
Towards Dependability Modeling of FT-CORBA
Architectures

István Majzik? and Gábor Huszerl

Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar Tudósok krt. 2., H-1117 Budapest, Hungary

{majzik, huszerl}@mit.bme.hu
http://www.mit.bme.hu/

Abstract. The paper presents techniques to support the dependability
modeling and analysis of distributed object-oriented applications that are
designed according to the Fault Tolerant CORBA (FT-CORBA) speci-
fication. First the construction of a high-level dependability model is de-
scribed. It is based on the architecture of the application and allows the
analysis of the fault tolerance strategies and properties that are directly
supported by the standard infrastructure. Then a technique to construct
a refined dependability model is presented. It exploits the detailed be-
havioral model of the object responsible for replica maintenance. The
UML statechart of this object is transformed to a stochastic Petri net
that forms the core of the dependability model. In this way the designer
is allowed to utilize the full power of statecharts to construct models of
application-dependent replication strategies and recovery policies.

1 Introduction

The need for distributed object-oriented systems has led to the development
of middlewares that allow the interaction of objects regardless of their specific
platforms and implementation languages. The Common Object Request Bro-
ker Architecture (CORBA) is such a middleware standardized by the Object
Management Group (OMG). CORBA defines the basic mechanisms for remote
object invocation through the Object Request Broker (ORB).

Fault Tolerant CORBA (FT-CORBA) is a general framework for CORBA-
based systems that need fault tolerance (FT) [1]. Applications ranging from
small, embedded systems to wide area communication networks can utilize the
infrastructure defined in the standard and implemented by commercial CORBA
providers [2].

In FT-CORBA, single point of failures caused by single objects are avoided
by replicating the server objects on a group of hosts. Clients can invoke the

? This work has been partially supported by the Hungarian Ministry of Education
under contract FKFP 0103/2001.



methods of these replicated objects transparently. The creation and mainte-
nance of replicated objects is provided either by the predefined Fault Toler-
ance Infrastructure (infrastructure-controlled FT) or directly by the application
(application-controlled FT).

In the case of infrastructure-controlled FT, the availability of a group of repli-
cated objects is determined by a set of properties assigned to the infrastructure.
Among others, the initial number of replicas, the minimum number of replicas,
the fault monitoring interval and granularity are properties that have to be set
carefully to keep the costs at low level and at the same time provide the avail-
ability required by the application. In the case of application-controlled FT, the
designer of the application is fully responsible for the replica maintenance in-
cluding activation, recovery and reconfiguration. Application-specific strategies
can be elaborated to satisfy requirements that cannot be met by the common
implementation of the infrastructure.

The complexity of the standard and the lack of mechanized dependability
analysis are, among others, obstacles to the widespread use of FT-CORBA. The
designer needs support to select the property values of the infrastructure or
to construct optimal application-controlled FT strategies. The comparison of
solutions, the estimation of the effects of selected property values and the iden-
tification of dependability bottlenecks can be supported in the design phase by
the construction and analysis of dependability models. Stochastic dependability
models using Markov chains or Petri nets (PN) can provide numerical availabil-
ity figures as well as the sensitivity of system-level measures to the component
property values.

The paper presents techniques that support the dependability modeling and
analysis of FT-CORBA applications. First the creation of an architectural de-
pendability model in the form of a stochastic Petri net is described. It allows
the early analysis of infrastructure-controlled FT strategies. This approach is
a relatively straightforward adaptation of the methods proposed in previous
works [3]. Then a technique to construct a refined dependability model is pre-
sented that utilizes the detailed behavioral models of the objects responsible for
replica maintenance. The UML statechart models of the replication managers
are transformed to a stochastic Petri net that forms the core of the dependabil-
ity model. In this way a designer is allowed to utilize the full power of state-
charts (including event processing and state hierarchy) to construct models of
application-dependent replication strategies, repair and recovery policies. In this
way the same model is used both for model-based dependability analysis and for
(automatic) code generation.

The paper is structured as follows. Section 2 presents the basics of the FT-
CORBA specification, Section 3 gives an overview of interesting trends in de-
pendability modeling. Our approach is outlined in Section 4. The analysis of the
effects of the standard properties of the FT infrastructure and the construction of
the architectural dependability model are detailed in Section 5. The refinement
of this high-level dependability model is introduced in Section 6. The approach
is illustrated by examples in Section 7.



2 FT-CORBA

In FT-CORBA, fault tolerance is provided by entity redundancy (i.e. replication
of server objects on different hosts of a distributed system), fault detection and
error recovery. The fault model assumes object crash failures: in the case of an
error the server object will not provide any response to the clients and will not
return to normal operation until an explicit recovery. There is no protection
against commission faults and correlated faults.

