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Abstract

Thepaperpresentstechniquesthat enablethemodeling
and analysisof redundancyschemesin distributedobject-
orientedsystems.Thereplicationmanager, ascore part of
the redundancyscheme, is modeledby using UML state-
charts. The flexibility of the statechart-basedmodeling,
which includesevent processingand statehierarchy, en-
ablesan easyand efficient modelingof replicationstrate-
giesaswell asrepair andrecoverypolicies.Thestatechart
is transformedto a Petri-net baseddependabilitymodel,
which also incorporatesthe modelsof the replicatedob-
jects. By the analysisof the Petri-net modelthe designer
canobtainreliability andavailability measuresthat canbe
usedin theearly phasesof the designto compare alterna-
tivesand find dependabilitybottlenecks. Our approach is
illustratedby anexample.

1 Introduction

The increasingneedfor distributed technologieshave
ledto severaldistributedobject-oriented(OO)middlewares.
Thesesystemstargettheproblemsof transparentinvocation
of objectsas well as servicesthat are necessaryin a dis-
tributedenvironment(orderingof messages,multicastcom-
municationetc.).Theneedfor highly availableapplications
leadalso to fault tolerantextensionslike replicationman-
agement,checkpointingandrecovery.

This trendcanbepresentedby theexampleof themost
importantopenobject-orientedmiddleware, the Common
Object RequestBroker Architecture(CORBA). CORBA
was specifiedby the Object ManagementGroup (OMG).
It providesanobject-orientedinfrastructurethatallows ob-
jects to communicate,regardlessof the specificplatforms
and languagesusedto implementthem. CORBA defines
thebasicmechanismsfor remoteobjectinvocationthrough

the ObjectRequestBroker (ORB), aswell asa setof ser-
vices for objectmanagement,e.g. TransactionServiceor
TraderService. Originally, neither the ORB nor the ex-
isting servicesprovided meansfor building reliable and
highly available applications. Different approacheswere
elaboratedto incorporatethenecessaryextensionsinto the
CORBA framework. AmongothersOrbix+Isis[8], Electra
[10] andEternal[11] canbe mentioned.Recognizingthe
needfor applicationsthat provide high availability, OMG
starteda standardizationprocessto definefault tolerance
in CORBA. TheFault TolerantCORBA (FT-CORBA) [13]
was proposedby leading information technologycompa-
niesandreachedthelevel of a Final AdoptedSpecification
in 2000.

Thefault tolerantdistributedOOsystemstypically share
similar concepts. Server-like objects are replicated on
different nodesof the distributed system,thus forming a
replicagroup. The clientscantransparentlyinvoke oneor
moreobjectsof the replicagroupdependingon the redun-
dancy scheme(e.g.activeor passiveredundancy). Thefault
modelassumesobjectcrashfailures.It is theresponsibility
of a replicationmanagerto keepthe necessarynumberof
objectreplicas,i.e. to recover the replicaobjectsor create
new replicainsteadof thecrashedone.Accordingly, thebe-
havior of thereplicationmanagerhascrucialimpactsonthe
availability of thereplicagroup.

The designerof the systemneedstool supportto con-
structoptimal fault toleranceschemesandto parameterize
theseschemesin termsof deployment,numberof replicas,
fault monitoring interval, repairpolicy etc. Dependability
modelingproved to be a useful techniquein the early de-
sign phaseswhen comparisonof the alternative architec-
tural solutionsand identification of dependabilitybottle-
necksis necessary. Stochasticdependabilitymodelsusing
Markov-chainsor Petri-netscanprovidenumericalreliabil-
ity andavailability figuresthat canbe usedto analyzethe
sensitivity of the system-level measuresto componentpa-



rametervalues.
Dependabilitymodelingis usuallya manualtaskrequir-

ing expertiseandsomeexperience.However, if a detailed
model of the systemis available, automaticdependabil-
ity modelingis a promisingapproach. Nowadays,as the
Unified Modeling Language(UML) becomesthe de facto
standardmodelinglanguageof object-orientedsystems,the
systemmodel is usually available in UML. Accordingly,
UML-basedautomaticmodel transformationcan provide
the stochasticdependabilitymodel requiredfor the analy-
sis[3, 4].

