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1. INTRODUCTION

The role of formal modeling and analysis techniques in the
development process of modern computer controlled sys-
tems becomes more and more important. Well-specified
and easy-to-use design languages and environments are re-
quired that enable multi-aspect analysis and verification of
the designs. In critical systems like transportation, produc-
tion etc. not only the functional correctness, but also the reli-
ability, availability, safety and performability have to be an-
alyzed. The analysis is especially important in the early de-
sign phases, since modifications and re-design are extremely
costly if an inadequacy is detected in the later phases of the
development.

A core requirement for dependability-critical systems is
the ability to cope with faults. It is important that this non-
functional property can be validated before the system is li-
censed for use in applications that affect, for instance, hu-
man life. This requires a quantitative analysis, which deals,
for instance, with error coverage, mean duration of a recov-
ery cycle, the probability of tolerating certain state perturba-
tions, or the probability of a failure. For such an analysis,
additionally to the system’s function, also the modeling of
faults is necessary, including both the possible internal faults
and the faults concerning the system’s interaction with its en-
vironment (via sensors and actuators).

Nowadays a wide variety of formalisms, languages and
analysis techniques are offered to the designer. From the

viewpoint of design re-use and tool support, standardized
design languages are preferred. The Unified Modeling Lan-
guage (UML) [RJB99] provides a visual notation (standard-
ized by the Object Management Group [OMG97]) for ex-
pressing the artifacts of complex distributed systems rang-
ing from embedded systems to business applications. UML
is supported by a wide variety of well-established tools and
environments, offering services for specification, design re-
finement and automatic code generation. In the recent years,
several methods were elaborated to enable us also the for-
mal analysis of UML based designs. Among others, prob-
lems of system-level dependability modeling, formal veri-
fication, performance analysis of (subsets of) UML models
were solved [BDLP99].

Our work is focused on the quantitative dependability and
performance analysis of the UML behavioral models of em-
bedded systems. The dynamic behavior of the system is
given in UML by statechart diagrams [OMG97], an object-
oriented mutation of classical Harel statecharts [Har87].
They describe the internal behavior of components (objects,
hardware nodes etc.) as well as their reactions to external
events. The detailed description of the behavior by state-
charts enables both quantitative performance analysis, when
timing information is assigned to state transitions, and de-
pendability analysis, if the model is extended with explicit
failure states/events and probabilistic information. Although
the UML notation has not been designed for these purposes,
its standard mechanisms enable to extend the model both

THE COMPUTERJOURNAL, Vol. ??, No. ??, 2001



2 G. HUSZERL, M. DAL CIN, I. MAJZIK, K. KOSMIDIS AND A. PATARICZA

with timing/stochastic information (in the form of tagged
values) and classification of model elements (in the form of
stereotyped states and events).

Evaluation of embedded systems tends to be very com-
plex. Therefore, when modeling embedded systems a trade-
off has to be made between the degree of details in modeling
and the degree of possible automation of the analysis. This
lead us to define a sub-class of UML statecharts comprising
so-called Guarded Statecharts (GSC) [DHK99b]. GSC mod-
els fit well for modeling of embedded systems where syn-
chronization among components can be described solely by
Boolean predicates on the active states of concurrent compo-
nents [DHK99a]. This kind of modeling can be considered
as a higher-level, behavioral view of the system. However,
GSC models do not support more implementation-related
details like event processing, which concept may be of cru-
cial importance in modeling the real architecture of the sys-
tem. Moreover, this formalism prohibits the use of state hi-
erarchy, one of the most useful concepts in statechart dia-
grams. Accordingly, we covered event processing and state
hierarchy. Reaching the level of full UML statecharts in this
way, the modeler is allowed to prepare more compact and in-
tuitive models, however, the complexity, time and resource
requirements of the analysis will increase.