The client objects should not be aware of the fact that the server objects
are replicated (replication transparency) and should not be aware of a failure or
recovery of a server replica (failure transparency). The transparent connection
between the client and the server replicas is the responsibility of the ORB of
the client. In FT-CORBA both time redundancy (retry) and spatial redundancy
(invoking alternative servers) are allowed. The Interoperable Object Group Ref-
erence (IOGR) used by the client ORB may contain either the profiles of the
server replicas or the profiles of gateways (that can be used e.g. to implement
ordered and reliable multicast in the case of active redundancy).

Server Replica 2

Fault
Detector

Fault

Notifier
Fault

Detector
FaultReplication Manager

ORB

Client Object

Host 1 Host 2

ORB

Host 3

ORB

Server Replica 1

Factory

Mechanism
Logging

Mechanism
Recovery

Mechanism
Recovery

Mechanism
Logging

Factory

is alivefault reports

notification

create object

Detector

Fig. 1. The architecture of the FT-CORBA redundancy structure

The redundant server objects belong to object groups, and several object
groups can be managed together in a fault tolerance domain (FTD). The fault



tolerance infrastructure (FTI) of a domain consists of several objects as follows
(Figure 1). The creation and maintenance of the object replicas is provided by
the replication manager (RM). The replica objects are continuously monitored
by local fault detectors that are deployed on each host. If an object fails then
the local fault detector reports the error to the fault notifier. The fault notifier
filters and analyzes the incoming error reports and sends a notification to the
RM and to other registered objects. The local fault detectors are monitored by
a global fault detector that detects when a local fault detector is not available
(e.g. if the host fails). In order to increase availability, the objects of the FTI
can be replicated as well.

In the case of the infrastructure-controlled style, it is the responsibility of the
RM to maintain the necessary number of replicas. When it receives a notification
about the crash of a replica, then it can initiate the recovery of that replica (by
utilizing the logging and recovery mechanisms implemented in the object group)
or it can remove the replica from the object group and create a new one (by
invoking a factory object that is deployed on the selected host). In the case of
application-controlled style, the application is responsible for the maintenance
of the replicas, by using the services offered by the fault detectors and notifiers,
factory objects and partially by the RM.

The reliability and availability of an object group (from the point of view of
a client) is determined by a set of properties associated with the group. These
properties are summarized in Table 1. They can be set when the object group
is created and they can be modified later at run-time. Default values can be
assigned to the FT domain or to the type of the server objects.

It has to be emphasized that FT-CORBA standardizes the interfaces and
responsibility of the FTI, but does not fix the internal implementation of the
mechanisms like logging, recovery and group communication.

3 Background

The literature of dependability evaluation presents several useful ideas that have
to be followed in our work.

It is commonly accepted that the results of dependability analysis are espe-
cially important in the early design phase when decisions among architectural
alternatives have to be made and dependability bottlenecks have to be found. In
this phase dependability evaluation based on analytical modeling deserves par-
ticular attention [4, 5]. The dependability model constructed in the early design
phase needs to be refined hierarchically as new design information and decisions
will be available [6].

In general-purpose architectures the separation of architectural and service
concerns is a valuable idea. The architectural failure modes can be mapped sepa-
rately to service degradation levels interesting to the end-users of the architecture
[7].

To allow automated dependability model generation instead of manual mod-
eling, the construction of the dependability model should be based on engineering



Table 1. Fault tolerance properties

Property name Values and role

ReplicationStyle STATELESS, WARM PASSIVE, COLD PASSIVE or
ACTIVE replication.

MembershipStyle Application controlled (MEMB APP CTRL) or in-
frastructure controlled (MEMB INF CTRL) addition
or removal of replicas.

ConsistencyStyle Application controlled (CONS APP CTRL) or infras-
tructure controlled (CONS INF CTRL) logging and
recovery of replicas.

FaultMonitoringStyle PUSH (“I am alive”) or PULL (“ping”) style moni-
toring of the replicas.

FaultMonitoringGranularity MEMB (each replica), LOC (each location) or
LOC AND TYPE (each replica type per location) is
monitored.

FaultMonitoringInterval Interval of time between successive monitoring re-
quests and the corresponding timeout.

Factories The list of objects that create or delete replicas.

InitialNumberReplicas Number of replicas when the group is created.

MinimumNumberReplicas The number of replicas that must exist to provide the
service.

CheckpointInterval Time period between successive checkpoints.

modeling languages and automatic model transformations [8]. Results described
in [3, 9] show that it is possible to augment CASE environments based on UML
with automatic tools that generate dependability models in the form of Petri
nets. The method of analyzing redundancy management in distributed object-
oriented systems is introduced in our workshop paper [10].

