
����������	
�	����������������	����
	����������������

Ádám Darvas and István Majzik Balázs Benyó
Budapest University of Technology and Economics,

Dept. of Measurement and Information Systems
Széchenyi István University,
Department of Informatics

Magyar Tudósok krt. 2.
H-1117 Budapest, Hungary

Egyetem tér 1.
��������	
������
	

da211@hszk.bme.hu, majzik@mit.bme.hu benyo@szif.hu

���������� ����� ����	� �	���
��� �� ������ �	� ��	�������
� �� ���� ��������	�
��������
�	������
�������������
���	�������������������������
���
�
�
��	���	�� �
�� �����	�� ���
�
���� ���� ������ ������ ���� ��������
��	�������
� �� ������	��� 	����	���
��� ��	���� ����� �	�
��	����
� �
�
���������
� �� �
� ������������� ����� ������	�� ���� �	�
��	����
� ���� ����
���
� �������
���� �
�� ���� ������ ���� �������� ������������� �
� ���� �����

��	�������
����
� �
��		�����
�	���	����������	������������ �������������� ���
��	�������
��������
���
�	�������������������
�����������������

�� ��������� ��

The test and verification are essential phases of any system development. With the
enlargement of the size and complexity of the system under development the importance of
these tasks increases.

Traditionally the system development is divided into �
������� � �����
 and
�������
����
 phases regardless of the development process applied (Fig. 1).

The system development process is typically accompanied by the occurrence of design
and implementation faults. To avoid these faults the implementation phase is followed by a
���� phase. The test phase is intended to recover the differences between the �����
 and the
�������
����������, i.e. to find the faults that arise in the implementation phase.

The activities of the test phase include ��������������
���
 and �����������������
. The
test phase can substantially be accelerated by the automation of these activities. The
automation of test case execution on the basis of the design is often supported by CASE
tools [1]. The automated definition of the test cases could be implemented only in the case
when the design itself is described by a formal model [3,4]. These automated tools are
essential in the development of large systems since they can efficiently accelerate the
execution of the time-consuming testing.

The faults of implementation can be discovered by the test phase, however, the faults of
the design may remain undiscovered. In order to recognize these faults, the development
process has to be completed by the �����
� ��	�������
 phase. The goal of design
verification is to find the faults in the design itself. The fault may be instantiated as an
�
�
�����
�������
 or as an �
��������
��������������
����������	���
���	����	���
��. In
the case when the requirements are not defined formally, the equivalence of the
requirements and the design can be verified only manually.

In the modern system development process (supported by CASE tools) the design is
generated in the form of a formal description. In this case the checking of the design can be
supported by automated tools.

5HTXLUHPHQWV
(e.g. description of

functions)

'HVLJQ

(e.g. statechart
model)

,PSOHPHQWHG
6\VWHP

(e.g. C code)

���$QDO\VLV�	�'HVLJQ

���,PSOHPHQWDWLRQ

���'HVLJQ
9HULILFDWLRQ

���7HVW

PDQXDO

YHULILFDWLRQ

PDQXDO�WHVW�FDVH

GHYHORSPHQW

DXWRPDWHG

YHULILFDWLRQ

DXWRPDWHG�WHVW

FDVH�GHYHORSPHQW

Figure 1: The relationship of the different phases of system development

The goal of this research was to develop a method for verification of designs described
in the form of UML statechart diagrams.

Statechart diagrams were selected because statecharts are a widely used modeling
language of embedded systems containing digital hardware and software components.
Statechart diagrams are used traditionally in the field of embedded system design and in the
process automation [5,2]. Also the designers of communication systems use statecharts
extensively (e.g. in protocol design) for the description of the behavior of communicating
objects.

!� ����"��#�� $#� % ��� ��� �%� #"�#��#�� �&��#"�� ���#�� ��� "��#'
�����%��"�� ��

Concurrency and distribution are common principles in embedded system design. In these
systems multiple, potentially independent stimuli result in concurrent threads of execution.
These threads can be deployed on multiple processors (microcontrollers, intelligent sensors
and actuators). Concurrency and distribution are also used to increase performance and
controllability.

