechart Diagrams.
The translation is simple, proven correct, and promising in terms of state space
representation eÆciency.

1. Introduction and related work

The Uni�ed Modelling Language (UML) is a graphical modelling language for
object-oriented software and systems [FS97, Rat97a, Rat97b, RJB99]. It has been
speci�cally designed for visualising, specifying, constructing and documenting

1 The work described in this paper has been performed in the context of the ESPRIT Project
n. 27439 - HIDE
Correspondence and o�print requests to: D. Latella, Diego.Latella@cnuce.cnr.it

2 D. Latella, I. Majzik and M. Massink

several aspects of - or views on - systems. Di�erent diagrams are used for the
description of the di�erent views.

In this paper we focus on UML Statechart Diagrams, which are meant for
describing dynamic aspects of system behaviour. In particular we describe a
translation from UML Statechart Diagrams into PROMELA, the speci�cation
language of the SPIN model checker [Hol91, Hol97].

SPIN is one of the most advanced analysis and veri�cation tools available
nowadays, and an automatic translation from UML Statechart Diagrams to
PROMELA allows the UML model designer to automatically verify correctness
properties of UML Statechart Diagrams speci�cations.

The UML is a semi-formal language, since its syntax and static semantics
(the model elements, their interconnection and well-formed-ness) are de�ned
precisely, but its dynamic semantics are not speci�ed formally [Rat97b]. Several
approaches have been proposed in the literature for the de�nition of a formal
semantics of UML Statechart Diagrams, e.g. [WB98, BW97, LMM99, LP99], and
much more has been done for classical statecharts.

To the best of our knowledge, transition priorities are dealt with neither in
[WB98], where also state re�nement is not allowed, nor in [BW97], where model
checking is addressed. Both transition priorities and state re�nement constitute
main issues in our work.

In [LMM99] we proposed an operational semantics for a subset of UML Stat-
echart Diagrams covering state re�nement, several transition priorities schemas,
including the UML speci�c one, and essential aspects of concurrent behaviour,
e.g. sequentialisation, parallelism and non-determinism. The approach followed
in [LMM99] is similar to that proposed in [MLS97] for classical statecharts but
it takes into consideration the peculiarities of the UML Statechart Diagrams
relevant for the considered subset of the notation. On the other hand, it shares
the relative simplicity of the work proposed in [MLS97].

In [LP99] all interesting aspects of UML Statechart Diagrams semantics are
covered. Unfortunately, no correctness result for the proposed semantics is pro-
vided. More emphasis is put on implementation related issues as the work consti-
tutes a basis for a PROMELA/SPIN based model-checker for UML Statechart
Diagrams. In [LP99] a \
at" representation of UML Statechart Diagrams is
used and the authors claim that such a representation is better suited for model-
checking purposes than the hierarchical one used in [LMM99]. As we shall show
in the present paper, using a hierarchical representation for UML Statechart
Diagrams (syntax), not only has no negative impact on tools development, but,
rather, it helps very much in carrying on correctness proofs; all interesting results
presented in [LMM99] and in the present paper are proven inductively and such
proofs heavily exploit the hierarchical structure of our representation, which is
also the basis of the structure of our semantics deduction system.

The work described in the present paper is based on the operational semantics
we proposed in [LMM99]. Such a semantical model is de�ned for a restricted
subset of UML Statechart Diagrams, still including all the interesting conceptual
issues related to concurrency in the dynamic behaviour, like sequentialisation,
non-determinism and parallelism. It also covers state re�nement.

In this paper, we shall refer to the same subset of the notation. More speci�-
cally, we do not consider history, action and activity states; we restrict events to
signal and call events, without parameters (actually we do not interpret events at
all); time and change events, object creation and destruction events and deferred
events are not considered as are branch transitions; also variables and data are

Automatic Veri�cation of UML Statechart Diagrams 3

not allowed so that actions are required to be just (a sequence of) events. We
also abstract from entry and exit actions of states.

The above restrictions are made essentially for simplicity since, in our opinion,
most of them do not have any strong impact on the behavioural aspects of the
semantics and translation at a conceptual level, but dealing with them would
dramatically and uselessly complicate the notation involved.

Other limitations, namely the fact that we do not deal with the object-
oriented features of UML statechart diagrams, e.g. sub-behaviours, are more
serious and we leave them for further study, together with extensions like the in-
corporation of deterministic/stochastic time. A basic formal semantics model and
related tools, even for a restricted language, are an essential step for any further
extension with the above mentioned features. The de�nition of a sound \basic"
subset or kernel of a notation, on which to stress novel semantics concepts as
well as develop mathematical theories, like behavioural preorders or equivalences,
and experiments with speci�c tools, like model-checkers, has already proven a
valuable, safe and fruitful methodology and is now quite standard practice in
many �elds of concurrency theory, like process-algebra. Once concepts, theories
and tools have been developed for a restricted notation their extension to other,
important, features of the notation can be supported by a safer background.
For instance, it is our opinion that a sound formal semantics for UML State-
chart Diagrams is a necessary condition for extending the considered notation
with the inclusion of object-oriented features like classes and subclasses. In fact
the formal semantics serves as a necessary starting point for the de�nition of
behavioural (ordering) relations which can play a role in the de�nition of the
notion of sub-behaviour, connected to the notion of sub-classes [BD99].

In designing our translation from UML Statechart Diagrams to PROMELA,
we followed an approach similar to that of Mikk et al. [MLSH97]. Nevertheless,
our work di�ers substantially from theirs. First of all, in [MLSH97] classical
statecharts [Har87, Har96] are considered instead of UML statecharts. So, the
complications induced by the UML transition priorities and their reverse relation
with the hierarchical structure of the statechart are not present therein, whereas
they are dealt with in our work. More speci�cally, we use a notion of priority
schema, on which the semantics are parametric, and then we instantiate it with
the UML speci�c one. A high degree of
exibility is thus achieved in a very simple
way. Moreover, since the UML de�nition of the external environment is, in our
opinion, only partially de�ned, our semantics de�nition as well as our translation
are parametric with respect to the environment. In the above mentioned work
of Mikk et al., the environment is instead represented as a set, as required by
the classical statechart semantics. Moreover, due to some simple optimisations,
the code generated by our translator is considerably simpler than that of the
translation proposed in [MLSH97]. Also, we do not need to use pre- and post-
variables, so that the code generated by our translator does not su�er from the
memory duplication problem which in the above mentioned work requires speci�c
optimisation techniques. Finally, we are not aware of any correctness result for
the work presented in [MLSH97].

The present paper is organised as follows: in Sect. 2 the subset of UML
Statechart Diagrams which we consider in this paper is introduced informally,
together with its translation into the intermediate representation of Hierarchi-
cal Automata. Hierarchical Automata and their operational UML-semantics
[LMM99] are reviewed in Sect. 3. The actual translation from Hierarchical Au-
tomata to PROMELA is de�ned and proved correct in Sect. 4, where also some

4 D. Latella, I. Majzik and M. Massink

s10

s7

s11

s0

s1

s6

s8 s9

s2

s3

e1/f1

f1/r1

e2/e2

e2/e2 a1/r2

r2/a2
e2/e1

f2/- a2/e1

r1/a1 e1/-

s4

s5

Fig. 1. Example of an UML statechart

simple but e�ective optimisations are discussed and some results of a case-study
are presented. Conclusions are drawn in Sect. 5.

2. Basic concepts

UML Statechart Diagrams are a (object-oriented) variant of classical Harel stat-
echarts [Har87, Har96]. The statecharts formalism itself is an extension of tradi-
tional state transition diagrams. In this section we brie
y describe those features
of UML Statechart Diagrams which are of interest for this paper. We describe
them by means of the example of Fig. 1. The detailed description of UML Stat-
echart Diagrams can be found in [Rat97a] and [Rat97b].

One of the main notions of statecharts is that of state re�nement. In Fig. 1 a
UML Statechart Diagram is shown where state s0 is re�ned into an automaton
consisting of three states, s1, s2, and s3. State s1 is further re�ned into two
states, namely s4 and s5, each of them re�ned in turn into a distinct automaton.
The same applies to state s7. States like s0, s1, s4, s5 and s7 are called composite
and in particular s1 is a said to be concurrent.

A transition connects a source to a target state. The transition is labelled by
a trigger event, a boolean guard and a sequence of actions. In our example, only
trigger/action pairs are used, where the action consists in generating an (output)
event.

\System states" are modelled by con�gurations, which are sets of states. For
instance, our system can be in any of the following con�gurations2: fs1; s6; s8g;
fs1; s6; s9g; fs1; s10; s8g; fs1; s11; s8g; fs1; s10; s9g; fs1; s11; s9g; fs2g; fs3g.

A transition is enabled and can �re if and only if its source state is in the
current con�guration, its trigger is o�ered by the external environment and the
guard is satis�ed. In this case, if the transition �res, the source state is left, the
actions are executed, and the target state is entered.