4 The Modeling Approach

4.1 Guidelines

First we construct an architecture-based dependability model that takes into
account the components and properties of the FTI without requiring the detailed
behavioral models of its objects and mechanisms. The standardized structure and
properties of the FTI allow us to construct the model and quantify the effects
of the alternative values and deployment choices.

Then we will support the refinement of the architectural dependability model
by focusing on the behavior of the objects of the FTI, especially the (application-
specific) replication manager. We elaborate how a refined model of the RM can
be constructed and integrated with the architectural model.

Since the RM contributes directly to maintenance and fault management,
i.e. it receives the error messages and decides on the recovery and/or creation



of new replicas, its behavior determines how the failures of replicas may lead to
a system failure. Accordingly, it influences the structure of the system-level de-
pendability model. (The analysis of the refined behavior of the components that
implement the application functions can contribute to the assignment of more
precise dependability attributes like failure rate and latency time.) In general,
the careful and purposive selection of the key components to be refined (like the
RM in our case) helps to avoid model complexity problems while still keeping
the faithfulness of the dependability model at a high level.

The dependability of an object group is modeled and analyzed from the point
of view of a client application. In this view the mapping from the failures of server
replicas (i.e. the architectural failure modes of the object group) to the client
(i.e. the service level) is performed by the FT-CORBA compliant ORB of the
client. This way the dependability model consists of 3 layers: the hardware layer
(hosts), the server replica layer (including maintenance by the FTI) and a layer
of mapping from replica failures to the service required by the client.

The dependability model is constructed on the basis of the UML model of
the FT-CORBA application. This decision is straightforward since UML can
be considered as the standard description language of object-oriented systems.
In the case of the architectural model, we utilize the package, class and object
diagrams. During the refinement, we process the statechart diagrams of the
selected objects.

The formalism of the dependability model is timed Petri nets (TPN), more
precisely Stochastic Reward Nets (SRN) [11]. Dependability measures can be
specified by using reward functions. We utilize the outstanding modeling power
(e.g. guards assigned to transitions) and the sophisticated solution tools available
[12, 13]. In certain cases (e.g. in the case of exponential transition firing times)
analytic solution is possible, otherwise simulation has to be performed.

4.2 Assumptions

We adopted the following assumptions during the construction of the depend-
ability model:

1. In the basic model, only crash failures of hosts and server replicas are taken
into account. (In Section 5.6, we will include extensions to resolve this re-
striction.) The effects of the failures of the underlying components of the
ORB, the internal logging/recovery mechanisms and group communication
should be expressed by the replica failure rates.

2. A crash failure of a host results in immediate crash failures of the objects
deployed on that host. The recovery of a replica is always successful except
for the case of a host failure.

3. In the case of the infrastructure objects of the FTI, it is assumed that there
is no software fault. They may crash due to host failures only. Moreover, we
simplify the dependability model by not modeling the maintenance of the
replicated FTI objects in detail (it is not specified in FT-CORBA, but may
follow the same ideas as that of the server replicas). An implicit recovery is
assumed if the host they are deployed on is in healthy state.



4. Conditions specific to the retry mechanism of the client (i.e. expiration time
of requests and request duration policy) are not covered. Similarly, continu-
ous heartbeating of the server objects by the clients is not modeled (since it
is quite rarely implemented due to high communication costs).

5. We assume that the property values of the object groups are not changed
at run-time. They have to be assigned to domains (as default) or to server
types (object groups).

4.3 UML modeling

The dependability model is constructed mechanically on the basis of the UML
model of the FT-CORBA application. To help in identifying the roles and prop-
erties of the objects of the FTI, we introduced the following conventions.

Each fault tolerance domain is grouped into a separate package stereotyped
as ¿FTDÀ. It contains the predefined objects of the FTI (each identified by
a stereotype like ¿replication managerÀ, ¿fault notifierÀ and ¿fault detec-
torÀ) and embedded packages (with stereotype ¿OGÀ) containing the objects
of the replica groups. The initial configuration is modeled by an object diagram.
Deployment relations can be modeled by a deployment diagram or by links with
stereotype ¿deployed onÀ.

In FT-CORBA, the standardized properties of a replica group are defined as
common types. The values are accessible through the PropertyManager interface
of the RM. Instead of relying on a particular implementation, we assign the
properties to the packages of the domain and/or group as UML tagged values.
The tag name is the same as the property name, and the value is one of the values
defined in the FT-CORBA specification (see Table 1). The values assigned to an
object group override the ones assigned to the FT domain. Additional parameters
that are not specified in the FT-CORBA will be introduced in the sequel when
the dependability submodels are described.