The analysis is based on a transformation from these stat-
echart models to Petri nets with timing and stochastic ex-
tensions. Petri nets (PN) are a widely accepted formalism
for modeling and analysis of distributed systems. For per-
formance and dependability evaluation extensions of PNs
with firing time distributions of transitions, like General-
ized Stochastic Petri Nets [AM91] and Stochastic Reward
Nets [CBC+92, MCT94], offer not only precise mathe-
matical background but also sophisticated analysis tools. Al-
though there are also other methods for quantitative analysis
(like queuing networks [BBK94], stochastic process algebra
[BG96] etc.) Petri nets are still considered to be the most
mature in terms of the scope of theoretical results, the effi-
ciency of the analysis algorithms and the number of avail-
able tools [DHR95]. Accordingly, our choice was the class
of Stochastic Reward Nets (SRN). SRNs generalize classical
PNs by rewards (various measures) and by assigning guards
and distributions of the firing time to transitions.

The paper is structured as follows. The next section intro-
duces the approach of UML-based model analysis and the
design environment. In Section 3 the Guarded Statechart
models and the corresponding model transformation are pre-
sented. In Section 4 we extend the model with event pro-
cessing and state hierarchy and identify the corresponding
model transformation patterns. Fault modeling, as a crucial
step in dependability analysis, is discussed in Section 5. The
application of the transformations in dependability and per-
formance analysis is discussed in Section 6. An illustrative
example is presented in Section 7. The paper is closed by
the section of conclusions.

2. THE HIDE APPROACH

UML models are not directly amenable to quantitative anal-
ysis. Therefore, a method has to be introduced which gener-
ates a mathematical model that can be evaluated. The HIDE
(High-Level Integrated Design Environment for Depend-
ability2) project aimed at proposing a general answer to this
need, integrating the design, validation and verification tech-
niques through atransformational approachthat targets the
most common analysis tools [BDLP99]. The UML design
was extended by using its standard mechanisms to include
all the necessary details and parameters that are required to
a quantitative analysis. Then the UML model was trans-
formed automatically to the input formalism of the analy-
sis tool. The results of the analysis were back-annotated to
the original UML model highlighting design faults, bottle-
necks and identifying to a certain level the possible causes.
Accordingly, the entire background mathematics were com-
pletely hidden to the designer, thus eliminating the need for
a specific expertise in abstract mathematics and the error-
prone re-modeling of the system for mathematical analysis.

Up to now three transformations were elaborated in the
HIDE environment. The first one targets formal verification
of dependability-related attributes like freedom from dead-
locks, avoidance of unsafe system states. A transformation
has been defined and implemented which maps a subset of
UML statechart diagrams to Kripke structures for formal
verification using the model checker SPIN [LMM99a]. The
transformation is proved correct with respect to the proper-
ties defined in the UML standard. The next transformation
targets system-level dependability modeling that covers re-
dundancy structures and fault tolerance schemes. Structural
UML diagrams are transformed to Timed Petri Net depend-
ability models [BMM99b]. The analysis helps the designer
to identify dependability bottlenecks and to compare differ-
ent architectural solutions. The third transformation, which
is the topic of the current paper, targets detailed quantitative
analysis of dynamic behavior.

The HIDE framework thus integrates in a user-friendly
way the standard design language UML with a set of val-
idation, verification and evaluation techniques for assuring
the quality of service of the system during the early de-
sign phases. Design refinement is driven by the information
gained during the validation process, thus allowing adequate
system designs to be produced before implementation and
experimental validation. This allows to shorten the neces-
sary validation cycle.

2.1. The HIDE Environment

The HIDE environment is built up from three main compo-
nents.

The user-endmodeling platformis an UML CASE tool,
in which the designer can build up his/her UML model. All

2The HIDE framework was developed under EU contract ESPRIT Open
LTR 27439, participants were the University of Erlangen-Nuremberg, Con-
sortio Pisa Ricerche - Pisa Dependable Computing Centre, Technical Uni-
versity of Budapest, MID GmbH, and INTECS Sistemi S.p.A.
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FIGURE 1. The HIDE environment

tool-provided features like code generation, round-trip engi-
neering and documentation generation, can be used without
modifications. However, during the creation of the UML
model some new constraints and extensions determined by
the formal analysis tools must be observed.