Nowadays the object-oriented (OO) paradigm is becoming more and more popular in
concurrent system design. Active objects represent (independent) threads of control,
passive objects represent data structures used in the computation. In embedded systems, the
objects (especially objects modeling hardware components or interacting with the
environment) communicate through signals. In OO terms, a state transition in an object
results in a send action, which raises a signal. Another object, through an event queue,
receives the signal which triggers a state transition (and thus possible other actions).

Designing concurrent OO systems usually necessitates a thorough verification of
concurrency control, i.e. synchronization and communication. Most problems with
concurrent software arise from the coordination of interactions, which may result in
deadlocks or other unwanted (hazardous) states. As the complexity of the systems
increases, the manual verification of these properties becomes more and more error prone.
Automatic support is required to help the designer in this task.

The semi-formal design languages used in OO system design open a new possibility of
automated verification. Diagrams of UML, the standard description language of OO
systems, can be transformed to mathematical models amenable to formal analysis [6].

We have elaborated and implemented a tool set which is able to transform UML models
of concurrent OO systems to the input format of the model checker SPIN [7]. SPIN is a
widely used tool for analyzing the logical consistency of distributed systems. We selected
this tool since its formal modeling language called Promela (Process Meta Language)
allows for the creation of concurrent processes (threads of control), and communication can
be directly modeled by using both synchronous and asynchronous (i.e. buffered) channels.
Using SPIN, the designer can check the concurrency control in his design relatively easily.
We will present the possibilities in Section 4. Note that timing-related properties of the
design (e.g. deadlines, time required for processing) can not be checked by SPIN.

!��� �(#��#� ��'���� ������#)�#�� ���

The behavioral diagrams of UML, i.e. the statechart diagrams are transformed to Promela
in two steps.

In the first step, each statechart diagram is transformed to a semantically equivalent
formal model called Extended Hierarchical Automata (EHA). EHA can be considered as a
formal syntax of UML statecharts, describing the statechart elements in a concise format,
resolving the problem of inter-level and composite transitions by using special labels (Fig.
2).

S23

S25

S24

S21

S22

S1

S2
S1 S2

S21 S22 S23 S24

S25

Figure 2: An UML statechart and the structure of the corresponding EHA (the concurrent regions in the
refinement of state S2 are represented by two separate sequential automata in the EHA)

Since UML is a semi-formal notation, the definition of a formal semantics of UML
statecharts is necessary to enable automatic formal verification. The formal operational
semantics of the EHA representation is defined in the form of Kripke structures in [8]. The
rules used to map UML statecharts to EHA are introduced in the same paper.

In the next step, based on the formal operational semantics, the EHA is transformed to
Promela. The rules of this step were introduced and formally proved in [9].

These results allowed us to verify a single statechart (i.e. the behavior of a single object)
only. We extended this approach to cover multiple statecharts, i.e. multiple objects of a
distributed system, communicating through event queues. Moreover, in our system objects
can be generated dynamically (however, the number of the objects has to be limited by the
designer), and the deployment (i.e. event queue) of an object can be changed dynamically.

The UML semantics introduces the notion of event queue and event dispatcher;
however, it does not describe how to specify them in the model. Accordingly, we had to
define a set of modeling conventions:

♦ Event queues are modeled by instances of stereotyped UML classes with attributes
defining the size of the queue and the policy of the dispatcher (FIFO or set).

♦ Objects belonging to the same event queue are grouped in packages.
These extensions enable a flexible configuration of objects according to the deployment

and the needs of the operating system/run-time environment targeted by the design.
According to the conventions, in the formal model each EHA is assigned to an event queue
belonging to the package of the corresponding object. Targets of send actions are specified
by named objects, send actions without target result in broadcast events.

!�!� �"*'#"#���� ����%��(#�"��#'������%��"�� ��

The implementation follows the two steps described in the theoretical basis of the
transformation (Fig. 3).