5 The Architectural Dependability Model

The clear interfaces and the separation of the tasks of the different components
of the FTI allow a straightforward architectural dependability modeling. The
modules (submodels) of the dependability model correspond to the objects (in-
cluding the objects of the FTI) and to the dependability-related processes like
fault activation, error propagation, fault management and recovery. The stan-
dard properties of FT-CORBA are mapped to the parameters of the submodels.

5.1 Server Replicas, Hosts and Infrastructure Objects

Each replica is represented by a subnet consisting of TPN places corresponding
to the possible states of the object from the point of view of the availability and
recoverability of its service. These places will also form the interface towards the
other subnets of the model. We distinguish five states (places) as Table 2 shows.



Table 2. States of a replica

State TPN place Role

Initial state I The replica was not created yet (but its factory
is capable to create it).

Primary replica HP The replica is primary and its service is avail-
able.

Backup replica HB The replica is backup and working correctly.

Recoverable failure SF The replica is crashed but it is recoverable.

Non-recoverable failure C The replica is crashed and it is not recoverable
(due to the failure of its host).

Each replica of the initial configuration (as derived from the UML object
and deployment diagrams) is represented by a separate subnet. In these subnets
either place HP or HB is marked. Additionally, a subnet is created for each host
that is capable of running a replica but does not have any replica deployed in
the initial configuration. (This information can be derived from the UML model
by recognizing the Factory objects corresponding to that replica type on a given
host.) In this case place I of the subnet is marked.

The deployment of primary and backup replicas depends on the Replication-
Style property. If its value is ACTIVE, then all replicas are primary ones, state
HB is unnecessary. If its value is COLD PASSIVE or WARM PASSIVE, there
is a single primary replica and the others are backup.

Hosts are represented by subnets consisting of two places: H (healthy state)
and C (crashed).

According to Assumption 3, the infrastructure objects of the FTI are modeled
in a simplified way: each object is represented by a pair of places H (healthy)
and C (crashed). The factory objects need not be modeled separately, since we
take into account that the creation of objects is not possible in the case of a host
failure.

5.2 Fault Activation and Error Propagation

Fault activation subnets are created for each host and each object. Due to As-
sumption 1, fault activation is modeled by a timed transition with a single param-
eter characterizing the (hardware or software) failure rate (UML tagged value
FR).

Deployment relations and links in the object model initiate error propagation.
The failure of a host results in an immediate failure of all objects deployed on
it (Assumption 2). The corresponding subnet is depicted in Fig. 2(a). Links
among objects of different types indicate communication that may result in
error propagation. Besides the direction of the propagation, which is the reverse
of the direction of the link, here another parameter, the propagation probability
(UML tagged value PP) is introduced. It is mapped to the probability of TPN
transitions of the subnet as shown in Fig. 2(b).



1−pp

CHP

HP SF

N

CHP, HB, I, SF

CH

O2

O1

R

no_prop

prop

(a)

(b)

pp

Fig. 2. Modeling error propagation from a host N to a replica R (a) and from object
O1 to object O2 (b). Interface places are depicted by dashed lines

In the case of infrastructure objects, failure (repair) of the host results in the
failure (healthiness, respectively) of the object (Assumption 3).

The repair of a host is an explicit (external) repair, which is not maintained
by the FTI. Accordingly, it is characterized by a repair rate (UML tagged value
RR), and represented in the model by a timed transition from place C to H.

5.3 Fault Management

Fault management includes fault detection (performed by the fault detectors)
and fault notification (performed by the fault notifiers). Fault handling depends
on the following conditions:

– Failure of a replica is detected only if the replica is monitored by a local
fault detector on its host. In FT-CORBA, it is possible that only represen-
tative replicas (one per host or one per type and host) are monitored. This
condition can be derived from the deployment diagram (in accordance with
the property FaultMonitoringGranularity).

– Failure of a host is detected only if the local fault detector of the host is
monitored by at least one global fault detector. (The host failure report is
to be generated by a global fault detector, since in the case of host failures
the local fault detectors will also fail.)

– The fault report triggers an action of the RM only if at least one fault notifier
and at least one RM are available.

These conditions can be combined to form a Boolean expression on the exis-
tence and healthiness (state H) of the mentioned infrastructure objects. Boolean
expressions can be represented in Petri nets in two ways. In simple nets, the sub-
nets corresponding to AND and OR gates can be constructed explicitly as shown
in [14]. In higher level nets, transitions can be assigned enabling conditions that
can refer to (simple functions over) markings.



5.4 Replica Maintenance

Replica maintenance includes recovery and reconfiguration of replicas. Here we
assume a common implementation, since the standard does not specify the mech-
anisms but implicitly suggests a “common practice” that is behind the interfaces.

In the architectural dependability model the tasks of replica maintenance
are modeled by subnets consisting of timed PN transitions. All of them are
conditional on the fault management, i.e. they are enabled in the TPN only if
the conditions described in the previous subsection hold.