The analysis toolsare off-the-shelf components. The
HIDE core acts as an ”end-user” toward the analysis tools
by supplying the input for the tool and then by processing
and back-annotating the result. The proper modeling for-
malisms and supporting tools are selected in order to be able
to perform the analysis required by the designer.

The HIDE core establishes the bridge from the UML
CASE tool to the various analysis tools which require dif-
ferent input formats (based on different mathematical for-
malisms). Instead of implementing a set of direct model
transformations from the model repository of the CASE tool
to the input formalism of each analysis tool, the HIDE en-
vironment incorporates a common representation, the so-
called HIDE model repository, which enables to develop the
model transformations in a uniform framework. The struc-
ture of this database corresponds to the structure of the UML
metamodel. Thus, full compliance with the UML standard
and a straightforward mapping from the product-dependent
repository of the CASE tool is assured. Based on the com-
mon representation, specialized scripts (rules) implement
the automatic model transformations to the input formalisms
of the analysis tools (Figure 1).

Two versions of the transformation framework exist. In
the first one, the model transformations were implemented
in standard database language (PL/SQL). In the new version,
the rules of the transformation are described by a high-level,
visual graph language [VVP00] which is interpreted over the
HIDE repository.

2.2. Analysis Formalisms and Tools

In our case the quantitative analysis of UML statechart dia-
grams is performed by transforming them to Stochastic Re-
ward Nets (SRN). The HIDE environment is utilized to de-
fine and implement the transformation.

SRN are a GSPN-like formalism based on a semi-Markov
reward process [CBC+92, MCT94]. By definition, an SRN
is a 10-tuple consisting of:

1. a finite set of places,
2. a finite set of transitions (the transitions of an SRN will

be briefly referred to as SRN transitions, in contrast to
the UML transitions),

3. a finite set of inarcs (from places to transitions),
4. a finite set of outarcs (from transitions to places),
5. an integer weight for every arc,
6. a guard function for every transition,
7. an initial marking,
8. a distribution of the firing time for every transition (it

can be exponential, deterministic, Cox etc. or a deter-
ministic value 0 for immediate transition),

9. a priority relation (irreflexive, transitive) among the
transitions,

10. a finite set of measures.

An SRN transitiont is enabled for a given marking if and
only if the guard function of the transition evaluates to true,
there is no other enabled transition with higher priority, and
in the given marking there are not fewer tokens on every
placep than the weight of the inarc from the placep to the
transitiont . When the transitiont fires, every placep has in
the next marking as much token fewer, as the weight of the
inarc fromp to t , and as much token more, as the weight of
the arc fromt to p. The weight of a non-existing arc is 0.

The target models of our transformation are SRNs with
guarded transitions (immediate or timed). SRNs could be
defined including inhibitor arcs, but our transformation does
not necessitate this extension.

Two SRN tools, SPNP [CMT89] and PANDA [AD97]
were used in our analysis environment (both of them have a
compatible input format called CSPL, the C-based SPN Lan-
guage). PANDA allows to annotate transitions with guards
and to use state dependent capacities for arcs. Moreover,
PANDA accepts not only exponential distribution functions,
but also non-exponential ones (Erlang-k, gamma, Weibull,
normal, lognormal, hyperexponential, etc.). Dependabil-
ity measures can be specified by reward functions. To this
end, a reward concept is available based on reward rates
and impulse rewards combining knowledge of the net model
and the state space. (The net view is not lost when defin-
ing reward functions on the state space). Reward func-
tions are built from so-called characterizing functions like
mark(place)which delivers the number of tokens in an SRN
place. PANDA computes the expectation value of a reward
function (e.g. availability or throughput) as well as accumu-
lated rewards.

3. GUARDED STATECHART MODELS

Guarded Statecharts (GSC) are a sub-class of UML state-
charts. GSC represent finite state machines and describe the
behavior of objects in response to external stimuli (such as
sensor signals), modeling state-driven system behavior. The
main elements of a Guarded Statechart are states (container
states, basic states, and initial states) and transitions with
guards. Labels of transitions describe timing information,
e.g. arrival distribution of signals, or static information, e.g.
probabilities of possible outcomes. These labels can be pro-
vided as UML tagged values in the form e.g. “rate=10” or
“weight=0.6”.
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3.1. The GSC Formalism

Given a setE of external event variables, a GSC is a finite set
A of state transitions and a finite setS of states. Transitions
include the following elements:

• thetrigger is a Boolean expression of atomic predicates
over event variables,

• the guard is a Boolean expression of predicates
in(state)wherein(state)evaluates to true, ifstateis the
actual state of the GSC or of some concurrent GSC,

• theset of target statesto be entered.