2 For simplicity, in the following we will often skip mentioning state s0; s4; s5 and s7 explicitly.

Automatic Veri�cation of UML Statechart Diagrams 5

In our example, if event a1 is given as input to the machine and the current
con�guration is fs2g, state s2 is left, event r2 is generated and delivered to the
environment and state s1 is entered. In particular, s1 being composite, we also
have to say which are the particular sub-states which are reached. In the case
at hand they are the default ones, i.e. the initial states of s4 and s5, namely s6
and s8.

In the general case, some target sub-states can be explicitly speci�ed. In
our example, when the current con�guration is fs3g and event a2 is o�ered,
the con�guration resulting from �ring the transition labelled by a2=e1 will be
fs1; s6; s9g, where s9 is explicitly pointed to by the transition. Such a transition
is called an inter-level transition and can in general have more than one target
in order to explicitly point to all relevant states (fork transitions).

Symmetrically, also the transition from s6 to s2 and those from s8 to s3 and
from s10 to s3 are inter-level ones. Firing, say, the �rst one requires the system to
be in a con�guration containing s6, regardless of the state in which s5 resides, and
brings it to state s2. Inter-level transitions can also have more than one source
state, the meaning being that all such states must be in the current con�guration
for the transition to be enabled (join transitions). Compound transitions can be
either join or fork transitions.

In general, more than one event can be available in the environment. The
UML semantics assumes a dispatcher which selects one event at a time from the
environment, modelled as a queue, and o�ers it to the state machine. In general,
more than one transition can be enabled at this point. Some of them can be
in con
ict: this happens when the intersection of the sets of states left by the
transitions is not empty. Some con
icts can be resolved using priorities. Roughly
speaking, in UML Statechart Diagrams, a transition has higher priority than
another transition if its source state is a sub-state of the source of the other
one. For instance, if the statechart of Fig. 1 is in a con�guration containing both
s1 and s6, and the event selected by the dispatcher is e1 then the transition
from s6 to s7 will be �red since it has higher priority than the one to s2. If the
con
ict cannot be resolved using priorities, then any of the con
icting enabled
transitions may be �red; this happens for instance when s10 is in the current
con�guration and e2 is o�ered by the environment.

Due to concurrent states, it is possible that more than a single transition
is �red as a reaction to a given event. In particular the set of transitions that
will �re is a maximal set of enabled, non-con
icting transitions, such that no
enabled transition outside the set has higher priority than a transition in the
set. When the e�ects of all such transitions and related actions are complete
a new event is selected by the dispatcher and a new cycle is started. In this
sense the UML semantics does not allow \chain reactions" within the same step:
events generated as a consequence of �ring a step are not available to the machine
during the same step, but they are available for being dispatched to the machine
only from the next step on.

The �rst phase of our translation is a purely syntactical one and consists in
translating the statechart diagrams into what is usually called a hierarchical au-
tomaton. Hierarchical automata can be seen as an abstract syntax for statechart
diagrams in the sense that they abstract from the purely syntactical/graphical
details and describe only the essential aspects of the statechart. They are com-
posed of simple sequential automata related by a re�nement function. A state
is mapped via the re�nement function into the set of (parallel) automata which
re�ne it. Our sample statechart diagram is mapped into the hierarchical automa-

6 D. Latella, I. Majzik and M. Massink

s1s2 s3

s6 s7 s8 s9

s10 s11

A0

A1 A2

A3

t1

t2

t3

t4

t5

t11

t7 t9

t10

t6 t8

Fig. 2. Example of a Hierarchical Automaton

ton of Fig. 2. It is easy to see that the hierarchical automaton of Fig. 2 can be
taken as an alternative representation for the statechart of Fig. 1. In fact there is
a clear correspondence between the states of the two structures. Initial states are
denoted by thick boxes. The re�nement of a state into one or more sub-states
in the statechart is properly represented by the re�nement function �; in our
example we have � s1 = fA1; A2g, � s7 = fA3g and � s = ; for any other state
s. In the �gure this is represented by dashed arrows.

Non-inter-level transitions are represented in the obvious way. Consider now
the inter-level transition from s6 to s2 in Fig. 1. Such a transition is represented in
the hierarchical automaton by the transition from s1 (the highest ancestor of s6
\crossed" by the transition in the statechart) to s2, named t1. The indication of
the fact that the real \origin" of such a transition is state s6 is encoded in the label
of the transition (not shown in the �gure). In particular, it is encoded in what is
called the source restriction (SR) of the transition. The source restriction of t1 is
s6. In general, for join transitions the source restriction is a set of states. The label
also contains the event (EV) which triggers the transition and the corresponding
actions (AC) to be performed when the transition is �red. Furthermore, the
label of a transition contains the so called target determinator (TD). The target
determinator explicitly lists all the basic (i.e. non re�ned) states which must
be reached when a transition is �red. For example, the transition from s3 to
s9 in Fig. 1 is represented in Fig. 2 by the transition labelled t5, the target
determinator of which is fs6; s9g. Finally, the label may contain an optional guard
(G) which must evaluate to true in order for the transition to be enabled. Missing
guards evaluate to true by default. From the above informal discussion it should
be clear that all kinds of inter-level transitions across compound states in UML
Statechart Diagrams have an adequate and clean representation in hierarchical
automata.

The complete information related to the transition labels for the hierarchical
automaton of Fig. 2 is given by Table 1, where guards are not shown since they
are not used in the example.

In the sequel we will be concerned only with hierarchical automata since the

Automatic Veri�cation of UML Statechart Diagrams 7

Table 1. Transition Labels
t t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

SR t fs6g ; ; fs8g ; ; ; ; ; ; fs10g
EV t r1 a1 e1 r2 a2 e1 f1 e2 f2 e2 e2
AC t a1 r2 � a2 e1 f1 r1 e1 � e2 e2
TD t ; fs6; s8g ; ; fs6; s9g fs10g ; ; ; ; ;

translation from statechart diagrams to hierarchical automata is conceptually
simple and purely syntactical [LMM99].

3. Hierarchical Automata

In this section we review the notion of hierarchical automata as de�ned in
[MLS97, LMM99] and their UML operational semantics given in [LMM99]. Only
the relevant de�nitions are given. We refer to [LMM99] for details. The �rst
notion is that of a (sequential) automaton3.

De�nition 3.1 (Sequential Automata). A sequential automaton A is a 4-
tuple (�A; s

0
A; �A; ÆA) where �A is a �nite set of states with s0A 2 �A the initial

state, �A is a �nite set of transition labels and ÆA � �A��A��A is the transition
relation.

As mentioned in the previous section, the labels in �A have a particular struc-
ture. For transition t we shall require its label to be a 5-tuple (sr; ev; g; ac; td),
where sr is the source restriction, ev is the trigger event, g is the guard, ac is the
actions list and td is the target determinator.

In the sequel we shall use the following functions SRC, TGT , SR, EV , G,
AC, TD, de�ned in the obvious way; for transition t = (s; (sr; ev; g; ac; td); s0),
SRC t = s; TGT t = s0; SR t = sr; EV t = ev;G t = g;AC t = ac; TD t = td.

Hierarchical Automata are de�ned as follows:

De�nition 3.2 (Hierarchical Automata). A hierarchical automaton H is a
4-tuple (F;E; �;�), where F is a �nite set of sequential automata with mutually
disjoint sets of states, i.e. 8A1; A2 2 F: �A1 \ �A2 = ; and E is a �nite set of
events; the re�nement function � :

S
A2F �A �! 2F imposes a tree structure

to F , i.e. (i) there exists a unique root automaton Aroot 2 F such that Aroot 62S
rng �, (ii) every non-root automaton has exactly one ancestor state:

S
rng � =

F nfArootg and 8A 2 F nfArootg: 91s 2
S
A02FnfAg �A0 : A 2 (� s) and (iii) there

are no cycles: 8S �
S
A2F �A: 9s 2 S: S \

S
A2�s �A = ;; �nally, � =

S
A2F �A.

We say that a state s for which � s = ; holds is a basic state. With reference to
the hierarchical automaton presented in Fig. 2 we have: F = fA0; A1; A2; A3g,
A0 is the root automaton, � s1 = fA1; A2g, � s7 = fA3g, and all other states are

3 In the following we will freely use a functional-like notation in our de�nitions where: (i)
currying will be used in function application, i.e. f a1 a2 : : : an will be used instead of
f(a1; a2; : : : ; an) and function application will be considered left-associative; (ii) for function
f : X �! Y and Z � X, f Z = fy 2 Y j 9x 2 Z: y = fxg, rng f denotes the range of f
and fjZ is the restriction of f to Z. Moreover the notation 91x: P stands for \There exists a
unique x such that P ."

8 D. Latella, I. Majzik and M. Massink

basic. In the sequel we shall implicitly make reference to a generic hierarchical
automaton H = (F;E; �;�).

Every sequential automaton A 2 F characterises a hierarchical automaton
in its turn: intuitively, such a hierarchical automaton is composed by all those
sequential automata which lay below A, including A itself, and has a re�nement
function �A which is a proper restriction of �. A is the root automaton.

