
1

Watchdog processors in parallel systems

András Pataricza+,++, István Majzik++, Wolfgang Hohl+, Joachim Hönig+

+Institut für Mathematische Maschinen und Datenverarbeitung III, Universität Erlangen-
Nürnberg, Martensstr. 3, D-91058 Erlangen, Germany

++Dept. of Measurement and Instrument Engineering, Technical University of Budapest
Müegyetem rkp. 9., H-1502 Budapest, Hungary

A watchdog processor (WDP) is a relatively simple coprocessor built for concurrent, information
compaction based error detection in the main program control flow.A new algorithm called SEIS
(Signature Encoded Instruction Stream) is presented for assigning signatures to high level-
instructions. The main idea of this method is to embed the information necessary to the program
flow check into the signatures themselves, thus avoiding large reference databases in the WDP
and allowing high operational speed. Solutions for a fault-tolerant multiprocessing and multi-
tasking implementation are described as well.

This research is part of the Hungarian-German Joint Scientific Research Project #70 with additional support
from: SFB 182 (DFG), Konrad Zuse Program (DAAD), OTKA-760,T-3394 and F7414 (Hungarian NSF)

1. INTRODUCTION

A massively parallel multiprocessor con-
tains several thousands of processing nodes.
Yet, computing intensive applications still re-
quire extremely long execution times - weeks or
even months. Moreover, the increasing number
of processors can drastically reduce reliability.
Thus, fault-tolerance becomes a key design fac-
tor. This requirement can be met by distributed
memory MIMD (multiple-instruction multiple-
data) systems.

1.1. The MEMSY Architecture
The new experimental multiprocessor

MEMSY (Modular Expandable Multiprocessor
System) developed at the University of Erlan-
gen-Nuremberg serves both as a test-bed for
high performance scientific computing and ef-
fective fault tolerance methods [1]. The system
has a hierarchical, scalable, regular structure,
with locally shared memory and a distributed
operating system. At each level the processor
nodes form a four-neighbor toroidal mesh.
Nodes are coupled by multiport memories

through a fault tolerant interconnection net-
work allowing fast data exchange.

In order to increase the computing power
each node consists of four MC88k processors.
Internally the processors have MMU chips
containing local instruction and data caches as
well. Memory is interfaced on a high speed
dedicated bus. Peripherals are coupled via a
VME bus.

The operating system of MEMSY is based
on UNIX. Each node has its own local operat-
ing system kernel with basic services: e.g. ad-
ministration of objects, scheduling, commu-
nication between objects and memory manage-
ment. Fault tolerance services are based on a
backward recovery scheme. This method uses
periodical backups of all data necessary to re-
start from an intermediate point of the compu-
tation after a system crash or a detected non-
fatal error. A vital requirement is the correct-
ness of the saved data used for recovery, thus
fast error detection is necessary. Moreover, a
long error latency may prevent a proper fault
diagnosis by the weak correlation between the
fault and its functional error symptoms [2].

EUROMICRO'93, the 19th Symposium on Microprocessing and Microprogramming
Barcelona, Spain, 1993

2

2. WATCHDOG PROCESSORS

The majority of computer failures results
from transient faults. According to both previ-
ous experience and accelerated fault injection
experiments about 50-60% of this faults are
manifested as disturbances in the program
control flow. Since the early eighties the most
promising solution for checking the program
execution flow in the main processor is the use
of watchdog processors (WDP) [3]. A WDP, im-
plemented as a relatively simple coprocessor,
compares precomputed reference signatures
with run-time signatures, which encode some
characteristics of the reference program flow
and the actual program flow, respectively.

2.1. Main approaches
Control flow checking can be classified de-

pending on the run-time signature generation
method used.

Originally, in most WDP methods the in-
struction fetch sequence on the system bus was
checked (derived signature based methods) by
using some kind of information compaction.
However, in modern computer architectures
the observability of the system bus is drastical-
ly reduced, e.g. by the use of on-chip caches and
instruction prefetch queues.

Nowadays the so-called assigned signature
based approach is almost exclusively used in
computers based on off-the shelf components.
In this method a preprocessor extracts the pro-
gram control-flow graph (CFG) from the high
level programming language source code. In
the CFG vertices represent branch free pro-
gram blocks (instruction sequences) and edges
correspond to control transfers (e.g. branch-
type instructions as IF_THEN_ELSE or CASE
statements). An unambiguous signature is as-
signed to each vertex. Signature transfer state-
ments are inserted into the source code.