When state transitions are depicted graphically, they are
labeled with labels of the formtr[guard] , whereguard
is (the name of) a guard andtr is (the name of) a trigger.

GSCs are not hierarchic - rather, there are only two levels.
At the upper level there are container states that describe
concurrent behavior by comprising simple state machines.

With GSCs also non-deterministic behavior can be mod-
eled. This is important, since although the software of em-
bedded systems is completely deterministic, the system can
not know if and when external events or faults will occur.

We restrict guards of a transition by stipulating that, if a
guard contains more than one state ofS, the predicates of
these states are OR-connected. The transition is executed
atomically and instantaneously, if its trigger and its guard
evaluate to TRUE. The execution effects the nondeterminis-
tic choice of exactly one state of the set of target states as
next state of the GSC. A guard expression of a GSCM may
not contain predicates of states ofM, it may, however, con-
tain state predicates of a concurrent GSC. If such a guard
evaluates to TRUE,M takes one of the target states irrespec-
tively of its actual state.

An example of a transition is the following:
startsignal_on [in(M.up) && in(N.ready)]
and the target states are
{M.ready, M.waiting}

Here M.up , M.ready and M.waiting are states of
GSCM andN.ready is a state of the concurrent GSCN;
&& is the logical AND operator.

Guards can be considered as high-level abstractions of
synchronization mechanisms. Outputs are considered to be
part of the state in which they occur.

3.2. Modeling with GSC

In this section we indicate how GSC can be use to model the
behavior, for example, of an embedded control system.

Using GSCs we can abstract continuous signals to dis-
crete signals assuming a finite set of critical values. For ex-
ample, it is only important to observe whether a robot arm is
directed in a position allowing for unloading, or pointing to-
ward a press; all intermediate positions can be collapsed into
a single third value. This way, we model sensor and actua-
tor signals via states. A state representing an actuator signal
being active means that the actuator is set to a certain dis-
crete value. Analogous, if a component is in a state which
represents a sensor signal, it means that this sensor is set. In

GSC models, hardware and software components are only
allowed to communicate via such sensor and actuator states.
This interaction is expressed by guard expressions contain-
ing predicates over sensor or actuator states (so-called public
states). Similarly, interactions between tasks of the control
software are also modeled by guarded state transitions. This
corresponds to an asynchronous synchronization pattern be-
tween tasks. This pattern is inherently multi-threaded, be-
cause it models a message being passed to another object
without the yielding of control [Dou98].

The following steps lead to a GSC model of an embedded
system and its environment which comprises controllers and
the controlled units interacting by sensors and actuators.

1. Produce the component models. Specific states (the
public states) describe the events, system components
(controllers and controlled units) generate or respond
to. These states represent, for example, sensor and
actuator signals. The controllers manage disjoint sets
of actuator signals. The modeling of controlled units,
usually, needs not to be very detailed, since its only
purpose is to restrict the state space of the controllers
to reasonable state transitions, and to inform the con-
trollers about faults, e.g. sensor or actuator failures.

2. Specify guards for state transitions. These guards rep-
resent the component’s inferred knowledge about its
environment, i.e. about the actual public states of cer-
tain system components, and determine the response of
the components to this knowledge.

3. Specify the state transition rates and branching proba-
bilities (weights). Transition rates label timed transi-
tions and specify the mean transition time. Weights la-
bel immediate, timeless transitions. They can specify
alternatives.

4. Specify the performance and dependability measures.
These measures can be expressed in terms of reward
functions [CBC+92], assigned to the UML model in
the form of structured comments.