In the case of passive replication, the subnets and the additional conditions
can be defined as follows:

– Recovery of a replica. If a software fault occurs, then the replica is recovered
and it becomes a backup. It is modeled by a timed transition from SF to
HB, its parameter is the recovery rate (UML tagged value RR).

– Activation of a new primary replica. This subnet is a timed transition from
HB to HP. The need for a new primary replica is represented by a sepa-
rate place activate primary, which is another input place of this transition.
Activation is required if a primary replica fails either due to a host failure
(propagation subnet from place HP to C) or due to a propagated software
failure from another object or due to a local software failure (subnets from
place HP to SF). Each of these three subnets inserts a token in place acti-
vate primary.

– Creation of a new backup replica. This subnet is a timed transition from
I to HB. The need for a new backup replica is represented by a separate
place create backup, which is input place of this transition. Creation of a
new backup is required if either a backup fails due to a host failure (subnet
from HB to C) or a backup will become primary and the previous primary
cannot be recovered to be a backup. This latter case results if the primary
fails due to a host failure (propagation subnet from state HP to C) or due
to a host failure right after a software failure (propagation subnet from SF
to C). Each of these subnets inserts a token in place create backup.
The time required to perform the fault handling is dominated by the property
FaultMonitoringInterval. Additional time required for recovery (replay of
logged messages, proportional with CheckpointInterval) and creation of a
replica (by a factory) can be estimated by the designer. Cold and warm
passive replication can be distinguished by the time required for recovery
and activation.

– Shutdown of all replicas. This subnet consists of two immediate transitions
from place HP to I and from HB to I. These transitions fire only if the number
of working replicas falls below MinimumNumberReplicas (in this case all
replicas will be shut down). It happens if the number of replicas being in
state C becomes higher than the number of hosts capable of running a replica
minus MinimumNumberReplicas. This enabling condition can be expressed
by a Boolean function on the markings of places C. If the transition from HP
to I (HB to I) fires then a token will be inserted in place activate primary



(create backup, respectively). These tokens will trigger the re-creation of the
object group as soon as the number of replicas in state C will decrease (due
to the repair of hosts). In order to avoid loops in the TPN, the creation of a
new backup is enabled only if the shutdown condition does not hold.

At this point, the composition of subnets can be summarized.
In the case of hosts and infrastructure objects, the composition of the sim-

plified subnets is presented in Fig. 3.

host:

prop. of failure

prop. of repair

λ =FR

=RRλ
C2H2

C1H1

C1H1

failure

repair

infrastructure

object:

host:

Fig. 3. Subnets corresponding to a host (H1, C1) and an infrastructure object (H2,
C2)

The composition of the subnets corresponding to server replicas depends
on the replication style. In the case of passive replication (COLD PASSIVE or
WARM PASSIVE ReplicationStyle), the structure of the composition is shown
in Table 3. The model in case of active replication (ACTIVE ReplicationStyle)
can be derived from this one by taking into account that all replicas are primary
ones. The structure of the model is presented in Fig. 4.

5.5 Client Failover

The client failover strategy determines the behavior of the client ORB when it
does not receive the requested service. The ORB can retry the call or invoke
alternative servers. FT-CORBA specifies that the client ORB must not fail until
it has tried to reach the server object replicas through all profiles available in the
IOGR. From the point of view of the client, several mechanisms of FT-CORBA
are transparent: Transient failures are tolerated by the retry mechanism; the
ORBs of the clients and servers provide mechanism to update the IOGR and
thus discover newly created or activated replicas.

The client failover subnet maps the failures in the object group to the failure
of the service for the client. According to the observations above, the condition
of the failure of the service can be expressed by a simple Boolean expression:
The service fails if there is no available (i.e. healthy) primary server replica.
Accordingly, the failover subnet is a PN representation of a fault tree consisting
of a single AND gate. As soon as a primary server replica becomes healthy, the



Table 3. Composition of subnets (passive replication)

Subnet From To Firing conditions Action (token to)

Recovery SF HB Fault management

Activation HB HP Fault management,
activate primary

Creation I HB Fault management,
create backup,
no shutdown condition

Shutdown HP I Fault management, activate primary
min. number of replicas

Shutdown HB I Fault management, create backup
min. number of replicas

Propagation HP C Host failure activate primary,
create backup

Propagation HB C Host failure create backup

Propagation SF C Host failure create backup

Propagation I C Host failure

SW failure HP SF activate primary

Propagation HP SF Object failure activate primary

Propagation C I Host repair

client service will be correct. This effect is modeled by the dual counterpart of the
above fault tree bounded with the original one [14]. The service is represented
by a pair of places OGH and OGC, the server replicas are interfaced to the fault
tree through places HP and the other states (that are equivalent from the point
of view of the failover condition).