Thepaperpresentsatechniquethatenablesthemodeling
andanalysisof redundancy schemesin distributedobject-
orientedsystems.Thereplicationmanager, ascorepartof
the redundancy scheme,is modeledby using UML stat-
echarts. The flexibility of the statechart-basedmodeling,
which includesevent processingandstatehierarchy, sup-
portsan easyandefficient modelingof replicationstrate-
giesaswell asrepairandrecovery policies. Thestatechart
of the replicationmanager, aswell assimplified behavior
of the replicaobjects,is transformedto a stochasticPetri-
net.By theanalysisof thePetri-netmodelthedesignercan
obtainreliability andavailability measuresthatcanbeused
to comparealternativesandanalyzesensitivity to parame-
ters. Our analysisis basedon an(early)architecturalview
of thesystem.Thebehavioral descriptionof thereplication
manageris usedonly to derive thereplicationmanagement
andrepair strategy, in this way determinethe structureof
thedependabilitymodel.

In our previous works methodsof transformationfrom
full UML statechartsto Petri-netswereproposed[7]. Now
weapplythismethodto theanalysisof replicationmanage-
ment,presentthenecessaryUML extensionsandshow the
usefulnessof theapproach.We investigatethemodelingof
client fail-over, repairandrecovery policiesandfault man-
agement.To do this, we adoptthe systemstructurethat is
proposedby theFT-CORBA specification.

Thepaperis structuredasfollows. In Section2 we dis-
cussthe typical replicationstrategiesin OO systems.Sec-
tion 3 describesthe modelingapproach.The modeltrans-
formationis outlinedin Section4. Thelastsectionpresents
anillustrativeexample.Thepaperis closedby a shortcon-
clusion.

2 Replication in distributed OO systems

The architecturepresentedin the FT-CORBA standard
clearlyseparatesthetypical tasksin a redundancy structure
andassignsthesetasksto individual objects. In this way
theresponsibilitiesandthe interfacesof theobjectscanbe
clearlydefined.In our architecturalmodel,however, we do
notrestricttheinterfaces,mechanismsandotherimplemen-
tationdetailsthatarespecifiedby thestandard.

In thisframework faulttoleranceis providedby entityre-
dundancy, i.e. by the replicationof objects,fault detection
anderror recovery. Client objectscaninvoke the methods
of the replicatedserver objectsthusavoiding singlepoint
of failuresnormally causedby singleserver objects. The
clientobjectsshouldnot beawareof thefactthattheserver
objectsarereplicated(replicationtransparency) andshould
not be aware of faults in the server replicasor of recov-
ery from faults (failure transparency). Redundantobjects
belongto objectgroups, andseveral objectgroupscanbe
managedtogetherin a fault tolerancedomain. In eachdo-
main,thecreationandmaintenanceof theobjectreplicasis
providedby the replicationmanager (RM) (Figure1). We
do not separateapplication-controlledand infrastructure-
controlledschemesandassumethatthereplicationmanager
is solelyresponsiblefor thesetasks.Thereplicaobjectsare
continuouslymonitoredby local fault detectors thatarede-
ployedon eachhost. If a replicaobjectfails (crashes)then
thelocal fault detectorreportstheerrorto the fault notifier.
Thefaultnotifier filters andanalyzestheincomingerrorre-
ports and sendsa notification to the replicationmanager.
Thelocal faultdetectorsaremonitoredby aglobal fault de-
tectorthatdetectswhenalocalfaultdetectoris notavailable
(e.g. in the caseof a host failure). When the replication
managerreceivesa notificationaboutthecrashof anobject
replica,thenit caninitiate the recovery of that replica(by
invoking a specificmethod),or it canremove the crashed
object from the objectgroupandcreatea new replica(by
invokinga factoryobjectthatis deployedon eachhost).

The replication style can be one of the standardones
like active, warm or cold passive, statelessetc. but also
application-specificstyle canbe programmed.The (trans-
parent)connectionbetweentheclient andtheobjectgroup
is the responsibilityof a gateway (GW). Direct connection
is handledasa degeneratecaseof the gateway. The client
fail-overstrategy determinesthebehavior of theclientwhen
it doesnot receive the requestedservice. Usually, a retry
mechanismis implemented. In our casewe delegatethis
mechanismto thegatewayandwe saythat thesystemfails
whenthenecessarynumberof server replicaasrequiredby
thegateway is not available.