De�nition 3.3. For A 2 F the automata, states, labels and transitions under A
are de�ned respectively as

� A A = fAg [(
S
A02

�S
s2�A

(�As)

�(A A0))

� S A =
S
A02A A �A0

� � A =
S
A02A A �A0

� T A =
S
A02A A ÆA0

The de�nition of sub-hierarchical automaton follows:

De�nition 3.4 (Sub-Hierarchical Automata). For A 2 F , (FA; E; �A;�A),
where FA = (A A), �A = (� A), and �A = �j(S A), is the hierarchical automaton
characterised by A.

In the sequel for A 2 F we shall refer to A both as a sequential automaton
and as the sub-hierarchical automaton of H it characterises, the role being clear
from the context. H will be identi�ed with Aroot. Sequential Automata will be
considered a degenerate case of Hierarchical Automata.

In the following we shall de�ne the notions of con
icting transitions, tran-
sition priority and orthogonal states. For a more detailed discussion on their
properties the reader is referred to [LMM98, LMM99]. Both the notion of con-

ict and that of priority are based on the notion of state precedence:

De�nition 3.5 (State Precedence). For s; s0 2 S H , s � s0 i� s0 2 S (� s).
Let also � denote the re
exive closure of �.

The following de�nition establishes when two transitions are con
icting:

De�nition 3.6 (Con
icting Transitions). For t; t0 2 (T H), t is con
icting
with t0, written t#t0, i� t 6= t0 and (SRC t � SRC t0) _ (SRC t0 � SRC t)

The following de�nition characterises those structures which can be used to
impose priorities on transitions.

De�nition 3.7 (Priority Schema). A Priority Schema is a triple (�;v; �)
with (�;v) a partial order and � : (T H)! � such that: 8t; t0 2 (T H): (� t v
� t0)^ t 6= t0) t#t0 We say that t has lower priority than (the same priority as)
t0 i� � t v � t0.

A possible choice for a priority schema is given below. It is based on state
precedence and generalises the requirement that transitions originating from \in-
ner" states have priority over those higher in the state hierarchy as required in
UML Statechart Diagrams [Rat97b]. To that purpose we �rst need the notion of
orthogonal states.

De�nition 3.8 (Orthogonal States). Two states s; s0 2 S H are orthogonal,
written s jj s0, i� 9s00 2 (S H); A;A0 2 (� s00): A 6= A0 ^ s 2 S A ^ s0 2 S A0

Automatic Veri�cation of UML Statechart Diagrams 9

Let (PWO;�s; f) such that:

� PWO = fS � (S H) j 8s; s0 2 S: (s 6= s0) s jj s0)g is the set of all the sets
of Pair-Wise Orthogonal states of H .

� For all S; S0 � S H , S �s S0 i� 8s 2 S: 9s0 2 S0: s � s0 ; �s is a lifting of �
to sets.

� f t = fs j s 2 (SRC t) ^ (SR t) = ;g [(SR t) is the priority function
assigning priority to transitions.

It can be easily shown that (PWO;�s; f) is a priority schema and that, for
such a schema, transitions from \inner" states have higher priority than those
originating from states \higher" in the state hierarchy.

In the remainder of this section we will deal with the UML semantics of
hierarchical automata. A con�guration denotes a global state of a hierarchical
automaton, composed of local states of component sequential automata:

De�nition 3.9 (Con�gurations). A con�guration of H is a set C � (S H)
such that (i) 91s 2 �Aroot

: s 2 C and (ii) 8s; A: s 2 C^A 2 � s) 91s0 2 A: s0 2
C.

For A 2 F the set of all con�gurations of A is denoted by ConfA.
The operational semantics of a hierarchical automaton is de�ned as a Kripke

Structure, which is a set of states related by a transition relation. In the context
of Statechart Diagrams, states are called statuses and the transition relation is
called the STEP relation. Each status is composed of a con�guration and the
current environment with which the hierarchical automaton is supposed to in-
teract. While in classical statecharts the environment is modelled by a set, in the
de�nition of UML statechart diagrams the particular nature of the environment
is not speci�ed (actually it is stated to be a queue, but the management policy
of such a queue is not de�ned). We choose not to �x any particular semantics
such as a set, or a multi-set or a FIFO queue etc., but to model the environment
in a policy-independent way. In the following de�nition we assume that for set
X , �X denotes the set of all structures of a certain kind (like FIFO queues, or
multi-sets, or sets) over X and we assume to have basic operations for inserting
and removing elements from such structures. In particular (add E e) denotes the
structure obtained by adding e to environment E . Similarly, (join E E 0) denotes
the environment obtained by merging E with E 0. The predicate is joinnj=1Ej J
states that J is a possible join of E1 : : :En and it is a way for expressing non-
deterministic merge of E1 : : : En. Moreover, by (Sel E e E 0) we mean that E 0 is
the environment resulting from selecting e from E , the selection policy depending
on the choice for the particular semantics of the environment. Finally, nil is the
empty structure and given sequence r 2 X�, (new r) is the structure containing
the elements of r (again, the existence and nature of any relation among the
elements of (new r) depends on the semantics of the particular structure). So,
for instance, if sets are chosen, then (add E e) = E [feg, (join E E 0) = E [E 0

and, for e 2 E , (Sel E e E 0) � (E 0 = E n feg).
The semantics of UML does not specify what happens when a queue is empty.

Our approach in this paper is to make the system block in such a case: this is
in line with the behaviour of PROMELA processes when attempting to receive
from an empty queue.

10 D. Latella, I. Majzik and M. Massink

De�nition 3.10 (Operational semantics of Hierarchical Automata).
The operational semantics of an hierarchical automaton H is a Kripke structure
k = (S; s0;�!) where (i) S = ConfH � (� E) is the set of statuses of k, (ii)
s0 = (C0; E0) 2 S is the initial status, (iii) �!� S� S is the transition relation
de�ned in the sequel.

A transition of k denotes a maximal set of non-con
icting transitions of the
sequential automata of H which respect priorities. The �! relation is de�ned
by means of a deduction system. In this paper we consider only closed systems,
where the environment can interact only with the hierarchical automaton, and
no external manipulation is allowed on it [LMM99]. The rule follows:

De�nition 3.11 (Closed Systems).

(Sel E e E 00) (1)

H " ; :: (C; feg)
L
�! (C0; E 0) (2)

(C; E) �! (C0; (join E 00 E 0))

In the above rule we make use of an auxiliary relation, namely A " P :: (C; E)
L
�!

(C0; E 0). Such a relation models labelled transitions of the hierarchical automaton
A, and L is the set containing the transitions of the sequential automata of A

which are selected to �re. We call
L
�! the step transition relation in order to

avoid confusion with transitions of sequential automata. P is a set of transitions.
It represents a constraint on each of the transitions �red in the step, namely that
it must not be the case that there is a transition in P with a higher priority. So,

informally, A " P :: (C; E)
L
�! (C0; E 0) should be read as \A, on status (C; E) can

perform L moving to status (C0; E 0), when required to perform transitions with
priorities not smaller than any in P". Obviously, no restriction is made on the
priorities for H in Def. 3.11, but set P will be used to record the transitions a
certain automaton can �re when considering its sub-automata. More speci�cally,
for a sequential automaton A, P will accumulate (the priority information of)
all transitions which are enabled in the ancestors of A. The deduction system

for
L
�! is shown in Fig. 3 where the following auxiliary functions are used:

De�nition 3.12 (Enabled Transitions). For A 2 F , set of states C and en-
vironment E ,
(i) the set of all the enabled local transitions of A in (C; E), LEA C E is de�ned
as follows4:

LEA C E = ft 2 ÆA j f(SRC t)g [(SR t) � C ^ (EV t) 2 E ^ (C; E) j= (Gt)g

(ii) the set of all enabled transitions of A in (C; E) considered as an hierarchical
automaton, i.e. including those of descendents of A, EA C E is de�ned as follows:

EA C E =
[

A02(A A)

LEA0 C E

4 (C; E) j= g means that guard g is true of status (C; E). Its formalisation is immaterial for the
purposes of the present paper. In the deduction rules, we will relax the requirement C 2 ConfA
and we will assume C 2 ConfH . This allows the use of guards which make reference to non
local states.

Automatic Veri�cation of UML Statechart Diagrams 11

Progress Rule

t 2 LEA C E (1)
6 9t0 2 P [EA C E : � t < � t0 (2)

A " P :: (C; E)
ftg
�! (c (TGT t) (TD t); new(ACt))

Composition Rule

fsg = C \ �A (1)
�A s = fA1; : : : ; Ang 6= ; (2)�Vn

j=1 Aj " (P [LEA C E) :: (C; E)
Lj
�! (Cj ; Ej)

�
^ is joinnj=1Ej J (3)�Sn

j=1 Lj = ;
�
) (8t 2 LEA C E : 9t0 2 P: �t < �t0) (4)

A " P :: (C; E)

S
n

j=1
Lj

�! (fsg [
Sn
j=1 Cj ;J)

Stuttering Rule

fsg = C \ �A (1)
�A s = ; (2)
8t 2 LEA C E : 9t0 2 P: �t < �t0 (3)

A " P :: (C; E)
;
�! (fsg; nil)

Fig. 3. Operational Semantics of UML-Hierarchical Automata.