UML statechart
(XMI)

EHA format
(XML)

Promela code

VIATRA rules Java application

��� ���'
���#

+��
����
���',

�-�

+"��#'

�(#�.#�,

Figure 3: Implementation of the model transformation

Since both UML and EHA are (mainly) graphical languages, the transformation from
UML statecharts to EHA was implemented by the graph transformation based tool set
VIATRA [10]. The UML model elements are exported from the CASE tool in XML format
(standard XMI) and graph transformation rules generate the model elements of the EHA:
♦ The structure of an EHA corresponding to an object is determined by the statechart of

the parent class of that object.
♦ An EHA is composed of simple sequential automata related by a state refinement

function, as determined by the state refinement relation in the UML statechart (Fig. 2).
♦ UML states are mapped to EHA states directly.
♦ Each UML transition is mapped to a unique transition in the automaton that contains all

the source and target states. In case of compound and inter-level transitions, the original
source and target states are included in the label of the transition.

♦ Labels of transitions contain the original source and target, the trigger event, the guard
and the action of the transition.

♦ Targets of send actions are linked to event queues.
In the second step, the XML representation of the EHA is post-processed by a Java

application that generates the Promela code [11]. Each EHA (i.e. object) is represented by a
separate Promela process that expands the tree-like structure of the state refinement. The
extensions of the basic approach described in [9] can be summarized as follows:
♦ Each event queue is modeled by a Promela data structure: A set is implemented by a set

of bit variables, a FIFO queue is represented by a channel. The dispatcher is a separate
Promela process that forwards the events to the target processes.

♦ The ordering of events in FIFO queues is sensitive to the ordering of the actions that
generate them. The non-deterministic execution order of concurrent actions is modeled
by concurrent sub-processes.

♦ Limited number of object creations (calls to constructors) is modeled by starting new
Promela processes.

♦ System reconfiguration (i.e. changing the deployment of an object by a distinguished
action of another object) is modeled by dynamically linking the moved object to another
event dispatcher.
The extensions implemented in the transformation enable the verification of

reconfigurable distributed object-oriented designs.

/� �(#� ��#���*��������''#��#)�"*'#

A real example has been selected to demonstrate the application of the design verification
method. The system under development is designed to control an ASI Master card [4]. The
ASI is a field bus standard used in process automation. The software was designed to
control the Master node of the field bus network.

ISRBuffer0 ISRBuffer1 ISRBuffer3ISRBuffer2

ResetInterruptReceivePointer

ResetInterruptReceivePointer

Interrupt_GeneralError_NoRes / PointerIs3_GeneralError2

Interrupt_FatalError_NoRes / PointerIs3_FatalError2

Interrupt_NoError_NoRes / PointerIs3_NoError2

Interrupt_AnyError_NoRes / PointerIs3_AnyError2

Interrupt_AnyError_NoRes / PointerIs1_AnyError0

Interrupt_FatalError_NoRes / PointerIs1_FatalError0

Interrupt_GeneralError_NoRes / PointerIs1_GeneralError0

Interrupt_NoError_NoRes / PointerIs1_NoError0

ResetInterruptReceivePointer

Interrupt_AnyError_NoRes / PointerIs0_AnyError3

Interrupt_FatalError_NoRes / PointerIs0_FatalError3

Interrupt_GeneralError_NoRes / PointerIs0_GeneralError3

Interrupt_NoError_NoRes / PointerIs0_NoError3

ResetInterruptReceivePointer

Interrupt_GeneralError_NoRes / PointerIs2_GeneralError1

Interrupt_AnyError_NoRes / PointerIs2_AnyError1

Interrupt_FatalError_NoRes / PointerIs2_FatalError1

Interrupt_NoError_NoRes / PointerIs2_NoError1

Figure 4: Statechart of the interrupt controller of the ASI Master

The ASI Master Firmware is an interrupt driven system. In the example, the behavior of
its interrupt controller is verified (together with the behavior of its environment that
generates the signals). The statechart diagram of the core behavior of the interrupt
controller is presented in Fig. 4.