3.3. From GSC to Stochastic Reward Nets

For a performance and dependability analysis the GSC-
models are transformed to SRN models amenable to mathe-
matical analysis. The transformation neglects the concurrent
container states, since they have no counterparts in the SRN
structure. The following three simple patterns are used:

1. The basic states are represented as SRN places. The
place holds the name of the basic state. The initial
marking of the place is 1, if there is an initial transition
in the GSC leading to the corresponding state. Other-
wise the initial marking is 0.

2. State transitions labeled with rates are transformed to
timed SRN transitions with the same rates. Guards and
triggers become guards of SRN transitions.

3. State transitions labeled with weights are transformed
to immediate SRN transitions with the same weight.
Immediate transitions have priority over timed transi-
tions. The weights of conflicting immediate transitions
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are normalized such that they become branching prob-
abilities.

Additional SRN transitions are generated for loss of sig-
nals or generation of spurious signals (see Section 5). The
modeler has only to specify the rates.

This way we obtain a set of topologically isolated sub-
nets which interact by guards. This approach requires fewer
modeling elements than a single SRN without guards and,
thus, makes the model more comprehensible.

4. EVENT PROCESSING AND STATE HIERARCHY

Extending the Guarded Statechart model with event process-
ing and state hierarchy needs a thorough analysis of the se-
mantics of UML statecharts. In this section first we summa-
rize and compare the semantics of the source and target mod-
els of the transformation. The discussion of the UML stat-
echart semantics is based on the (informal) UML standard
[OMG97] and on the formalization presented in [LMM99b].

In the next subsection the transformation from UML stat-
echarts to SRN is discussed. Our transformation is presented
in a modular way, by introducing a set of SRNtransforma-
tion patterns. These patterns are assigned to peculiar con-
structs (like event dispatcher) or concepts (like state hierar-
chy, synchronization) of the UML statechart formalism, this
way they help in decomposing the problem and understand-
ing the proposed solutions. These patterns are combined
automatically by using well-defined interfaces and compo-
sition rules. The modularity of the definition helps also in
proving the properties of the resulting SRN model accord-
ing to the informal requirements of the UML semantics as
defined in the standard [OMG97].

The source models of the transformation described in
this paper are restricted to UML statecharts without history
states. Actions are restricted to generation of new events,
while events cannot have parameters.

4.1. Semantics of models

While checking the semantics, we were faced with two prob-
lems. The first is, that some aspects of UML semantics are
not defined in the standard. In this case we tried to param-
eterize our transformation by elaborating patterns for differ-
ent possible cases. The next problem is, that the semantics of
UML statecharts with timed state transitions was not formal-
ized yet. While considering the issues of time, we were stuck
to the requirements of the untimed case: run-to-completion
processing and execution steps.

The semantics of UML statecharts is expressed in terms
of a hypothetical machine with the following components:

• An event queue storing events coming from the ma-
chine itself or from the environment. The internal struc-
ture of the event queue is not specified in UML.

• An event dispatcher selecting one event at a time from
the queue. If an event is dispatched, it will be passed to
the machine to react to it. When the machine finished
its reaction (possible state changes) and reached a sta-

ble state, a next event can be dispatched. The selection
policy of the dispatcher is not defined.

• A state machine processing the dispatched events. The
reaction of the machine is determined by its actual state
configuration and the possible transitions triggered by
the selected event.

The dynamic operation consists of cyclic event dispatch-
ing and state changing phases, called steps of the state ma-
chine. Steps are characterized by run-to-completion pro-
cessing of events, i.e. there is no new event dispatched until
the previous one is completely processed (the state machine
reaches a stable state configuration). During a step, several
state transitions can be executed, since the statechart may
contain concurrent substates. Each step consists of the fol-
lowing hypothetical phases:

• dispatching an event,
• collecting the enabled transitions,
• selecting a maximal subset of them, where enabled

transitions with higher priority must not left out if an-
other transitions with lower priority are therein,

• firing the selected transitions (the order is not speci-
fied).