In orderto increasereliability, theglobalcomponentsof
the infrastructure,i.e. the replicationmanager, the global
fault detector, the fault notifier and the gateway, can be
replicatedaswell. We assumeanactive replication(anob-
ject fails if therearenoavailablereplicas).

Thefaultmodelis objectcrash. It meansthatin thecase
of an error the object will not provide any response(ser-
vice) to the clientsandwill not returnto normaloperation
until an explicit recovery. In this paperwe do not model
commissionfaults.
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Figure 1. The architecture of the FT-CORBA redundancy structure

3 Modeling of redundancy structures

We are interestedin the dependabilitymodel available
in the early phasesof the systemdesignwhen decisions
canbe madeaboutthe architectureof the systemandthe
appliedredundancy scheme(including replication, recov-
ery andrepairstrategy). Accordingly, we focuson the ar-
chitectureof the systemandabstractfrom implementation
detailsof thereplicaconsistency, checkpointingandrecov-
ery. Themainsourceof informationis theobjectmodelof
thesystem(availableasUML class,objectanddeployment
diagrams)andthe dynamicmodelof the corepartsof the
system(availableasUML statechartdiagrams).

Theavailability of theobjectgroup(presentedin thepre-
vioussection)is determinedby several factorsandparam-
eters. In the following, we outline how they canbe repre-
sentedin (andthenextractedfrom) theUML model.

� Reliability parametersof thereplicaobjects,thehosts
andthelocal fault detectors:Thedynamicbehavior of
theseobjectsis notanalyzed.Thedesignerassignsthe
failurerateandtheaveragetimerequiredfor recovery
to theseobjectsasUML taggedvalues.

� Reliability parametersof theglobalcomponentsof the
infrastructure:They aremodeledin a similar way like
in thecaseof thereplicaobjects.Therolesof theob-
jectsareidentifiedby UML stereotypes. Active repli-
cationof theseobjectsis takeninto accountby assign-

ing to themafault treeconsistingof anAND gate(i.e.
an infrastructureobjectfails if all of its replicasfail).
Notethatthis replicationstylecanberefined.

� Replicationstyle:It is theresponsibilityof thegateway
which processesthe requestof the client and the re-
sponse(s)of theserver object(s).Thestatechartof the
gateway determinesthe condition of the systemfail-
ure. Usually, thisfunctioncanberepresentedbyafault
tree.

� Repairandrecoverystrategy: It is theresponsibilityof
theRM which processeseventsfrom thefault notifier
andfrom the factory, andsendsmessagesto the fac-
tory andto the replicaobjects.The processingof the
failure/repairevents, whichis definedby thestatechart
diagramof theRM, determinestherepairandrecovery
strategy.

Accordingly, the most sophisticatedmodel in the re-
dundancy structureis that of the RM. The full modeling
power of statechartsis requiredto be able to describethe
conditionsandsequencesof events/actionsthat determine
whena failed object is recovered,how many replicasare
maintained,what is the condition of object removal from
the replica group etc. Note that the statechartmodel of
the RM describesonly dependability-relatedbehavior, no
application-specificdetailsareincluded. Thus,thereis no
needto filter out irrelevantstatesor transitions.



Event From(sender) To (receiver) Function

create RM factory Createanobject
initialized factory RM Objectis createdandinitialized
remove RM factory Remove anobject
removed factory RM Objectwasremoved

object fault fault notifier RM Failureof anobject
host fault fault notifier RM Failureof a host
recover RM replica Initiate recovery

recovered fault notifier RM Objectis recovered
unrecoverable fault notifier RM Objectcannotberecovered

Table 1. Events in the redundancy structure

Withoutrestrictingtheinterfacesandtheimplementation
of thesystem,we assumethattheeventspresentedin Table
1 areprocessedby theRM.

4 Dependability analysis by model transfor-
mation

4.1 Dependability sub-models

Our dependabilitymodelconsistsof severalsub-models
asfollows.

� The core part of the dependabilitymodel that repre-
sentsthereplicamanagementis generatedby anauto-
maticmodeltransformationfrom thestatechartof the
RM to a stochasticPetri-netmodel.