,7

(UURU

15,53

,7�(UURU

,QWHUUXSW

$Q\(UURU

1R5HVHW,QWHUUXSW5HFHLY H3RLQWHU

(UURU�15,53

,7�15,53

1R5HVHW,QWHUUXSW5HFHLY H3RLQWHU

, QWHUUXSW

$Q\(UURU

,QWHUUXSW

$Q\(UURU

1R5HVHW,QWHUUXSW5HFHLYH3RLQWHU

(QG

$Q\ (UURU�A,65B(Y HQW4XHXH�,QWHUUXSWB$Q\ (UURUB1R5HV

,QWHUUXSW�A,65B(Y HQW4XHXH�,QWHUUXSWB$Q\ (UURUB1R5HV

1R5HVHW,QWHUUXSW5HFHLY H3RLQWHU�A,65B(Y HQW4XHXH�,QWHUUXSWB$Q\ (UURUB1R5HV

Figure 5: Statechart diagram of the event generation

The state transitions are initiated by one or more events and could result in the
generation of another events. The dependencies are modeled by statechart diagrams as well.
In Fig. 5 an example of this conditional event generation is presented. The condition of the
generation of the event !
��		���"#
�$			"%&�� is the occurrence of the following three
events: %&����!
��		���&������'�
��	, #
�$, and !
��		���.

The model of the full system consists of 7 statechart diagrams containing 39 states and
82 transitions.

0� �#� 1��$#� % ��� ��

0��� �(#�. �1�����#���#��������#��(�� ' �&�*��*#�� #��2 �(��-�

There are two ways of using SPIN for verification: the system model specified in Promela
can be simulated or the fulfillment of formalized requirements can be examined.

A possible execution of the system can be examined during simulation by tracking the
communication between the processes as well as the status of variables and channels.

During verification SPIN checks automatically for deadlocks and unexecutable code.
Further requirements can be expressed by inserting special labels in the Promela code of the
system.

Valid end states can be marked with the �
� label. That is necessary for two reasons.
From one hand if the examined model reaches an end state (i.e. there is no further state
transition that is enabled) the tool has to be able to decide whether it means deadlock or it is
a proper end state of the system. Labeling a state with the �
� label tells the tool that it is
the latter case. From the other hand, the examined model may wait in a cycle, so it does not
reach an end state. Again, that may be a failure or the intended functionality of the system
that should be distinguished. Labeling one of the states of the cycle indicates that it is not
an error.
'	�	��� and ������ labels are used to establish the validity of cycles as well. An

infinite cycle is valid if it passes through one or more states labeled with the �	�	��� label.
The ������ label means just the opposite: a state with the ������ label must not be passed
infinitely often.

Using these labels, the examined system can be analyzed for correctness violations.
Moreover, temporal properties can be checked by the special
���	 process which runs
parallel (synchronized) with the other processes and may match any system state (but it is
not allowed to modify them). The termination of the
���	 process expresses undesirable or
illegal behavior, moreover, the code of this process may also contain labels.

To compose the special behavioral requirements the designer does not need to have
knowledge about the labels or the
���	 process as SPIN provides automatic translation
from Linear Temporal Logic (LTL) formulae into the
���	 process. An LTL formula may
contain usual Boolean operators and predicates as well as the following temporal operators:
♦ [] P: „P is ������ true during execution”,
♦ <>P: „P will be ���
������ true during execution”,
♦ P1 U P2: „P1 is true �
��� P2 evaluates true”.

The verification is performed by exhaustive state space search, that is SPIN examines
every possible sequence of execution. If any kind of behavioral violation occurs (i.e.
deadlock, terminated
���	 process etc.) SPIN stops the verification and starts to run a
simulation showing the violating execution.

0�!� �#� % ��� ����#��'����%��(#�#)�"*'#

The transformation of the UML model of the example required less than 8 seconds on a
common personal computer (300MHz Pentium-II processor, Windows NT 4.0 operating
system, 128 Mbytes of RAM). The resulting Promela code contains 7 processes (one for
each statechart), in addition to the event dispatcher and the initialization. The length of the
Promela code is 416 lines.

The first verification step targeted the checking of unreachable code resulting from
design errors. Among others, inconsistent use of the names of trigger events and send
actions could be checked in this way. A typo in the event name that resulted in the
unreachability of the state !(&)����	* was discovered in less than 2 seconds by an
exhaustive search covering 295 states and 306 transitions. The system entered an infinite
cycle.

The results of the counter-examples are available as message sequence charts. In Fig. 6
a small fragment of the MSC illustrating the startup of the system is presented (the
dispatcher forwards the first event to the processes).