Other peculiar aspects of the semantics are discussed in
the following subsections where the particular transforma-
tion patterns are presented:

Event queues and event dispatchers:The events arriving
from the environment or from the state machine it-
self are collected in the queue and dispatched by the
dispatcher one at a time. Event queues provide the
interfaces among state machines belonging to differ-
ent objects. The queue and the dispatcher can be im-
plemented by distinguished objects or by the services
of the run-time environment (operating system). The
UML standard defines precisely neither the policy of
the dispatcher nor the number and distribution of event
queues. Accordingly, we will define patterns for sev-
eral policies and leave it to the designer to specify the
details in the UML model (e.g. by using stereotypes).

Hierarchy of states and transitions: One important fea-
ture of statecharts is the hierarchic structure of states.
States can contain substates (only one of them is ac-
tive at the same time) or concurrent sub-machines (all
of them are active if their parent state is active). Transi-
tions of an SC may have their source and target states at
different levels of the state hierarchy. Due to the state
hierarchy, multiple transitions (triggered by the same
event and having source states being active in the cur-
rent state configuration) may be enabled at the same
time. Enabled transitions which have common state(s)
to exit (i.e. not in concurrent sub-machines) are in con-
flict. Some conflicts can be resolved by the priority re-
lation: a transition having source state at lower level has
higher priority. From the point of view of the priority,
enabled transitions can be represented in the form of a
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tree according to the state hierarchy. Transitions on dif-
ferent branches of this tree can fire independently, while
the conflicts of transitions being on the same path from
the root to a leaf are resolved by the priority scheme
(the transition being closer to the root has lower prior-
ity). Conflicts among transitions emanating from the
same state are resolved non-deterministically.

Semantics of timed transitions: The standard UML does
not define the semantics of timed transitions, therefore
the relationship of guard evaluation and time progress
is not specified. We will define various patterns for the
possible combinations of timing and guard evaluation.

Step semantics: The transitions of the UML statechart fire
in steps, i.e. a stable state configuration is reached only
if the maximal set of enabled transitions has already
fired. In contrary, SRN reaches a stable state after each
firing. Since guards are evaluated in stable states, the
behavior of the UML state machine and of the SRN
model may differ. The consistent evaluation of the
guards has to be forced in the SRN.

The main distinguishing feature of the semantics of
UML statecharts and of SRN is that the firing of SRN
transitions has only local effects, i.e. the firing of a tran-
sition depends only on the source places and on the
guard and timing of the transition, and modifies only its
local environment. There is no central event dispatch-
ing, and firings of transitions enabled by the same stim-
ulus cannot be divided into steps. Accordingly, event
dispatching, the synchronization of guard evaluation,
and the step completion need extra constructions in the
transformation.

4.2. Transformation patterns

The general transformation patterns introduced above are
presented in [HM00]. In this section we show typical ap-
plications of the patterns by subnets (corresponding to the
example in Section 7).

In the figures, the guards of transitions will be depicted as
expressions in square brackets, placed close to their guarded
transitions. Aplace namein a guard, or amark(place name)
expression is true if and only if the named place is not empty.
“!”, “&&” and “ | |” are logical NOT, AND and OR opera-
tors, respectively. The guard[guard] means an arbitrary
guard expression.

4.2.1. Event queue and dispatcher
We have defined two patterns for event dispatchers [HM00].
One is selecting events from the queue non-deterministical-
ly. It is easy to implement with SRNs, and it covers all po-
tential behaviors. Another dispatcher is also elaborated, se-
lecting events in the order of their arrival (FIFO, First In,
First Out). These dispatching policies are adequate for dif-
ferent applications. Both of them can be extended also to
support multi-level priority dispatching.