� The replicaobjectsandthe global componentsof the
infrastructureare representedby simplified models
thatarestoredin a library of pre-definedsub-models.
Notethatthesimplifiedmodelscanbereplacedby de-
tailedoneswhenthedependability-relatedbehavior of
thesecomponentsis fully describedby statecharts(e.g.
in thecaseof the fault notifier). In this casetheauto-
maticmodeltransformationcanbeused(likeabove).

� Theconnectionamongthesesub-models– asdefined
in theUML objectdiagram– is providedby theevent
processingmechanism,i.e.eventqueuesanddispatch-
ersbelongingto theobjects.

In the following, we outline the model transformation
necessaryto constructthe core part of the dependability
model.

4.2 From UML statecharts to stochastic Petri nets

Our analysisof the redundancy managementis based
on a transformationfrom UML statechartmodelsto Petri

netswith timing andstochasticextensions.Petrinets(PN)
area widely acceptedformalismfor modelingandanalysis
of distributed systems. For performanceand dependabil-
ity evaluationextensionsof PNslike GeneralizedStochas-
tic Petri Nets [1], StochasticReward Nets [12] offer not
only precisemathematicalbackgroundbut also sophisti-
catedanalysistools. Our choicewasthe classof Stochas-
tic Reward Nets(SRN).SRNsgeneralizeclassicalPNsby
rewards (variousmeasures)and by assigningguardsand
distributionsof the firing time to transitions. ThreeSRN
tools, SPNP[6], PANDA [2] andDEEM [5] wereusedin
our analysisenvironment. Dependabilitymeasurescanbe
specifiedby reward functions. In certaincases(e.g. in the
caseof exponentialtransitionfiring times)analyticsolution
is possible,otherwisesimulationhasto beperformed.If a
steadystateexists thensteadystatemeasurescanbe com-
puted,otherwisetransientanalysiscan be executed. The
analysisof theprobabilityof statesidentifiedasrepresent-
ing erroneousbehavior leadsto reliability (if no repair is
modeled)andavailability characteristics(if repair is mod-
eled).

CorrectSRNrepresentationof thestatechartwith event
processingandstatehierarchyneedsa thoroughanalysisof
thesemanticsof bothmodels.Our transformationwasde-
fined in a modularway, by introducinga setof SRN pat-
terns. Thesepatternsare assignedto peculiarconstructs
(likeeventdispatcher)or concepts(likestatehierarchy, syn-
chronization)of the UML statechartformalism, this way
they help in decomposingtheproblemandalsoin proving
thecorrectnessof theproposedsolutions(accordingto the
informal requirementsof theUML semanticsasdefinedin
the standard[14]). The sourcemodelsof the transforma-
tiondescribedin thispaperarerestrictedto UML statecharts
without history states.Actions arerestrictedto generation
of new events,while eventsdo nothaveparameters.

According to the semanticsof UML statecharts(pre-
sentedinformally in [14] andformalizedin [9]), severalpe-
culiar conceptshave to be taken into account.We discuss



themin thefollowing.

4.2.1 Event queue and dispatcher

Theeventsarriving from theenvironmentor from thestate
machinespecifiedby the statechartitself are collectedin
the queueanddispatchedby the dispatcheroneat a time.
Eventqueuesprovide the interfacesamongstatemachines
belongingto differentobjects.SinceUML definesprecisely
neitherthepolicy of thedispatchernor thenumberanddis-
tribution of eventqueues,we have definedpatternsfor sev-
eralpoliciesandleaveit to thedesignerto specifythedetails
in theUML model(by usingconstraints).If theeventsare
selectednon-deterministically, then the queuecan be im-
plementedwith SRNsquite easily. However, FIFO (First
In, FirstOut) is acostlypolicy in termsof thesizeandstate
spaceof theSRN.Figure2 presentsa FIFO queuefor two
events”up” and”down”.
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Figure 2. SRN pattern of a FIFO queue of two
events

4.2.2 Hierarchy of states and transitions

Oneimportantfeatureof statechartsis thehierarchicstruc-
ture of states. Statescancontainsub-statesor concurrent
sub-machines.Transitionsof a statechartmay have their

sourceandtargetstatesatdifferentlevelsof thestatehierar-
chy. Dueto theconcurrency, multiple transitions(triggered
by the sameevent) may be enabledat the sametime. En-
abledtransitionswhich have commonstate(s)to exit arein
conflict. Someconflictscanberesolvedby thepriority rela-
tion: if a transitionhasa sourcestatethat is substateof the
sourcestateof anothertransition(beingin conflict) thenit
hashigherpriority.