Moreover, A " P :: (C; E)
L
�! will stand for: there exists C0 and E 0 such that

A " P :: (C; E)
L
�! (C0; E 0). Finally, for state s and set S � S (� s), such

that s � s00 for all s00 2 S, the closure of S, (c s S), is de�ned as the set
fs0 j 9s00 2 S: s � s0 � s00g.

In the operational semantics, the Progress Rule establishes that if there is a
transition of A enabled and the priority of such a transition is \high enough" then
the transition �res and a new status is reached accordingly. The Composition
Rule stipulates how automaton A delegates the execution of transitions to its
sub-automata and these transitions are propagated upwards. Finally, if there is
no transition of A enabled with priority \high enough" and moreover no sub-
automata exist to which the execution of transitions can be delegated, then A
has to \stutter", as enforced by the Stuttering Rule.

The following result [LMM98, LMM99] shows that our operational semantics
satis�es the requirements informally de�ned in [Rat97b].

Theorem 3.1. For all L � (T A), A " P :: (C; E)
L
�! if and only if L is a

maximal set, under set inclusion, which satis�es all the following properties: (i)
L is con
ict-free, i.e. 8t; t0 2 L: :t#t0; (ii) all transitions in L are enabled in the
current status, i.e. L � EA C E ; (iii) there is no transition outside L which is
enabled in the current status and which has higher priority than a transition in
L, i.e. 8t 2 L: 6 9t0 2 EA C E : �t < �t0; and (iv) all transitions in L respect P ,
i.e. 8t 2 L: 6 9t0 2 P: �t < �t0:

12 D. Latella, I. Majzik and M. Massink

4. From Hierarchical Automata to PROMELA

In this section we describe the translation from Hierarchical Automata to PRO-
MELA, the speci�cation language for the \on-the-
y"model checker SPIN [Hol91,
Hol97]. The choice of SPIN is mainly motivated by the variety of highly eÆ-
cient state-space representation techniques and search algorithms it provides.
Moreover, PROMELA provides standard data types and constructs which make
models described in such a language understandable also to the practitioner de-
signers. Finally, several translators from design and implementation languages to
PROMELA have been proposed in the literature, so that validation at di�erent
development phases can now be supported by SPIN.

PROMELA is a process language, based on the interleaving model of compu-
tation. It is a C-like language extended with non-deterministic and loop guarded-
constructs in the style of Dijkstra. Obviously, constructs to run processes and for
inter-process communication are provided as well. Communication takes place
via bu�ered, �nite length, channels. A PROMELA speci�cation is usually called
a \PROMELA model".

Using PROMELA, one can de�ne both a model describing the behaviour of a
system, and a so called never claim. The never claim is a B�uchi automaton which
is run in synchronous product with the model and which is used for checking both
safety and liveness properties. SPIN provides an automatic facility for generating
B�uchi automata from formul� of a linear time temporal logic. For example,
the formula [] <> p where p is de�ned as S2 == 1 states that variable S2
will evaluate to 1 in�nitely often. [] and <> are the SPIN notation for the
temporal logics operators \forever" and \eventually"; SPIN o�ers also an \until"
operator, besides the standard logic operators. If variable S2 models state s2 and
in particular the boolean expression S2 == 1 models the fact that our sample
hierarchical automaton is in a con�guration which contains state s2, the above
formula can be used for checking that such a state must be reached in�nitely
often, which is indeed the case in our example.

SPIN can also be used to simulate PROMELA models, i.e. to execute them,
possibly with the controlled interference of the user, animating them via a useful
graphic interface.

Finally, other veri�cation means, like assertions to be veri�ed in speci�c
points of executions as well as invariants are provided by SPIN.

We do not discuss the details of PROMELA here. We shall just recall the main
features of PROMELA constructs when we use them. For a detailed account of
the language and the system we refer to the literature [Hol91, Hol97].

4.1. Base translation

The translation function takes an hierarchical automaton H = (F;E; �;�) as
input and generates PROMELA code as output. The translation is based on the
operational semantics described in Sect. 3. The de�nition of these semantics is
recursive in nature and obviously re
ects the tree-like structure of hierarchical
automata. This poses a �rst problem in our translation due to the very limited
recursion capabilities of PROMELA. The solution we chose is not to use recursion
at all at the PROMELA level and to limit its use in the translation function
de�nition in order to exploit the tree-structure of the hierarchical automaton
whenever possible.

Automatic Veri�cation of UML Statechart Diagrams 13

In hierarchical automata, non-determinism arises both from con
icting tran-
sitions of the same sequential automaton and from the possibility of applying
the Progress Rule or the Composition Rule. In the translation, non-determinism
is modelled using the PROMELA non-deterministic construct, as we shall see
later.

In the following we give a semi-formal de�nition of the translation. The rea-
son why we present it in a semi-formal way is readability: we prefer to use a
\dot notation", abstracting from PROMELA syntax details, rather than fully
formalise them. A complete formalisation in ML can be found in [GL98], which,
being ML executable, also provides an executable prototype translator.

4.1.1. Modelling the events and environment

In this work events are treated as uninterpreted symbols. We represent them as
integer values and we name them for convenience. The related code is trivial,
the #define directive of PROMELA being the same as in C. For set of events
E = fe1; : : : ; eng we get the following PROMELA constants de�nition fragment:

#define e1 1
...
#define en n

As already discussed in Sect. 3, the UML-semantics of statechart diagrams
do not specify the semantics of the queue. For this reason, we leave the speci�er
free to choose the preferred structure from the following possibilities: a set, a
multi-set, and a FIFO queue. The choice among these alternatives is an input
parameter for the translator, which will generate the appropriate PROMELA
code accordingly. Sets and multi-sets will be represented by their characteristic
functions, while a FIFO queue is directly mapped into a PROMELA channel
and it is up to the designer to specify its length LT . More speci�cally, for set E
as above, if the environment is modelled by a set, such a set will be represented
a boolean (bit) array of length n. For eÆciency reasons, such an array is actually
represented by n one-bit variables5:

bit Qe1; : : : ; Qen;

with the obvious meaning: Qej == 1 if and only if event ej is currently available
in the environment. Analogously, a multi-set is represented by an integer array
of length n.

A FIFO queue will be represented by generating the following code:

chan Q = [LT] of fintg

As we shall see later, the choice of a FIFO queue has some impact also on
the code generated for the actual �ring of the transitions.

Finally, the selected event will be stored in the integer variable Ev, which
obviously models e of Def. 3.11:

5 This is because in SPIN bit arrays are implemented as byte arrays.

14 D. Latella, I. Majzik and M. Massink

4.1.2. Modelling con�gurations

States are modelled in a straightforward way, namely by using a single bit vari-
able per state. A con�guration will be composed by those states corresponding to
variables evaluating to 1. Let S H = fs1; : : : szg; then the code to be generated
for representing states is simply:

bit S1; : : : Sz;

where variable Sj represents state sj via a bijection the de�nition of which is
easy so that we leave it out here.

The code fragment generated for our example according to the above rules
follows6:

#define a1 1
#define a2 2
#define e1 3
#define e2 4
#define f1 5
#define f2 6
#define r1 7
#define r2 8

bit Qa1, Qa2, Qe1, Qe2, Qf1, Qf2, Qr1, Qr2;

bit S1, S2, S3, S6, S7, S8, S9, S10, S11;

4.1.3. Modelling the STEP

Steps are generated by the STEP PROMELA process. The general structure of
the STEP process consists of four phases:

1. selection of an event from the environment;

2. identi�cation of the candidate transitions to �re - includes identi�cation of
enabled transitions and con
ict resolution based on transition priority;

3. selection of those transitions, from the above ones, which will be �red - in-
cludes parallelism management and con
ict resolution based on non deter-
minism;

4. actual �ring of the selected transitions - includes the identi�cation of the
resulting con�guration and the generation of resulting events.

The generation of successive STEPs is obtained by including within a loop the
code modelling the single STEP. Notice that atomicity of each step is guaranteed
by means of the PROMELA atomic command: this in particular means that
the only values available for veri�cation are those which variables evaluate to at
the end of each cycle. Any intermediate value taken during a cycle is hidden to
the never claim as well as possible other monitoring processes which may run in
parallel with the STEP process.

6 The reader can see that here we decided to model the queue by a set. This is for simplicity
reasons.

Automatic Veri�cation of UML Statechart Diagrams 15

In the following we describe the four phases. As we show later on, the last
three phases can be collapsed into a single one. Here we present them separated
since this way the relationship with the operational semantics is more immediate.