Figure 2 shows a subnet corresponding to the pattern for
nondeterministic event dispatcher. Tokens representing the

eventsask, downandupare collected in placesask0, down0
andup0, respectively (these events are generated by actions).
At the end of a step, a token appears at the placeREADYand
a token from a non-empty place on the left side is moved to a
place representing the selected event (ask1, down1or up1).
It corresponds to a non-deterministic selection of an event
by the dispatcher. All non-selected events are preserved and
no more events (tokens) can be selected until a new token
appears in the placeREADY. The selected event can be pro-
cessed by accessing the token on the right side. For example
if an up event triggers two concurrent UML transitions then
the SRN transitionsplit uphas to be inserted to generate to-
kens in two placesuncons0 anduncons1.

ask0

READY

ask1

up1

uncons_1

uncons_0

up0

down0
down1

split_up

FIGURE 2. SRN pattern of a non-deterministic event dispatcher

Figure 3 shows a subnet belonging to the pattern for the
FIFO event dispatcher. The pattern presented here depicts
only two kind of events (up anddown), but the concept is
the same for more events. The input of the queue structure
is at the top of the figure, and the output is at the bottom,
therefore the tokens will flow downwards in the figure. Here
the length of the queue is three.

There are three columns (of the length of the FIFO) of
places: the left-most group is controlling the FIFO structure,
the other two groups are for storing the different events. The
tokens representing the incoming events arrive at the top of
the figure to placesup0anddown0, and the just selected one
is issued at the bottom in placeup1or down1. The structure
of the pattern guarantees that there are either exactly zero or
two tokens in each row. If there are two tokens in a row, one
of them is placed in the left-most (i.e. controlling) column.

If the queue is full, the incoming tokens will be discarded
(by transitionsdiscardup anddiscarddown), else they are
placed in the uppermost place of the column corresponding
to the type of the event (up queue2 or downqueue2, re-
spectively). Simultaneously a token is generated in the up-
permost place (queue2) of the control (left-most) column.
The pair of tokens is running downwards to the bottommost
row with a free place in the control column. Accordingly,
if there is an event on the n-th place of the UML event dis-
patcher queue, then there is a token in the n-th place (from
the bottom) of the operation column and of the column cor-
responding to the type of the event as well.

Dispatching of events is modeled in the same way as in
the case of the non-deterministic event dispatcher (tokens
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discard_down

[!down_queue_0]

uncons_1uncons_0

[!up_queue_0]

[!down_queue_1]

[!down_queue_2]

[down_queue_2]

[!up_queue_1]

[!up_queue_2]

[up_queue_2]

queue_0

queue_1

queue_2

up_queue_0

up_queue_1

up_queue_2 down_queue_2

down_queue_0

down_queue_1

split_up

down0

down1

up0

up1

READY

discard_up

FIGURE 3. SRN pattern of a FIFO event dispatcher

are forwarded by the “split”-transitions to the places repre-
senting unconsumed events).

4.2.2. Hierarchy of states and transitions
One important feature of statecharts is the hierarchical struc-
ture of states. A state of an SC can be a basic state (contain-
ing no other states), an OR-state (containing only substates
being active alternatively if the state itself is active), or an
AND-state (containing only concurrent sub-machines).

Transitions are enabled when their source states are ac-
tive, their triggering event is dispatched and the guard ex-
pressions of the transitions evaluate to true. Two transitions
are conflicting when firing of one of them inhibits the other
from firing, that is the intersection of the two sets of states
they exit is not empty.

Transitions originating from substates of the source state
of another transition have higher priority than the other tran-
sition. When several transitions are enabled, the maximal
non-conflicting set of them (with maximal priority) may fire
at the same time in a single step. The priority relation de-
fines a partial ordering relation over the set of the transi-
tions (because there can be source states not containing each
other). Partial ordering relations are usually represented as
tree structures.

The priority relation of transitions has to be implemented
by the transformation. The transitions triggered by the same
event can be arranged in a tree corresponding to the hier-
archy of the transitions. (Trees are depicted having root at
the top and leaves at the bottom, thus the directions “up”

and “down” have to be understood accordingly.) A transi-
tion with higher priority is located closer to the leaves, and
non-conflicting transitions and conflicting ones with equal
priorities are located on different arcs of the tree. Compound
transitions are mapped to a set of simple transitions.

e

f

AB2A AB2B

a b d e f

c

h

g

c

g

h

b d

a
AB

AB1A AB1B

A
AA

AB1AA AB1AB

FIGURE 4. The tree structure of the priority relation

Figure 4 shows a small statechart as an example. 8 tran-
sitions (a to g) are presented, all of them being triggered by
the same event. (Transitions triggered by other events are not
depicted.) The tree structure of the transitions is shown at the
bottom of the figure. The structure of the tree strongly de-
pends on the priority structure of the transitions to be trans-
formed.