Fromthepointof view of thepriority, enabledtransitions
canbe representedin the form of a treeaccordingto their
sourcestatesin thestatehierarchy. Transitionson different
branchesof this treecanfire independently, while thecon-
flicts of transitionsbeingon thesamepathfrom theroot to
a leafareresolvedby thepriority relation.Conflictsamong
transitionsemanatingfrom thesamestateor from different
activestates,overwhich thepriority relationis not defined,
areresolvednon-deterministically.

Accordingly, the SRN representingthe maximalselec-
tion of UML transitionstriggeredby thesameeventis atree
of interconnectedsub-SRNs(eachof themrepresentinga
singleUML transition)with anadditionalcontrolstructure.
Thiscontrolstructureconsistsof two chainsof places.A to-
kenrunsononeof thechainswhentheeventis “not yetcon-
sumed”by the transitionson the givenarc of the tree,and
a tokenrunson theotherchainwhentheevent is “already
consumed”.A joining nodeof thetreemergesthechainsof
thesubtrees.All of theUML transitionsin thesubtreehave
higherpriority thanany transitionsalongthecommonpath
of the tree(on the root-sideof the joining node),therefore
“event is unconsumed”appliesto this commonpathif and
only if theeventwasnotconsumedby any of thetransitions
of thesubtree.The“eventis consumed”appliesto thecom-
monpathwhensomeof the transitionsof thesubtreehave
alreadyfired (they hadcarriedover thetokenson the“con-
sumed”chain)andtheothertransitionscouldnot fire (they
passedon the tokensalong the chain). This construction
ensuresthat if the tokenrepresentingtheevent reachesthe
rootof thetree,nomoresub-SRNscorrespondingto transi-
tionsof thestatechartwill fire, theexecutionstepis almost
finished.

4.2.3 Semantics of timed transitions

Therelationshipof timing andguardevaluationis notspec-
ified in standardUML. In our approach,time delay is as-
sociatedwith UML transitions,assumingthat this delayis
theresultof programcodeexecutionor communicationde-
lay. Accordingly, the guardexpressionshave to be evalu-
atedbeforethefiring of the(timed)transitions.Takinginto
accounttheneedsof differentapplications,weimplemented
threepossiblesemanticsfor timedandguardedUML tran-
sitions:(i) the selectionof the transitionsis irrespective of
timing, (ii) theguardhasto betrueduringthedelayelsethe



transitionwill be deselectedand(iii) the “f astest”enabled
transitionwins.

The correspondingSRN patternsrepresentthe timed
transitionsof the statechart.The typesandparametersof
the timed SRN transitionscorrespondto the onesof the
transformedstatecharttransitions. The timing policy (re-
sampling,racewith age/enablingmemory)is definedby the
designerandmustbe supportedby the SRN-toolusedfor
theanalysis.

4.2.4 Step semantics

The transitionsof the UML statechartfire in steps,i.e. a
stablestateconfigurationis reachedonly if themaximalset
of enabledtransitionshasalreadyfired. In contrary, SRN
reachesa stablestateaftereachfiring. TheUML semantics
requirestheevaluationof theguardsof thetransitionsat the
beginning of a step,beforefiring of any transition. Thus
theguardsrefer to theconsistentstateconfigurationbefore
the actualstep. In SRNs,the guardof a transitionwill be
evaluatedjust beforethe given transitionfires, the evalua-
tion is not scheduledto the beginning of a “step” and the
“results” arenot stored. Accordingly, the last stablestate
configurationof thestatemachinemustbe recordedto en-
surethecorrectevaluationof guards.To do that,theplaces
representingthestatesof thestatechartareduplicated.For
astate

�
thereis aplace

�
containinga tokenif andonly if

thestate
�

wasactive just beforetheactualstep,andthere
is an other place

���
containinga token if andonly if the

state
�

will be active after the actualstep. In this way the
guardsandthetransitionschangingthestatereferto differ-
ent places.This conceptnecessitatesa synchronizationof
theduplicatedplacesat theendof eachstep.