5.6 Possible Extensions

The FTI is specified to handle crash failures only. Commission faults (when
an object generates incorrect results) are also interesting for the designer. An
anticipated extension of FT-CORBA is the ACTIVE WITH VOTING Replica-
tionStyle that can protect against these faults. To cover commission faults in
the dependability model, the following extensions are necessary: An additional
failure state CF has to be inserted in the submodels of the replicas. This state is
reached from state HP by a timed transition parameterized with a distinguished
commission failure rate. This state is not detected by the FTI (until it changes
to crash failure), but it leads to a failure of the service. The failover subnet has
to be modified accordingly.

Error latency can be modeled by distinguishing an error state (in stateful
hosts and objects) that may lead to the failure state by a timed transition.
Transient faults can be modeled by implicit repair (transition from the error state
to the healthy state.) The subnets that cover these extensions are practically the
same as the subnets introduced in [3].



Prop. host

failure

Prop. obj.

failure

Local sw.

Fault

manag.

failure

Prop. host

Prop. host

repair
I

HP

SF

C

Min. nr.

of replica

of replica

Shutdown

of replica

Creation replica

manag.

Fault

Fault

manag.

create_replica

Recovery

failure

Prop. host

failure

Fig. 4. Composition of subnets for active replication (conditions are drawn by dashed
line)

6 Refinement of the Architectural Dependability Model

The subnets of replica maintenance presented in the previous section assume a
typical, common behavior of the RM. Dependability modeling can support the
evaluation of specialized maintenance when the vendor of the FTI implements
a specific strategy in the RM or the designer implements application-controlled
maintenance (by setting MEMB APP CTRL and CONS APP CTRL style and
by replacing the RM with her own implementation).

In both cases, the detailed behavior of the (new) RM has to be made available
in the form of a UML statechart diagram. This statechart model is processed
in order to replace the initial subnets presented in Section 5.4 with the specific
ones.

There is no doubt that the behavior of the RM has crucial effects on the
availability of the object group, and the RM has the most sophisticated behavior
in the FTI. To be able to model its activities, it seems to be mandatory to support
the following features of UML statecharts:

– State hierarchy. An RM handles several object groups in an FTD. State hi-
erarchy including concurrent substates is a natural way to model the main-
tenance of independent groups.

– Event processing. In the distributed environment of an FT-CORBA appli-
cation, the failure reports from fault detectors and the messages of the RM
towards the factories and replicas manifest themselves as events. The tempo-
ral relations of these events determine when a faulty replica is recovered, how



Table 4. Dependability-related events in an FT-CORBA architecture

Event From To Handler Action/meaning

ci RM Factory create object() Create a replica

di RM Factory remove object() Remove a replica

ri RM Replica set state() Initiate recovery

pi RM RM set primary member() Set the primary replica

si Fault notifier RM push structured event() Replica failed

fi Fault notifier RM push structured event() Host failed

hi Fault notifier RM push structured event() Host repaired

many replicas are maintained, where a new replica is created, what is the
condition of object removal etc. The basic events and the standard handler
functions of FT-CORBA are listed in Table 4.

We have elaborated the model transformation from UML statecharts to Petri
nets with timing and stochastic extensions [15]. This transformation will be
utilized to generate the specific subnets of replica maintenance. Note that the
statechart model of the RM describes only dependability-related behavior, no
application-specific functional details are included. Thus, there is no need to
filter out irrelevant states or transitions.

In the following, we shortly introduce the model transformation and then
define how the subnet (generated automatically from the statechart of the RM)
can be integrated with the other subnets.

6.1 From UML Statecharts to Stochastic Petri Nets

Our transformation supports UML statecharts including event processing and
state hierarchy. The following restrictions apply: Actions generate events only,
events do not have parameters, and history states are not allowed. Since the
transformation was detailed in [15], we summarize only the properties that are
important from the point of view of the current application.

The event queue that connects the state machine with its environment can
be parameterized to be a FIFO queue or a set (non-deterministic selection of
events). Both implementations use the same TPN interface. Each type of event
is represented by a separate place. Tokens representing events from the external
subnets are inserted in these places. Similarly, the output tokens (events from
the RM) are inserted in another set of places.

The semantics of timed transitions is again parameterized: The designer is
able to choose among three implementations regarding the policy of transition
selection and firing. The stochastic parameters of transitions correspond to the
tagged values associated with the UML transitions. In this way time delay or
duration of actions can be modeled.