The code to be generated for modelling the selection of an event from
the queue depends on the choice of the designer w.r.t. modelling the queue. If
the queue is modelled by a set, then the following code select event set(H) is
generated:

select event set(H)
def
=

if
:: Qe1 � > Ev = e1; Qe1 = 0
...
:: Qen � > Ev = en; Qen = 0
fi

The PROMELA semantics of the above non-deterministic construct is that
the execution is blocked if none of the guards Qe1; : : : ; Qen evaluates to 1, oth-
erwise the statements corresponding to any of those evaluating to 1 is executed,
after which the if statement is left and control is passed to the next statement.
By \corresponding" here we mean those statements contained between the arrow
� > following the guard and the next :: or fi keyword. PROMELA provides
also a special guard else which is satis�ed if and only if all the others of the
same if : : : fi statement evaluate to 0.

In the case of a multi-set, the test will obviously be Qei >= 1 and a decrement
Qei � � will be used. If instead the designer chose to model the queue by a
channel, the following input command Q?Ev is generated.

The core of the translation lies in the identi�cation of those transitions which
are candidates for being �red and in selecting among them those which will
actually be �red.

For each transition tj 2 (T H) = ft1; : : : ; tvg we use a variable Candj to
which a boolean expression will be assigned which evaluates to 1 if and only
if tj , is a candidate for being �red. Suppose tj 2 ÆA, with A 2 F . Such an
assignment corresponds to implementing the premises of the Progress Rule, with
P properly set, on the basis of the enabling situation of the transitions in the
ancestors of A. We represent set P by its characteristic function:

bit P1; : : : ; Pv

It is worth now recalling the premises of the Progress Rule where for notational
convenience we have renamed t into tj and we have split condition (2) into two
distinct premises:

tj 2 LEA C E (1)
6 9t0 2 P: � tj < � t0 (2:1)
6 9t0 2 EA C E : � tj < � t0 (2:2)

Premise (1) is the enabling condition for tj . Letting SRC tj = sj1, SR tj =
fsj2; : : : ; sjkg, EV tj = evj and G tj = gj , such a condition can be coded as the
following PROMELA expression, where & denotes logical conjunction:

Sj1 & : : : & Sjk & (Ev == evj) & gj

16 D. Latella, I. Majzik and M. Massink

Notice that all the information on SRC tj , SR tj , EV tj and G tj is available
to the translator since it is static information.

Let us now assume that, for generic transition tx, Px evaluates to 1 if and
only if the enabling condition for tx holds - this is achieved by an assignment
similar to the above one, but relative to tx. Let furthermore ftj1; : : : ; tjsg be the
set of all those transitions tji such that tji 2 (T H) n (T A) and � tj < �tji;
again, notice that � tj < �tji is static information. Then, premise (2.1) is coded
as follows:

!Pj1 & : : : & !Pjs

where ! denotes logical negation in PROMELA.
Finally, let ftj1; : : : ; tjmg be the set of those transitions tji such that:

� SRC tji = SRC tj or SRC tji 2 S (�(SRC tj)), and

� � tj < �tji

It is easy to see that premise (2.2) corresponds to the conjunction of the
negations of the enabling conditions for such transitions tji:

Sji1 & : : : & Sjiki & (Ev == evji) & gji

where, as before, we have: SRC tji = sji1, SR tji = fsji2; : : : ; sjikig and
EV tji = evji and G tji = gji.

This brings us to the complete fragment of PROMELA code relative to the
assignment to Candj :

candidate designate(tj)
def
=

Candj = Sj1 & : : : & Sjk & (Ev == evj) & gj &
!Pj1 & : : : & !Pjs &
!(Sj11 & : : : & Sj1k1 & (Ev == evj1) & gj1) &
...
!(Sjm1 & : : : & Sjmkm & (Ev == evjm) & gjm)

As a concrete example of the above description the assignments for Cand1,
Cand3 and Cand7 are given below7:

Cand1 = S1 & S6 & (Ev==r1)

Cand3 = S1 & (Ev==e1) &
!(S1 & S6 & (Ev==r1)) & /* relative to t1 */
!(S1 & S8 & (Ev==r2)) & /* relative to t4 */
!(S6 & (Ev==e1)) & /* relative to t6 */
!(S7 & (Ev==f1)) & /* relative to t7 */
!(S8 & (Ev==e2)) & /* relative to t8 */
!(S9 & (Ev==f2)) & /* relative to t9 */
!(S10 & (Ev==e2)) & /* relative to t10 */
!(S1 & S10 & (Ev==e2)) /* relative to t11 */

7 We recall here that � t3 < � t1; � t3 < � t4; � t3 < � t6; � t3 < � t7; � t3 < � t8; � t3 <
� t9; � t3 < � t10; � t3 < � t11; � t7 < � t10; � t7 < � t11 and � t < � t0 does not hold
otherwise.

Automatic Veri�cation of UML Statechart Diagrams 17

Cand7 = S7 & (Ev==f1) &
!P11 &
!(S10 & (Ev==e2)) & /* relative to t10 */

The complete code for the candidate transitions designation amounts to the
sequencing of candidate designate(tj) for j = 1; : : : ; v.

In order to complete the description of the candidates designation step, we
have to describe how variables Pj are set. In the operational semantics, set P
is initialised to ; by Def. 3.11 and it is then \pumped up" with the enabled
transitions of the automata visited when the step relation is deduced for the
children of the re�ned states of such automata, via the Composition Rule. This
results in P containing all and only the enabled transitions of the ancestors of
A 2 F when applying the Progress Rule (or the Stuttering Rule) to it, i.e. when
testing the enabling condition for an arbitrary transition t of A. Notice moreover
that the only transitions of interest, among those in P , are those with a higher
priority than t, as it can be seen from (2.1) of the Progress Rule.

In the PROMELA coding of premise (2.1), on the other hand, we consider
set ftj1; : : : ; tjsg which indeed can only contain transitions of ancestors of A.
In fact it cannot contain transitions of A or descendants of A (they would be
elements of T A), but also it cannot contain transitions of automata which run
in parallel with A or an ancestor of A (these transitions cannot have higher pri-
ority than t's since such priorities are unrelated in the priority partial order, see
[LMM99] Lemma 4). So, we just need to set Pji to the enabling condition for tji,
for tji 2 ftj1; : : : ; tjsg as above. Moreover, since the value of Pji depends only on
the values of the state variables S1; : : : Sz and variable Ev and since these values
are not changed during the computation of the candidate transitions, the above
assignments can be safely done for all the transitions in T H at the beginning
of the cycle. More speci�cally, at the beginning of the cycle, just after variable
Ev has been assigned a new value in the select event(H) code, the set P(tj)
code below is generated in sequence for j = 1; : : : ; v:

set P(tj)
def
=

Pj = Sj1 & : : : & Sjk & (Ev == evj) & gj

In our current example we have:

P1= S1 & S6 & (Ev==r1); P2= S2 & (Ev==a1); P3= S1 & (Ev==e1);
P4= S1 & S8 & (Ev==r2); P5= S3 & (Ev==a2); P6= S6 & (Ev==e1);
P7= S7 & (Ev==f1); P8= S8 & (Ev==e2); P9= S9 & (Ev==f2);
P10=S10& (Ev==e2); P11=S1 & S10& (Ev==e2)

This concludes the description of the candidate designation phase. Notice
that this phase computes the set of all transitions which are enabled and which
respect the priority constraints. Among these transitions, there are some which
are in con
ict and therefore cannot be �red in the same step. The actual tran-
sition selection phase takes care of resolving con
icts and selecting the tran-
sitions which will be eventually �red. This is done by assigning the value 1 to a
second set of bit variables for the transitions, Selj , and exploits the PROMELA
non-deterministic construct where the guard for assignment to Selj is obviously

18 D. Latella, I. Majzik and M. Massink

Candj . The code for such assignments is generated recursively according to the
tree structure of the hierarchical automaton.

Let A 2 F a hierarchical automaton with ÆA = ft1; : : : ; tqg. If �A s = ; for
all s 2 �A, i.e. if A is sequential, then the code for the selection phase for A,
select transitions(A), is simply:

select transitions(A)
def
=

if
:: Cand1 � > Sel1 = 1
...
:: Candq � > Selq = 1
:: else skip
fi

If instead
S
X2�A �A

X = fA1; : : : ; Arg 6= ; then, letting ÆAj
= ftj1; : : : ; tjqj g for

j = 1; : : : ; r, the code for the selection phase for A, select transitions(A) is
recursively the following, where jj denotes logical disjunction in PROMELA:

select transitions(A)
def
=

if
:: Cand1 � > Sel1 = 1
...
:: Candq � > Selq = 1
:: Cand11 jj : : : jj Cand1q1 jj : : : jj Candr1 jj : : : jj Candrqr � >

select transitions(A1);
...
select transitions(Ar)

:: else skip
fi

From the above translation schema it is clear that a selection is made non-
deterministically between those transitions which (are enabled, respect priority
constraints and) are in con
ict, whereas transitions which are not in con
ict
may have their Selj variable set to 1 at the same time, after the execution of
the code generated by select transitions(A) (this is due to the sequencing
of the code select transitions(A1), . . . select transitions(Ar)). Stuttering
corresponds to the else skip branches. The code generated for our example
follows:

if
::Cand1->Sel1=1
::Cand2->Sel2=1
::Cand3->Sel3=1
::Cand4->Sel4=1
::Cand5->Sel5=1
::Cand11->Sel11=1
::(Cand6||Cand7||Cand8||Cand9||Cand10)->
if
::Cand6->Sel6=1

Automatic Veri�cation of UML Statechart Diagrams 19

::Cand7->Sel7=1
::Cand10->
if
::Cand10->Sel10
::else->skip
fi

::else->skip
fi;
if
::Cand8->Sel8=1
::Cand9->Sel9=1
::else->skip
fi

::else->skip
fi

So, if both Cand6 and Cand8 evaluate to 1, then both t6 and t8 will be selected
for �ring.