4.2.5 Composition of subnets

TheSRNcorrespondingto a givenUML statechartis com-
posedof thesubnetsintroducedin theprevioussubsections.
The subnetsareconnectedwith eachotherusinginterface
places.

The initial stateof theSRNis definedasfollows. If the
event queuecontainseventsin the initial statethen these
eventsarerepresentedby the initial markingof the appro-
priate placesof the event queuesubnet. The initial state
configurationis mappedto theSRNby insertingtokensinto
thecorrespondingplace-pairs.

5 An example

Our illustrativeexampleis amodelof thearchitectureof
a distributedobject-orientedsystem.The application(e.g.
an e-commerceapplicationor a hospitalpatientmonitor-
ing system)cannottoleratelong unavailability of the ser-
vice provided by the system. To achieve this goal active

object-level replicationis used. In the following presenta-
tion we focuson themodelof theRM. Themodelis com-
pletedby simplified modelsfor the infrastructureobjects
andtheserver replicas.

5.1 Model of the replication management

In our modeltheRM creates2 replicaswhentheserver
object group is constructed. In caseof a host failure the
replicadeployedonthathostis removedfrom thegroupand
a new oneis createdon a differenthost. We do not focus
on therepairof hosts,thuswe assumeherethatthenumber
of hostsis not limited. In caseof anobjectfailure theRM
initiates the recovery of the replica. If the recovery was
not successfulthenthereplicais removed.Whenfailureof
a just-recoveredreplica is reported,it is removed without
trying to recover again. The replicais alsoremovedwhen
thereare no other replicasworking. The servicesof the
replicatedobjectsareavailableas long as thereis at least
oneworking replica.

−/create

obj−fault

recovered/−

unrecoverable/remove

removed/create

obj−fault/remove

initialized/−

RECOVERING

OK SUSP.
T/−

WORKING

CREATING

REMOVING host−fault/remove

host−fault/remove

[!B.WORKING]/remove [B.WORKING]/recover

Figure 3. Statechart model of the redundancy
manager

Thestatechartmodelof theRM consistsof 2 concurrent,
identicalsub-machines(A andB) supervisingthe2 replicas.
Figure3 depictsthestatechartof onesub-machine(A). (We
simplifiedthisFigureby notdepictinga”time-out- retryon
differenthost”mechanism.)

When starting, the RM sendsevent create to the fac-
tory of thechosenhost. If it hasreceiveda messageabout
thesuccessfulconstruction(initialized) thenit considersthe
givenreplicaworking. In stateWorking two eventswill trig-
gertransitions.An eventhost-faultmovesthecomponentto
the stateRemoving sendingan event remove to the factory
of thegivenhost.An object-faultmovesthecomponentei-
ther to thesamestate(Removing) sendingremoveor to the
stateRecoveringsendingrecover to theobjectreplica.The
choicedependson the stateof theotherreplica(B). In the
stateRecovering the local fault notifier of the hostcanre-
port thesuccessfulrecoveryof theobject,in whichcasethe
componentmovesbackto a sub-stateof its stateWorking.



The componentleavesthis sub-statewhena timer hasex-
pired(thetimer is aseparateobject).If anotherobject-fault
occursbeforethis time, theeventremove is sentto thefac-
tory of the replica. The local fault notifier of thehostmay
report the objectbeingunrecoverableby sendingan event
unrecoverable to theRM. In this caseremove is sentto the
factoryof the replica. In thestateRemoving theRM waits
for an event removed from the factory, andafter receiving
it, it beginswith aneventcreateagain.

The RM is consideredto have a FIFO event queueof
length6, capableof accepting12 differentevents.
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To analyzethemodelwe transformedit to stochasticre-
ward nets(SRN) by using the patternsintroducedabove.
Theotherinfrastructureobjectsandthereplicaswererepre-
sentedby simplifiedSRNsassignedto themfrom a prede-
fined library, on thebasisof their role in theobjectmodel.
Someof themarepresentedin Figure4. The3 ellipseson
the top depict the places,wherethe SRN of the RM can
put tokensrepresentingthe correspondingevents. On the
bottomof the figure the 6 ellipsesdepict the input places
belongingto the eventqueueof the RM. Guardsin square
brackets refer to the marking of placesof concurrentob-
jects.