The behavior of the resulting TPN satisfies the requirements defined in the
UML semantics. The priority relations, the step semantics and the evaluation



of guard conditions are all taken into account and represented by specific con-
structions in the TPN. By using the transformation, the statechart model of the
RM can be mapped to a TPN (SRN) representation with event processing and
stochastic parameters corresponding to the UML model.

6.2 Composition of the Subnets

The subnet generated from the statechart model of the RM is integrated with
the other subnets of the architectural dependability model by utilizing the event
processing mechanism. It means that the state changes of the replicas are “trans-
lated” to events. However, to simplify the model, the relatively simple fault moni-
toring (is alive () calls) and the communication between fault detectors and fault
notifiers (push structured fault() calls) are not mapped to events. Instead, the
logic conditions of event transmission are represented in the model.

In the architectural dependability model, the state changes and the mainte-
nance subnets were integrated by using local conditions and two interface places.
Instead of these places, now the places corresponding to the events will be used.
The propagation subnets (see Table 3 and Fig. 4) remain unchanged. Tokens
representing the events will be generated and processed as follows:

– Recoverable failure (transition to state SF) of replica i results in an event si

if the replica is monitored by a healthy local fault detector, and at least one
of the fault notifiers is healthy.

– Failure (transition to state C) of host j results in an event fj if at least one of
the global fault detectors is healthy, and one of the fault notifiers is healthy.
The repair of the host results in event hj on the same conditions.

– Recovery of a replica, activation of a new primary replica and creation
of a new backup replica are enabled if the corresponding event from the
RM is present (event ri, pi and ci, respectively). The interface places ac-
tivate primary and create backup are replaced by the places corresponding
to events pi and ci for each replica. The conditions of fault handling are
not modeled here (since they are involved in the generation of the failure re-
ports). The assumption that replicas are created/activated immediately on a
randomly selected host is resolved; the location, time and order of occurrence
now depends on the RM.

– The subnet representing the shutdown of replica i is replaced by a simple im-
mediate transition that is enabled when a corresponding event di is present.
Using the above mentioned input events, it is the responsibility of the RM
to keep track of the changes in the system and account for MinimumNum-
berReplicas.

7 Examples

We present two simple examples just to illustrate the kind of analysis that can
be performed.



The first example is an active redundant system that consists of 5 hosts (all
capable of running a replica) and initially 3 primary replicas. If a replica fails
then a new one is created on a randomly selected host that has no active replica.

The architectural dependability model of the system was constructed (Fig. 5).
Various parameter settings and the corresponding steady state unavailability
(i.e. 1-Availability) of the service of the object group are presented in Table 5.
The FaultMonitoringGranularity was varied by changing the number of hosts on
which the replica is monitored, assuming a static deployment of fault detectors.

r4r3r2r1 r5

t6t5t4t3t2t1

OGF
1

OGH

3
create_replica

Fig. 5. Structure of the example network (the five subnets correspond to the replicas)

This dependability model was refined by replacing the replica maintenance
subnets by a subnet which was generated from the UML statechart model of a
non-standard RM implementing a “lazy” recovery strategy. This RM initiates
the creation of a new replica as soon as a hardware failure is detected, but delays
the recovery from software faults until the failures of at least 2 (or 3) replicas are
reported by local fault detectors. In this case the recovery of all failed replicas
is performed in parallel.

The core of the UML statechart model of the RM is sketched in Fig. 6. Note
that the first 5 parallel regions of the statechart keep track of the states of the
hosts. The presentation of the sixth region (the maintenance control) is simplified
in the Figure by parameterizing the transitions. Here 1 ≤ i, j ≤ 5, i 6= j. The
analysis of the dependability model showed that the strategy is effective only if
InitialNumberReplicas>3.

One of the lessons learnt during these experiments is the following. The
statechart-based modeling of the behavior of an RM is cumbersome if we apply
the restrictions that events can not have parameters and internal variables are
not allowed in the UML model. (Thus, the only way to keep track of the changes



Table 5. Analysis results. Parameter values are set as follows: replica FR=1, RR=100;
host FR=0.1 and RR=10, all distributions are exponential. Unavailability is the mean
number of tokens in OGF

InitialNumberReplicas 1 2 3 4

Unavailability 9.89E-3 1.23E-4 1.25E-6 <1.0E-8

FaultMonitoringInterval 0.01 0.02 0.1 1

Unavailability 1.25E-6 6.81E-6 7.62E-4 1.07E-1

FaultMonitoringGranularity 1 2 3 4

Unavailability 1.96E-2 3.79E-4 8.45E-6 1.18E-6

...

j

s i

ir rjs j / ;

H1

c1

f1

h1

f1

A1

C1
c2

f2

h2

f2

A2

C2

H2

f3

c3

h3

f3

A3

C3

H3

f4

c4

h4

f4

A4

C4

H4

f5

c5

h5

f5

A5

C5

H5

c jif ] /[
iR

Rall

H

Fig. 6. Statechart of the RM with delayed recovery

in the controlled system is the use of guards referring to the active states of
parallel regions.) The extension of the transformation from UML statecharts to
Petri nets without these restrictions is a matter of our future work.