Finally, the actual �ring of the selected transitions can occur. The code for
�ring a single transition tj is self explanatory; below we for simplicity assume the
event queue modeled by a set and an action consisting of generating one single
output event:

fire transition(tj)
def
=

if
:: Selj� > Sj1 = 0; : : : ;Sjs = 0;Sjs+1 = 1; : : : ;Sjh = 1;Qej = 1
:: else skip
fi

where
S
A2�(SRC tj)

(S A) [(SRC tj) = fSj1; : : : ; Sjsg, AC tj = ej , and

c (TGT tj) (TD tj) = fSjs+1; : : : ; Sjhg; of course the statement Qej = 1 is
generated only if AC tj is nonempty. For instance, for t1 of our example we
have:

if
::Sel1->S1=0;S2=1;S3=0;S6=0;S7=0;S8=0;S9=0;S10=0;S11=0;Qa1=1
::else->skip
fi

In the case of an environment represented by a set or a multiset, the order in
which transitions are �red is irrelevant since no trace of the event delivery order
will be kept in the environment. In this case the code to be generated is an
arbitrary sequence of �ring statements like the above one. In the case of a FIFO
queue, instead, the code must take into consideration that parallel transitions
can be �red in any order and then the resulting queues will be di�erent. This can
be easily done by running separate parallel PROMELA processes, each executing
a statement like the above one or simulating this parallelism with a repetitive
command and proper guards.

The last statements before ending a cycle and starting the next one are those
for cleaning-up the auxiliary structures: all Pj ; Candj and Selj variables are set
to 0.

20 D. Latella, I. Majzik and M. Massink

translate(H)
def
=

#define e1 1
...
#define en n
bit Qe1; : : : ; Qen;
bit S1; : : : Sz;
int Ev;
bit Cand1; : : : ; Candv ;
bit Sel1; : : : ; Selv;
bit P1; : : : ; Pv ;
process STEP()
f
do
:: atomic
f
select event(H);
set P(t1);
...
set P(tv);
candidate designate(t1);
...
candidate designate(tv);
select transitions(H);
fire transition(t1);
...
fire transition(tv);
cleanup(H);

g
od
g
init
f initialize(H); run STEP()
g

Fig. 4. Schema of the translation from generic hierarchical automaton H to PROMELA

The PROMELA model is composed of a process, the STEP process, which
is essentially a loop performing the above phases. Process STEP is run after all
variables have been properly initialized in order to model the initial status. The
schema of the translation function, assuming a set for environment is summarized
in Fig.4 where the translation functions calls are underlined in order to avoid
confusion with actual PROMELA code. Moreover, those (other) pieces of syntax
depending on the input hierarchical automaton H are printed in emphasized
mode. In the case of a multiset or a FIFO queue the schema is quite similar.

Automatic Veri�cation of UML Statechart Diagrams 21

4.2. Correctness of the translation

In this section we shall prove the correctness of our translation function relative
to the operational semantics of Sect 3. Although the proofs are rigorous, they
are not fully formalized in order to limit notational complexity.

It should be clear to the reader that the key issue is the correctness of the
PROMELA code generated for modeling the single step, and in particular the
candidate designation and the transitions selection, since the correctness of the
code generated for the event selection and for the actual �ring of transitions is
trivial to establish.

In the following, for hierarchical automaton H we let Ccd stand for the se-
quence of PROMELA statements for candidate designation in the translation of
H generated by the following fragment of the translation function:
set P(t1);
...
set P(tv);
candidate designate(t1);
...
candidate designate(tv);

Similarly, let Cst be the code generated by select transitions(H). Further-
more we let C stand for Ccd;Cst. Before proving the correctness result we need
some terminology related to PROMELA semantics. A state vector for a PRO-
MELA model is composed by all the variables declared in the model, including
the channels, plus a program counter for each process instantiation. A state is
an assignment of values to the elements of the state vector. An execution � of a
piece of code M starting from a state � is a possibly in�nite sequence of states
�1; : : : ; �n where �1 = � and �i+1 is obtained from �i by applying the oper-
ational semantics rules of PROMELA to the statements corresponding to the
values of the program counters in �i.

In general more than one single execution is allowed for the same codeM from
the same state � because the PROMELA semantics is based on the interleaving
model of computation and the language includes non-deterministic statements.

It is worth noting here that the only source of non-determinism for code C
above comes from Cst since Ccd is completely deterministic so, for given initial
conditions, there exist only one execution for the latter. Moreover, it is easy to
see that every execution of C always terminates.

We can now prove the following lemmata which, together, establish the cor-
rectness of the modeling of the step by the code generated by the translation
function.

Lemma 4.1. Let A 2 F , P;L � (T H), C 2 ConfH , e 2 E, state � such that
(i) P contains only enabled transitions of ancestors of A; (ii) for j = 1; : : : ; z Sj
evaluates to 1 in � if and only if the corresponding state sj belongs to C; (iii)
Ev evaluates to e in �; (iv) for j = 1; : : : ; v Candj and Selj evaluate to 0 in �

and gj evaluates to 1 in � if and only if (C; feg) j= gj . Then A " P :: (C; feg)
L
�!

implies that there exists a �nite execution � of C starting from � such that in
its last state Selj evaluates to 1 for all tj 2 L.

Proof. By induction on the length d of the derivation for A " P :: (C; E)
L
�!

22 D. Latella, I. Majzik and M. Massink

(C0; E 0) for some C0; E 0 [Mil89].

Base case (d = 1):
If the derivation has length 1, then only the Progress Rule or the Stuttering
Rule could have been applied. Suppose the Progress Rule has been applied. We
�rst notice that for tj in L Candj will evaluate to 1 at the end of the execution
of Ccd. This follows directly from the de�nition of candidate designate(tj),

the hypothesis and the fact that premisses (1), (2.1) and (2.2) of the Progress
Rule hold. Moreover, due to the semantics of the PROMELA non-deterministic
command, there exists an execution of Cst at the end of which Selj will evaluate
to 1. Then there exists an execution of Ccd;Cst at the end of which Selj eval-
uates to 1. If instead the Stuttering Rule has been applied, then the assertion
trivially holds from the fact that there always exists an execution for C under
the hypothesis of the lemma.

Induction step (d > 1):
In this case the Composition Rule must have been applied in the last step of
the derivation. From the Composition Rule we see that each Li belongs to a
step-transition which has been proven by a sub-derivation of length strictly less
than d, so, by the Induction Hypothesis, there exist executions �1; : : : ;�n of C
such that, for i = 1; : : : ; n we have that Selj evaluates to 1 for all tj 2 Li at
the end of �i. From the de�nition of select transitions(H), and in particular
from the fact that the code it generates contains the sequencing of the transition
selection code for each Ai, it follows that there must be an execution � of C
such that Selj evaluates to 1 for each tj 2

Sn
i=1 Li = L.

Lemma 4.2. Let state � be such that, for j = 1; : : : ; v Candj = 1 if and only
if tj 2 ÆA, for A 2 F is enabled. Then for the end state �0 of each execution of
Cst the set ftj j Selj evaluates to 1 in �0g is a maximal set of non-con
icting
transitions.

Proof. The assertion can be proved by induction on the structure of A.

Base case (
S
X2�A �A

X = ;):
In the base case, namely if A is sequential, the assertion follows directly from the
de�nition of select transitions(A). In fact from such a de�nition it follows
that Selj will evaluate to 1 for just one transition tj and ftjg is obviously a
maximal set for a sequential automaton.

Induction step (
S
X2�A �A

X 6= ;):

If A is not sequential, letting fA1; : : : ; Arg =
S
X2�A �A

X , we have, by the induc-

tion hypothesis, that each fragment select transitions(Ai), for i = 1; : : : ; r,
computes a maximal set and again from the de�nition of select transitions(A)
we get that at the end of an execution for Cst either Selj evaluates to 1 for a
transition of A, or the set ftj j Selj evaluates to 1 in �0g is the union of the
sets computed by select transitions(Ai) during the execution, and so it is
maximal as well.