� Themodelof anobjectreplicais ontheright of thetop
row in thefigure. Failureof the replicais represented
by a timed transition(its parameteris the failure rate
estimatedby thedesigner).Whentheobjecthasfailed,
it canstarta recoveryphase,whenaneventrecover is
sentto it by theRM. After asuccessfulrecovery it can
resumework again.

� Thefactoryconstructsanddestructstheobjectreplica

acceptingeventscreateandremoveandsendingevents
initialized andremoved.

� The failure of a host is effectual only if an object
replicais deployedon it.

� The fault notifier collectsinformationaboutthe state
of theobjectreplicaandthehostwith somedelay, and
forwardstheseeventsto the RM. Its SRN modelwas
constructedfrom the UML statechartmodelby using
thetransformation.

5.2 Measurement results

Size of the model. TheSRN modelof the systemcon-
sistsof 109placesand147 transitions.The statespaceof
the underlyingMarkov-chain is 7,386 tangiblestates(i.e.
statesin which thesystemspendsnon-zerotime),andthere
are24,406transitionsamongthem.

Transient analysis. The analysisanswersthe question
whatis theprobabilityof having at leastone(or two) work-
ing object replicas. In the early phaseof the designusu-
ally timedSRNtransitionswith exponentialdistributionare
usedin themodelandthedesignerestimatestheparameters
of thedistributions. This assumptionenablesananalytical
solutionof themodel. Herewe assumedthe following pa-
rameters:

Modeledoccurrence Averagetimeunits

Hostfailure 10,000
Objectfailure 1,000
Recovery 10
Local fault detection 10
Globalfault detection 100
Stepof theRM 1

Figure5 presentsthe probability of one(two) working
replicas. The probability of having (on the long run, i.e.
in steady-state)at leastoneworking replica is 99.92%,of
having a selectedreplicaworking is 97,09%andof having
bothreplicasworking is 94,26%.

Comparison of RM strategies. A centralquestionof
theearlydesignis thecomparisonof differentarchitectural
solutions. The designercan reducethe designcycle by
comparingthe solutionsandelaboratingonly the bestfit-
ting one. In our exampleone parameterof the designis
the numberof object replicasrequiredto achieve the re-
quiredavailability. Otherinterestingparameteris the time
delayconsideringarecoveredobjectassuspicious.It is also
questionablewhetherthepolicy of consideringa recovered
objectsuspicious(andhandlinga subsequentfailurein this
interval in adifferentway) is meaningful.

Thecomparisonof systemswith differentnumberof ob-
ject replicasis quite easy, the requiredmodificationof the
dependabilitymodelis straightforward.
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However, the analysisof the time delayof considering
an object being suspiciousis more tricky. Assumingex-
ponentialdistribution of all timing activities, the analysis
will show that the availability of the systemis not sensi-
tive to theparameterof this time delay(asthelengthof the
interval andthe numberof failuresin this interval arenot
bound). Naturally, this result pointsout the ambiguityof
theassumptionof exponentialtiming, andnot the inappro-
priatenessof thefault handlingpolicy. Theanalysiscanbe
performedcorrectlyby usingSRNmodelswith determinis-
tic timedtransitions.

6 Conclusion

We showed in this paper that complex, application-
dependent replication strategies of distributed object-
orientedsystemscanbeanalyzedautomatically. Theanal-
ysis can be performedin an early designphasewhen the
structureof the systemandthe behavior of the replication
manageris defined.On theonehand,thehosts,infrastruc-
ture objectsand server object replicascan be represented
by simplified dependabilitysub-models(their detailedbe-
havior shouldnot bespecified).On theotherhand,thede-
signercanusethefull powerof UML statechartsto describe
the corepart of the redundancy management,i.e. the be-
havior of theRM. Thestatechartof theRM is transformed
to anSRNdependabilitymodelwhich is completedby the
othersub-modelsandanalyzedby off-the-shelftools. The
optimal replicationmanagementcan be selectedby mod-
eling alternative behaviors of the RM, executingthe auto-
maticmodeltransformationandthesubsequentdependabil-
ity analysis.
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