8 Conclusion

We showed in this paper that the design of FT-CORBA applications can be
supported by mechanical dependability analysis. In the early stage of the devel-
opment an architectural dependability model can be constructed that is based
on the standard properties and mechanisms of FT-CORBA. In this stage, the
designer is able to evaluate the effects of the architectural choices on the sys-
tem availability. We showed that this model can be refined in subsequent design
phases when the detailed behavior (in the form of UML statecharts) of the ob-
jects responsible for replica maintenance is available. The designer is able to
“try out” various replica maintenance strategies, find design errors and select
the most optimal strategy from the point of view of system availability. Com-
parison of solutions can be effectively supported, while numerical results have
to be validated in subsequent design phases.

The model transformation from UML statecharts to SRN is a powerful tech-
nique to support the hierarchical refinement of the initial dependability model. It
has an additional advantage that the dependability will be evaluated on the basis
of the same model that will be used for the (automatic) code generation. How-



ever, the complete transformation of a detailed statechart model of an entire
application is impracticable. To avoid model complexity problems, only those
objects should be selected that contribute to the core of the replication, mem-
bership, consistency and fault management mechanisms. Applications based on
FT-CORBA are good candidates for this kind of hierarchical analysis since the
standard defines the responsibilities of the objects and provides clear interfaces
among them.

References

1. Object Management Group: Fault tolerant CORBA. CORBA 2.6, Chapter 25
formal/01-12-63, OMG Technical Committee, http://www.omg.org (2001)

2. Eternal Systems Inc.: Eternal embedded edition. Product description,
http://www.eternal-systems.com/products (2001)

3. Bondavalli, A., Majzik, I., Mura, I.: Automated dependability analysis of UML
designs. In: Proc. 2nd IEEE Int. Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’99), Saint Malo, France (1999) 139–144.

4. Popstojanova, K.G., Trivedi, K.S.: Architecture based software reliability. In: Proc.
Int. Conf. on Appplied Stochastic System Modeling, Kyoto, Japan. (2000)

5. Nelli, M., Bondavalli, A., Simoncini, L.: Dependability modelling and analysis of
complex control systems: An application to railway interlocking. In: Proc. EDCC-2,
Springer Verlag (1996) 93–110

6. Betous-Almeida, C., Kanoun, K.: Dependability evaluation - From functional to
structural modeling. In: Proc. SAFECOMP 2001, Springer Verlag (2001) 239–249

7. Rabah, M., Kanoun, K.: Dependability evaluation of a distributed shared memory
multiprocessor system. In: Proc. EDCC-3, Springer Verlag (1999) 42–59

8. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.: De-
pendability analysis in the early phases of UML based system design. International
Journal of Computer Systems - Science & Engineering 16 (2001) 265–275

9. Bondavalli, A., Majzik, I., Mura, I.: Automatic dependability analysis for sup-
porting design decisions in UML. In: Proc. Fourth IEEE Int. Symposium on High
Assurance Systems Engineering (HASE’99). (1999) 64–71.

10. Huszerl, G., Majzik, I.: Modeling and analysis of redundancy management in dis-
tributed object-oriented systems by using UML statecharts. In: Proc. Workshop on
Software Process and Product Improvement, the 27th EUROMICRO Conference,
Warsaw, Poland. (2001) 200–207

11. Muppala, J.K., Ciardo, G., Trivedi, K.S.: Stochastic reward nets for reliability
prediction. Comm. in Reliability, Maintainability and Serviceability 1 (1994) 9–20

12. Ciardo, G., Muppala, J., Trivedi, K.S.: SPNP - stochastic Petri net package. In:
Proc. IEEE 3rd Int. Workshop on Petri Nets and Performance Models (PNPM’89),
Kyoto, Japan (1989) 142–151.

13. Allmaier, S., Dalibor, S.: Panda - Petri net ANalysis and Design Assistant. In:
Tools Descriptions, 9th Int. Conf. on Modeling Techniques and Tools for Computer
Performance Evaluation (Tools’97), St. Malo, France (1997)

14. Malhotra, M., Trivedi, K.S.: Dependability modeling using Petri-nets. IEEE Trans-
actions on Reliability 44 (1995) 428–440

15. Huszerl, G., Majzik, I.: Quantitative analysis of dependability critical systems
based on UML statechart models. In: Proc. Fifth IEEE Int. Symposium on High
Assurance Systems Engineering (HASE’2000). (2000) 83–92