Lemma 4.3. Let C 2 ConfH , e 2 E, state � such that (i) for j = 1; : : : ; z
Sj evaluates to 1 in � if and only if the corresponding state sj belongs to C;
(ii) Ev evaluates to e in � ; (iii) for j = 1; : : : ; v Candj and Selj evaluate to
0 in � and and gj evaluates to 1 in � if and only if (C; feg) j= gj . Suppose

Automatic Veri�cation of UML Statechart Diagrams 23

there exists an execution � of C which starts from � and stops in �n and let

L = ftj j Selj evaluates to 1 in �ng. Then H " ; :: (C; feg)
L
�! holds.

Proof. The argument here is simply observing the fact that, under the assump-
tions of the hypothesis, at the end of the execution of Ccd, variables Candj
characterize the set of all enabled transitions which respect priorities. Then the
assertion follows from Lemma 4.2 and Theorem 3.1.

Theorem 4.1. For hierarchical automaton H , C 2 ConfH , e 2 E, state � such
that (i) for j = 1; : : : ; z Sj evaluates to 1 if and only if the corresponding state sj
belongs to C; (ii) Ev evaluates to e; (iii) for j = 1; : : : ; v Candj and Selj evaluate

to 0 we have that H " ; :: (C; feg)
L
�! holds if and only if there exists a �nite

execution � of C starting from � and such that in its last state Selj evaluates
to 1 for all tj 2 L.

Proof. The assertion follows directly from Lemmata 4.1 and 4.3

4.3. Preliminary optimizations

By taking a look at the code generated following the rules described above, it
is clear that variables Candj and Pj are just temporary variables whose only
purpose is to collect a value which is then immediately used. So they can be
eliminated and their use be replaced by the expressions which are assigned to
them.

A similar reasoning applies to the Selj variables: they can be eliminated and
the code corresponding to the actual �ring of transition tj can be moved inside
the nested if : : : fi transition selection statement, where Selj was set to 1.

On the basis of the above consideration a reduced version of PROMELA
code can be generated which is much simpler than that presented in the previous
sections and uses fewer variables: the only variables are those representing the
con�gurations and the environment, namely the status.

The result of the optimized translation of our running example is given below
where the macros Candj are used only for readability purposes and could be
eliminated:

#define a1 1
#define a2 2
#define e1 3
#define e2 4
#define f1 5
#define f2 6
#define r1 7
#define r2 8

bit S1, S2, S3, S6, S7, S8, S9, S10, S11;
bit Qa1, Qa2, Qe1, Qe2, Qf1, Qf2, Qr1, Qr2;
int Ev;

#define Cand1 (S1 & S6 & (Ev==r1))
#define Cand2 (S2 & (Ev==a1))
#define Cand3 (S1 & (Ev==e1) & \

!(S1 & S6 & (Ev==r1))& \
!(S1 & S8 & (Ev==r2))& \
!(S1 & S10 & (Ev==e2))& \
!(S6 & (Ev==e1))& \

24 D. Latella, I. Majzik and M. Massink

!(S7 & (Ev==f1))& \
!(S8 & (Ev==e2))& \
!(S9 & (Ev==f2))& \
!(S10 & (Ev==e2)))

#define Cand4 (S1 & S8 & (Ev==r2))
#define Cand5 (S3 & (Ev==a2))
#define Cand6 (S6 & (Ev==e1))
#define Cand7 (S7 & (Ev==f1) & \

!(S1 & S10 & (Ev==e2)) &\
!(S10 & (Ev==e2)))

#define Cand8 (S8 & (Ev==e2))
#define Cand9 (S9 & (Ev==f2))
#define Cand10 (S10 & (Ev==e2))
#define Cand11 (S1 & S10 & (Ev==e2))

proctype STEP()
{
do
::
atomic{
if
:: Qa1->Ev=a1;Qa1=0
:: Qa2->Ev=a2;Qa2=0
:: Qe1->Ev=e1;Qe1=0
:: Qe2->Ev=e2;Qe2=0
:: Qf1->Ev=f1;Qf1=0
:: Qf2->Ev=f2;Qf2=0
:: Qr1->Ev=r1;Qr1=0
:: Qr2->Ev=r2;Qr2=0
fi
;
if
::Cand1->S1=0;S2=1;S6=0;S7=0;S8=0;S9=0;S10=0;S11=0;Qa1=1
::Cand2->S1=1;S2=0;S3=0;S6=1;S8=1;Qr2=1
::Cand3->S1=0;S2=1;S6=0;S7=0;S8=0;S9=0;S10=0;S11=0
::Cand4->S1=0;S3=1;S6=0;S7=0;S8=0;S9=0;S10=0;S11=0;Qa2=1
::Cand5->S1=1;S3=0;S6=1;S9=1;Qe1=1
::Cand11->S1=0;S3=1;S6=0;S7=0;S8=0;S9=0;S10=0;S11=0;Qe2=1
::(Cand6||Cand7||Cand8||Cand9||Cand10)->

if
::Cand6->S6=0;S7=1;S10=1;Qf1=1
::Cand7->S6=1;S7=0;S10=0;S11=0;Qr1=1
::Cand10->
if
::Cand10->S10=0;S11=1;Qe1=1
::else->skip
fi

::else->skip
fi;
if
::Cand8->S8=0;S9=1;Qe1=1
::Cand9->S8=1;S9=0
::else->skip
fi

::else->skip
fi
}
od
}

init

Automatic Veri�cation of UML Statechart Diagrams 25

{
atomic{
S1=1;S2=0;S3=0;S6=1;S7=0;S8=1;S9=0;S10=0;S11=0;
Qa1=0;Qa2=0;Qe1=0;Qe2=1;Qf1=0;Qf2=0;Qr1=0;Qr2=0;
};
run STEP()
}

Of course, also in this case, if a FIFO queue is used for modeling the environ-
ment, then the inner if : : : fi statements must be replaced by parallel processes,
or proper code simulating the behaviour of such processes.

It should also be noticed that further standard code optimizations are pos-
sible. For instance the if : : : fi statement where only Cand10 is tested could be
replaced by S10=0;S11=1;Qe1=1. Moreover, further speci�c optimizations are
possible. Con�gurations can be represented using basic states only, reducing the
number of bit variables necessary for representing states. Such a number can
then be further reduced to its base 2 logarithm by using proper encodings. The
use of PROMELA d step could help reducing the number of states. A d step
takes a list of statements and collapses the sequence of transitions resulting from
their execution into a single one, so removing all intermediate states.

In any case, our models, both those generated by the base version and those
obtained via the optimized one, result quite eÆcient in terms of number of states.
A hint for understanding why this is the case can be given by analyzing the
Kripke Structure of our simple example. It has 7 statuses while the PROMELA
models both have 10 states (the base one having also a wider state vector than the
reduced one). The presence of the 3 extra states can easily be explained. They are
a consequence of the nested if statements that are executed \one at a time", thus
generating an intermediate state whereas in the Kripke Structure the execution
of the transitions of parallel automata (or their stuttering steps) \happen at
the same time". This brings to a state-space overhead which grows linearly with
the size of the hierarchical automaton. Further study and experimentation is
needed in order to assess the eÆciency of the code generated by our translation;
nevertheless our �rst experiments are quite encouraging.

4.4. Implementation

Two implementations of the base translation exist: one has been developed in
CNUCE and is written in Standard ML [GL98]. The other has been developed at
the Technical University of Budapest and uses database technology [BDJS98].
Several experiments have been performed on this latter implementation. Here
we brie
y review the results of one of these experiments, namely the translation
and veri�cation of the Production Cell [LL95]. For a more detailed description
of the experiments the reader is referred to [MJ99].

The particular version of the Production Cell used in the experiment is that
de�ned in [BMM99], which, besides the standard components a feed belt, ele-
vating rotary table, robot and press, includes a second (redundant) press and a
human operator who is also able to repair the failures of the presses. The model
of the system consists of 12 statecharts with a total number of 73 states and 89

26 D. Latella, I. Majzik and M. Massink

transitions8. The translator, implemented in PL/SQL, ran on a Sun SPARCsta-
tion 20. It took about 180 sec. to generate the PROMELA code, including the
time required to interface the front-end UML tool (MID Innovator version 6.1).
The veri�cation of the generated PROMELA model was performed using SPIN
version 3.2.3 running on Linux PC (Intel Celeron 400MHz with 128Mbytes of
RAM). The following results have been obtained for two validations:

Safety checking (safety, invalid endstates):
- time required to check: 0.68user 0.16system (seconds)
- length of state vector: 68 byte
- number of states: 1320 states, stored
- depth reached: 154046
- number of transitions: 1373 transitions (stored+matched)
- number of atomic steps: 441329
- required memory: 14.404 Mbyte

Liveness checking (liveness, non-progress cycles, where the progress
means a processed blank removed from the production cell,
the state marked by the "progress" label manually)

- time required to check: 0.23user 0.24system
- length of state vector: 72 byte
- number of states: 181 states, stored
- number of transitions: 185
- number of atomic steps: 29866
- required memory: 14.404 Mbyte
- result of the analysis: property failed

(due to possible cycle of failure-reparation,
without progress in processing the blank plates)

We conclude that the PROMELA model generated by the basic translation for
the Production Cell is quite manageable.