During the main program run this signa-
tures are transferred to the WDP uniquely
identifying the program location. The WDP
checks concurrently the correct execution of
the main program by checking the received sig-
nature sequence. This sequence will be accept-
ed as correct, if it corresponds to an existing

path in the program graph, independently of
the semantic correctness of the branch selec-
tions. In the case of a conditional branch in-
struction, it is only checked whether the target
instruction belongs to the set of the successors,
but the selection itself remains un-checked.

2.2. Implementations
There are two traditional approaches for

the implementation of signature assignment
based watchdog processors:

 In the first method published, the signa-
ture integrity checking (SIC) [4] a general-pur-
pose microcomputer serves as WDP, for which
the SIC-preprocessor extracts a CFG checking
program in the same high level programming
language as the main program e.g. by substi-
tuting branch-free program blocks with re-
ceive-signature instructions. The main
drawbacks of this method are the high com-
plexity and low speed of the WDP and its in-
ability to handle function calls through
pointers or interrupts.

As alternative for MEMSY initially a new,
so-called Extended Signature Integrity Check-
ing (ESIC) method was developed [5]. The pro-
gram control-flow graph (CFG) is explicitly
extracted from the source code by a preproces-
sor. Each subroutine is mapped to a separate
subgraph. The generated signatures contain a
field uniquely identifying the subroutine. Spe-
cial signatures mark the start and end vertices
of subroutines (SOP and EOP respectively).
Before the start of the main program a tabular
representation of the CFG (the set of the adja-
cency matrices of the subgraphs in a sparse
matrix format) is downloaded into the WDP,
defining for each signature (state) the set of the
allowed successors.

 In order to handle function calls the WDP
is implemented as a finite deterministic stack
automaton. By receiving an SOP signature the
actual state is pushed onto stack and the WDP
switches over to the table of the called subrou-
tine. If it receives an EOP signature, it checks
whether this signature belongs to the current
subroutine and if so, the WDP resumes check-
ing the calling subroutine by popping the
saved state from the stack.

3

The experiences from previous experi-
ments show an excellent fault coverage, but a
necessity for the reduction of both the hard-
ware complexity of the WDP (a transputer
based microcomputer similar in complexity as
the main processor itself) and of the time over-
head related to signature processing as well.

3. THE SEIS METHOD

 In the assigned signature method the only
requirement for the labelling of instructions
with signatures is their uniqueness for identi-
fying the main program location. The main
idea in the new method called Signature En-
coded Instruction Stream (SEIS) is a different
encoding algorithm of the CFG signatures, so
that each signature uniquely identifies its suc-
cessors as well, similarly to the fault-tolerant
hardware implementation of finite state ma-
chines [6]. In this way only the last signature
in each subgraph is to be stored in the WDP, as
the check of the signature sequence requires
only the combinational comparison of the actu-
al signature and the successor fields in the
previous signature. The program or automa-
ton table handling in the previous methods
can be omitted, reducing both hardware and
time complexity of the WDP. Subroutine calls
can be handled in an identical way as in ESIC.

3.1. The basic idea
A main difference to the finite state ma-

chine synthesis with an unlimited number of
potential successors and predecessors of a
state is, that in a CFG this number is very
small for the overwhelming majority of in-
structions. Accordingly, when limiting the
number of successors to a value k, a vertex can
be identified by the concatenated labels of its
successors. In the mathematical sense this is a
sparse representation of the row in the adjan-
cency matrix corresponding to the current ver-
tex. In the case of multidirectional control
transfer instructions violating this assump-
tion, like a CASE statement, intermediate ver-
tices are to be inserted into the CFG. The state
transition has to be performed in multiple

steps. This requires only a moderate time
overhead, as the number of the necessary ad-
ditional states to a vertex depends only loga-
rithmically on the number of edges. (When
arranging the additional vertices as a k-ary
tree of a depth d, the maximal number of the
successors or predecessors can reach kd+1.) In
our implementation k=3 was chosen.

If we order the codes used for labelling and
encode the vertices on a directed path in the
CFG with subsequent codes (further referred
to as sublabels), then the execution of the in-
struction sequence corresponding to this path
will produce an easy-to-check sublabel stream
consisting of subsequent codes.

A vertex can belong to multiple paths, and
accordingly, multiple (maximally k) sublabels
can be assigned to it. As signature we will use
their concatenation. If a vertex is traversed by
less than k paths, then a dummy sublabel (not
belonging to any vertex) is assigned to the re-
maining part of the signature in order to have
a fixed-length encoding. During program exe-
cution the WDP has only to check whether
some sublabel in the current signature is a
successor of a sublabel in the previous one.