Figure 6: Startup of the system as presented by the MSC in SPIN

The verification of invalid end states proved that there is no deadlock in the system.
In the next phase of verification, the reachability of some selected state configurations

(i.e. combination of active states in separate components) was initiated. The reachability of
state combinations can be expressed in linear temporal logic using the <> (eventually)
operator in SPIN and translating the expression to a
���	 process automatically.

3� ����'�� ���

The paper presented an automated verification process of embedded systems designed by
using UML statechart diagrams. The method extends the previous results and allows the
analysis of distributed (and even reconfigurable) object-oriented systems. The verification
is performed by an automatic model transformation from the UML models to a widely used
verification tool. The transformation preserves the behavioral properties of the system.

The approach can be used to avoid logical design errors in a (relatively) early design
phase, before the implementation, test generation, and execution begins. The applicability is
constrained by the exhaustive nature of the verification: the state space explosion in highly
parallel systems may prevent the designer to check complex system-level properties. In this
case simulation or analysis reduced to core critical parts of the system can be considered.

��.��2'#�1"#���

The research was supported by the Hungarian National Research Fund (grant No. OTKA-
F029739) and by the Hungarian Ministry of Education (grant No. FKFP 0200/2001 and
FKFP 0103/2001). The research work of Balázs Benyó is supported by the Hungarian
Ministry of Education (Békésy György Scholarship).

The UML to EHA transformation was implemented by Dániel Varró (Budapest
University of Technology and Economics) in the VIATRA environment. His help is greatly
appreciated.

�#%#�#��#�

1. P. Várady, B. Benyó: A Systematic Method for the Behavioural Test and Analysis of Embedded Systems,
INES 2000, 4th IEEE International Conference on Intelligent Engineering Systems 2000, Sept 17-19,
Portoroz, Slovenia, pp.177-180

2. P. Várady, B. Benyó, Z. Benyó: An Open Architecture Patient Monitoring System Using Standard
Technologies, IEEE Transaction on Biomedical Communication Systems, 2001 (accepted paper - ,
reference number # 00_025)

3. B. Benyó: Verification of complex object oriented systems, 4th IEEE International Workshop on Design
����������������������
������
����������	������������������������������	
������
	�� !
����"�
20, 2001, pp. 289-290

4. P. Várady: Konzeption und Entwicklung einer Analysebibliothek zum Test des Verhaltens eingebetteter
Software, Diploma Thesis in German, FZI-MRT Karlsruhe, 1997

5. D. Bursky: Embedded-Controller Architectures Suit All Needs. Electronic Design, January 8, 1996, pp.
53-64.

6. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, G. Savoia: Dependability Analysis in the
Early Phases of UML Based System Design. International Journal of Computer Systems - Science &
Engineering, Vol. 16, No. 5, September 2001, pp 265-275

7. G. J. Holzmann: The Model Checker SPIN. IEEE Trans. on Software Eng, Vol. 23, No. 5, 1997, pp. 279-
295

8. D. Latella, I. Majzik, M. Massink: Towards a Formal Operational Semantics of UML Statechart
Diagrams. In P. Ciancarini, A. Fantechi, R. Gorrieri, (editors), Formal Methods for Open Object-Based
Distributed Systems (Proc. FMOODS'99, Florence, Italy), Kluwer Academic Publishers, 1999, pages
331-347

9. D. Latella, I. Majzik, M. Massink: Automatic Verification of UML Statechart Diagrams using the SPIN
Model-Checker. Formal Aspects of Computing, Vol. 11, No. 6, Springer Verlag, Berlin, 1999, pp. 637-
664

10. D. Varró, G. Varró and A. Pataricza: Visual Graph Transformation in System Verification. In: E.
Gramatova, H. Manhaeve and A. Pawlak (eds.): DDECS 2000 Design and Diagnostics of Electronic
Circuits and Systems, Institute of Informatics, Slovak Academy of Sciences, Bratislava Slovakia, April
2000, pp. 137-141

11. Á. Darvas: Verification of distributed object-oriented systems. Technical report (in Hungarian). Student
Paper Contest of the Budapest University of Technology and Economics, Faculty of Electrical
Engineering and Informatics, 2001.