5. Conclusions

In this paper we have shown a translation from UML Statechart Diagrams into
PROMELA. We have de�ned a base translation, proved it correct and discussed
some, preliminary, optimisations which substantially improve the resulting code.

Two implementations of the base translation exist: one has been developed
in CNUCE and is written in Standard ML [GL98]. The other has been developed
at the Technical University of Budapest and uses database technology [BDJS98].

Several experiments have been performed on this latter implementation. The
interested reader is referred to [MJ99]; here we mentioned the results of only one
such experiment, namely a version of the Production Cell [LL95], which, in our
opinion, is rather indicative of the feasibility of our approach.

As we have seen in Sect. 4 the PROMELA models generated by the second
version of the translator are simpler, shorter, and use fewer variables than those
generated via the base one. Their sizes grow linearly with the size of the input
hierarchical automaton, in particular with the number of transitions. This is a
�rst improvement which is achieved by means of a few simple and safe optimi-
sations. Further optimisations are possible and they are subject of our future
research.

8 Notice that these numbers refer to the static structure of the statechart diagram and not to
its execution.

Automatic Veri�cation of UML Statechart Diagrams 27

In this paper we considered a subset of UML, which essentially covers the
aspects related to concurrency and state re�nement. Issues of object-orientation
need further, basic research. Other features like variables, history states or struc-
tured events, etc. can be included without drastic conceptual changes. For in-
stance variables can be dealt with by adding proper store and name-binding
functions to statuses. Completion transitions, which are a basic notion in the
context of UML Statechart Diagrams, can be dealt with in a clean and modu-
lar way by de�ning a second deduction system for modelling completion steps.
The structure of such a deduction system will be the same as that of the step-
transition one (Fig. 3), and the two systems will be very similar in other respects.
The �nal complete step-transition will be modelled by means of two further sim-
ple rules which merge step-transitions with completion runs, giving priority to
the latter.

We consider the work presented in this paper as an essential �rst step towards
a more complete model-checker for UML Statechart Diagrams.

It is worth pointing out here that our current semantic model and transla-
tion do not allow more than one statechart and one queue. On the other hand,
it seems that the general idea of the UML designers is to associate a distinct
statechart to each class or object and then let such statecharts communicate
via queues. We have doubts about the methodological soundness of such an ap-
proach. Statechart Diagrams already allow concurrent behaviours to described
by means of concurrent states, which act as a kind of \parallel composition op-
erator" in the notation. The approach proposed by the UML designers adds to
this an inter-object communication paradigm that uses concepts that lay outside
the primitive composition operators. This does not follow generally accepted or-
thogonality principles of language design. In our opinion it would be better to
have distinct statecharts modelling the behaviour of di�erent objects within a
system glued together into a single, parallel, statechart representing the system.
If the interaction model which has been chosen for the interaction with the en-
vironment and, via the environment, between sub-machines of the statechart,
namely the queue plus the dispatcher, turns out not to be expressive enough for
modelling sub-machine interaction, then the issue is to �nd ways to enrich such
an interaction model in order to make it satisfactory.

Nevertheless, should the UML designer stick to the �rst approach, it is
straightforward to adapt our semantics as well as our translation. As far as the
semantics is concerned we just need to add an extra (set of) rule(s) in order to
deduce changes in a global status composed by the current con�guration of each
sub-machine and the current value of each queue, using the deduction system
for the step transition we have been using in this paper, after proper address-
ing/naming conventions have been set and formalised. As far as the translation
is concerned, it is almost trivial to change it in such a way that several STEP
processes are generated, one per statechart diagram, and such processes commu-
nicate via FIFO channels or shared variables representing sets or multi-sets.

Finally, we want to point out that we can use the work presented in this paper
as a starting point for the development of translations to enriched models such
as timed-automata or stochastic-automata, for enriched versions of Statechart
Diagrams with the aim of timed-model-checking or discrete event simulation.
Of course, this will make sense only after a formal semantics for those enriched
versions of Statechart Diagrams have been de�ned, which is one of our next areas
for further study.

28 D. Latella, I. Majzik and M. Massink

6. Acknowledgements

Istvan Majzik has been partially supported by the Hungarian Scienti�c Research
Fund OTKA-F030533. Mieke Massink has been supported by the TACIT net-
work under the European Union TMR Programme, Contract ERB FMRX CT97
0133. The authors would like to thank the anonymous reviewers for their inter-
esting and constructive comments.

References

[BD99] H. Bowman and J. Derrik. A junction between state based and behavioural
based speci�cations. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors,
IFIP TC6/WG6.1 Third International Conference on Formal Methods for Open
Object-Oriented Distributed Systems. Kluwer Academic Publishers, 1999. ISBN
0-7923-8429-6.

[BDJS98] A. Borschet, M. Dal Cin, J. Javorszky, and C. Szasz. Speci�cation of the HIDE
environment. Technical Report HIDE/D3/TUB/1/v2, ESPRIT Project n. 27439
- High-Level Integrated Design Environment for Dependability HIDE, 1998.

[BMM99] A. Bondavalli, I. Majzik, and I. Mura. Automatic dependability analysis for sup-
porting design decisions in UML. In A. Williams, editor, Fourth IEEE Inter-
national High-Assurance Systems Engineering Symposium, pages 64{71. IEEE
Computer Society Press, 1999. ISBN 0-7695-0418-3.

[BW97] J. Broersen and R. Wieringa. Interpreting UML-statecharts in a modal �-calculus.
Unpublished manuscript, 1997.

[FS97] M. Fowler and K. Scott. UML Distilled. Applying the Standard Object Modeling
Language. Addison-Wesley, 1997. ISBN 0-201-32563-2.

[GL98] E. Giusti and D. Latella. Implementazione in SML di un traduttore da automi ger-
archici a PROMELA. Technical Report CNUCE-B4-1998-018, Consiglio Nazionale
delle Ricerche, Istituto CNUCE, 1998. In italian.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming. Elsevier, 8(3):231{274, 1987.

[Har96] D. Harel. The STATEMATE semantics of statecharts. ACM Transactions on
Software Engineering and Methodology, 5(4):293{333, 1996.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
ISBN0-13-539925-4.

[Hol97] G Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279{295, 1997.

[LL95] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Systems
- Case Study Production Cell, volume 891 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[LMM98] D. Latella, I. Majzik, and M. Massink. A simpli�ed formal operational
semantics for a subset of UML statechart diagrams. Technical Report
HIDE/T1.2/PDCC/5/v1, ESPRIT Project n. 27439 - High-Level Integrated De-
sign Environment for Dependability HIDE, 1998.

[LMM99] D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics
of UML statechart diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri,
editors, IFIP TC6/WG6.1 Third International Conference on Formal Methods
for Open Object-Oriented Distributed Systems, pages 331{347. Kluwer Academic
Publishers, 1999. ISBN 0-7923-8429-6.

[LP99] J. Lilius and I. Paltor Porres. The semantics of UML state machines. Technical
Report 273, Turku Centre for Computer Science, 1999.

[Mil89] R. Milner. Communication and Concurrency. Series in Computer Science. Pran-
tice Hall, 1989.

[MJ99] I. Majzik and J. Javorszky. Formal veri�cation of UML statecharts: Case stud-
ies. Technical Report MITUB-TR-99-05, Dept. of Measurement and Information
Systems - Technical University of Budapest, 1999.

[MLS97] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In R. Shyamasundar and K. Euda, editors, Third Asian Computing Science

Automatic Veri�cation of UML Statechart Diagrams 29

Conference. Advances in Computing Sience - ASIAN'97, volume 1345 of Lecture
Notes in Computer Science, pages 181{196. Springer-Verlag, 1997.

[MLSH97] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing Statecharts
in Promela/SPIN. Technical Report BL011272-971203-25TM, Bell Labs, Lucent
Technologies, 1997.

[Rat97a] Rational Software and Microsoft and Hewlett-Packard and Oracle and Sterling
Software and MCI Systemhouse and Unisys and ICON Computing and IntelliCorp
and i-Logix and IBM and ObjecTime and Platinum Technology and Ptech and
Taskon and Reich Technologies and Softeam. UML Notation Guide, version 1.1,
1997. Notation guide with diagram descriptions.

[Rat97b] Rational Software and Microsoft and Hewlett-Packard and Oracle and Sterling
Software and MCI Systemhouse and Unisys and ICON Computing and IntelliCorp
and i-Logix and IBM and ObjecTime and Platinum Technology and Ptech and
Taskon and Reich Technologies and Softeam. UML Semantics, version 1.1, 1997.
UML semantics with metamodel.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni�ed Modeling Language Ref-
erence Manual. Addison-Wesley, 1999. ISBN 0-201-30998-X.

[WB98] R. Wieringa and J. Broersen. A minimal transition system semantics for
lightweight class and behavior diagrams. In M. Broy, D. Coleman, T. Maibaum,
and B. Rumpe, editors, Proceedings of the ICSE98 Workshop on Precise Seman-
tics for Software Modeling techniques, 1998.