3.2. The encoding algorithm
The last problem to be solved is the extrac-

tion of the directed edge sequences from the
CFG, which can be reduced to the well-known
Eulerian circuit problem, i.e. to find a circuit in
a graph, which contains each edge exactly
once. Such a circuit exists if and only if each
vertex in the graph has same numbers of both
incoming and outgoing edges.

In the algorithm at first the CFG is com-
pleted with additional edges to an Eulerian
graph. After generating the Eulerian circuit it
is partitioned into separate edge trails by re-
moving the additional edges. Successive subla-
bels are assigned to the vertices in a trail. The
second successor of the last sublabel in the
previous trail is attached to the starting ele-
ment of the next trail, in this way the sublabel
sequences remain disconnected by an unused
sublabel. Finally, signatures are generated as
the concatenation of the subroutine (function)
code and the sublabels, eventually extended

4

a: for (j=0; j<2; j++) {
b: if (x<0) {
c: x=x+8;

}
else {

d: while (i<3) {
e: i=x+i;
f: }
g: }
h: }

The original program CFG The encoded CFG

with dummy sublabels to k fields.
An example is shown in Fig.1. From the C

program source the corresponding CFG is gen-
erated. The addition of the edges h→d, f→a
and h→a (marked by a grey color) transforms
it to an Eulerian graph. After finding the Eu-
lerian circle shown below, it is cut to trails by
removing the additional edges. If the sublabels
are ordered as positive integers, the sublabels
1..9, 11..14, 16..17 are assigned to the vertices
in the trails. The resulting encoded CFG is
shown in the right upper corner. For simplicity
k=2 was assumed. The X in the signature at-
tached to vertex b denotes a dummy sublabel
field. In our case this field may contain 7 once
again or for example 19, a sublabel neither the
predecessor nor the successor of any other su-
blabel assigned to a vertex.

If this program segment is entered with
x=j=1, then the program flow control flow will
be the following one: <a,b,d, e, e, f, g,b,d,f,g,h>.

The corresponding signature sequence is:

[16,1], [6,2], [3,11], [12,13], [12,13], [4,14],
[8,5], [6,2], [3,11], [4,14], [8,5], [17,9]. In this
sequence those sublabels are marked with a
bold typesetting, which are a valid successor of
the previous signature (the initial value in the
WDP is set to 0 at the entry point of a program
or function).

It should be pointed out, that the elementa-
ry sublabel assignment construction depends
only of the instruction to be labelled (as denot-
ed in Fig. 1. for the WHILE instruction) and
the algorithm described above can be merged
with the syntax analysis in the SEIS-prepro-
cessor by using an elementary graph labelling
building block library.

4. IMPLEMENTATION OVERVIEW

In a WDP the length of the signature code
words is practically limited by the bus width.
In order to keep the time overhead related to

b
a

h
g

c

d
e

f
12 13

16 1
6 2

3 11

4 14

8 5

17 9

a b d f g b c g h d e e f a h

a b d f g b c g h d e e f a h
1 2 3 4 5 6 7 8 9 11 12 13 14 16 17

The Eulerian circuit

The numbering of the trails

Fig. 1. The encoding algorithm

X 7

5

Grant
signals ← Compiled virtual address → ← Data →

Constant Command Function Type Sub-
label 1

Sub-
label 2

Sub-
label 3

⇓
↓ ⇓ ⇓

⇓Transformation MMU

⇓ ⇓ ⇓ ⇓

Node ID Processor Task Command Function Type Sub-
label 1

Sub-
label 2

Sub-
label 3

← Run-time generated physical address → ← Data →
Fig.2. The transformation of the signatures

signature transfers on an acceptable level,
multiple instructions or bus cycles per signa-
ture transfer are to be avoided. To achieve a
sufficient bandwidth, information is trans-
ferred through the address bus as well. The
prototype of the WDP is memory mapped
through the communication memory interface.

4.1. Support of multitasking
In a multitasking environment the WDP

must be shared by emulating for each task an
independent signature checker. The simplest
solution for this is the concatenation of a task
(process) ID field to the signatures. In the
WDP for each process a private stack has to be
allocated. The signature sequences can be sep-
arated according to their task ID field.

Task IDs are generated by the operating
system only at the creation phase of a new
task. A static task ID insertion would mean a
full reediting of the binary code. Moreover, this
solution would not allow code sharing between
different processes, as they would differ in the
ID fields of the signatures.

Accordingly, a dynamic insertion of the task
IDs was chosen. As task IDs are encoded into
the address information of the signature
transfer bus cycle, it undergoes a virtual to
physical address transformation in the MMU,
as shown in Fig.2. During task initialization
the MMU is programmed in such a way, that
the physical address bits correspond exactly to

the task ID. In doing so, different tasks can
transfer signatures to the WDP through differ-
ent physical address ranges while having iden-
tical virtual address bits in the task ID field of
the signature in the binary code. In case of
code sharing the same virtual WDP addresses
can be referenced. The replication of code seg-
ments is avoided.

Another major problem results from the
sharing of the WDP stack as a common re-
source between different processes. A static
stack partitioning strategy would require a
storage of unacceptable size, corresponding to
the product of the number of tasks and the
maximal allowed stack size per task. As not all
tasks use the whole allowed stack area, the
stack is partitioned dynamically using a
linked list organization.

4.2. Multiprocessor support
In SEIS the signature processing time is as

low as a single bus cycle. Signatures are sent
only at the beginning of a high level language
instruction, the excess speed allows sharing
the WDP between different nodes of a multi-
processor. As interprocessor communication in
MEMSY is based on memory sharing, the
WDP is integrated into this communication
system, serving five computing nodes, each
consisting of 4 processors. The actual node and
processor IDs are derived from the bus grant
signals of the node system bus and the ac-

6

knowledge signals of the arbiter of the multi-
port communication memory. This IDs are
concatenated by the WDP hardware to the sig-
nature.

4.3. Support of error recovery
Another important feature of the WDP is

the support of error recovery. As described ear-
lier, in MEMSY a backward recovery strategy
is used. During the computations intermediate
checkpoints are saved. In the case of an error
the system is restarted from this stored state
avoiding the loss of the whole computing time.
In order to always have a valid checkpoint, a
two phase commit protocol is used in MEMSY.

The WDP supports the checkpoint-based
error recovery in two ways:
- Simultaneously to saving checkpoint data in

the main processor, the corresponding WDP
state is saved internally, too. In the case of
program recovery this state is restored au-
tonomously by the WDP.

- The “save WDP checkpoint state” command
is embedded into the signature sequence.
Moreover, the address range of the WDP cor-
responding to this command can only be ac-
cessed in privileged mode to avoid incidental
checkpoint overwrite due to an error. Ac-
cordingly, it is possible to allow checkpoint
generation only at predefined main program
locations.

5. EXPERIMENTAL RESULTS

An experimental version of the SEIS WDP
was built around AMD Mach 210 series FPGA
circuits serving 5 nodes in MEMSY.

Signature checks in the current implemen-
tation of the SEIS method can be performed
even during the signature transfer itself, only
the checkpoint generation results in a moder-
ate slow-down of the main program. Experi-
ments have shown a typical static code length
overhead of 5-10%, and about 15-25% of execu-
tion time, depending on the program under
consideration.

 First simulated fault injection based ex-
periments in MEMSY show that the primary,

standard error detection mechanisms (seg-
mentation violation, word alignment and ille-
gal instruction checks) detect approximately
60-75% of all errors. Using the WDP increases
the overall error coverage to 75-90%.

REFERENCES

1. Dal Cin, M. et al.: Fault Tolerance in Dis-
tributed Shared Memory Multiprocessors.
To appear in Springer LNCS, 1993

2. Dal Cin, M. et al.: Error Detection Mecha-
nisms for Massively Parallel Multiproces-
sors. Proc. Euromicro Workshop on Paral-
lel and Distributed Processing, (1993), 401-
408.

3. Mahmood, A; McCluskey, E.J.: Concurrent
Error Detection Using Watchdog Processors
- A Survey. IEEE TC, 37. 160-174, (1988)

4. Lu, D. J.: Watchdog Processors and Struc-
tural Integrity Checking. IEEE TC, 31.
681-685, (1982)

5. Michel, E.; Hohl, W.: Concurrent Error De-
tection Using Watchdog Processors in the
Multiprocessor System MEMSY. Proc. 5th
Intl. Conf. Fault-Tolerant Computing Sys-
tems, Informatik Fachberichte 283, 54-64,
Springer, (1991)

6. Robinson, S.H.: Finite-state Machine Syn-
thesis for Continuous, Concurrent Error
Detection Using Signature-invariant Moni-
toring. Research Report CMUCAD-92-36,
Carnegie Mellon University (1992)