The tree structure can be considered as a tree-like daisy-
chain of the UML transitions. When an event is selected, the
tokens representing the selected event should run through
the tree from the leaves to the root. On parallel arcs they run
simultaneously, the arcs are synchronized only at the join
points. Every transition has to know, whether the transi-
tions with higher priority have consumed the event or not,
because an enabled transition may only fire if the transitions
with higher priority could not fire. In the tree structure, the
transitions get the event in the order of their priorities.

Accordingly, the SRN representing the selection of UML
transitions is a tree of interconnected subnets (each of them
representing a single UML transition) with an auxiliary con-
trol structure. This control structure consist of two chains
of places, where the tokens representing the events can run
through the tree. A given token runs on one of the chains,
when the event is not yet consumed by the transitions on the
given arc of the tree, and the token runs on the other chain,
when the event is already consumed. These chains will be
referred to in this paper as chains of unconsumed/consumed
events.

Figure 5(b) shows the SRN pattern of a simple (i.e. not
joining) node of the tree, belonging to the UML transition
presented in Figure 5(a). The UML transition is represented
by the SRN transitionup t1. The places of the SRN subnet
represent the following items:

• Predecessor states, i.e. states to be left when the UML
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uncons_1

cons_2 DG_n ask0 uncons_2

(a)

(b)

DS DG

DC

rate=10

up [UG1] / ask

rate=10

DS_n

up_t1
[UG1 && DS] [!UG1 || !DS || !DS_n]

up_t1_not

FIGURE 5. A simple UML transition (a) and the corresponding
SRN pattern (b)

transition fires (in this case it is only the stateDS). The
predecessor states are the source state of the transition
and all of its parent states which are not parent states
of the target state. They can be identified by looking at
the static structure of the statechart. Here both the pre-
decessor and target state are substates of the common
stateDC.
There could be also other states to be left, namely the
active states of parallel regions of the SC. These states
can not be identified unambiguously by the static anal-
ysis of the SC, thus exiting these states necessitates an
other construction (described later). These states would
not be represented in the SRN corresponding to the
transition.

• Successor states, i.e. states to be entered when the tran-
sition fires (in this case it is the single stateDG). This
set of states can be unambiguously identified by ana-
lyzing the static structure of the statechart.

• The chain of unconsumed events. At the beginning of
a step, the selected event is not consumed, i.e. no tran-
sition has fired processing that event. Accordingly, the
tokens representing the event appear in the chain of un-
consumed events on the several arcs of the appropriate
tree structure of the triggered transitions. In Figure 5,
placesuncons1 anduncons2 are in this chain.

• The chain of consumed events. The token represent-
ing the event will be moved from the chain of uncon-
sumed events to the chain of consumed events (here
placecons2), if the transitionup t1 fires. If up t1 can-
not fire,up t1 not fires, putting the token to placeun-
cons2, i.e. the event remains unconsumed. (The guard
of the transitionup t1 not describes thatup t1 cannot
fire.)

• Event sending by the transitions is implemented by out-
arc(s) from the timed SRN transition to the appropriate
place(s) of the event dispatcher Here a token is passed
to the placeask0.

The guard ofup t1 contains the expressionUG1 (belong-
ing to the guard of the UML transition) andDS that refers
to the predecessor state. Note first that the guard of this
transition refers toDS, while it is connected toDS n (and
DG n). The distinction between the input/output places of
the transition (the “next” places) and the places referred to
in its guard (the “last” places) will be described in details in
section 4.2.4. Second, checking of the marking of the place
[DS] is necessary to avoid firing when a token is generated
to a “next” place by another transition.

In this example a simple timing policy was chosen, where
the fastest of the enabled conflicting transitions can fire.
There are other possible policies as well, some of them are
described in section 4.2.3.

If there are two conflicting transitions of the statechart en-
abled at the same time then the firing of the corresponding
SRN transitions occurs as follows:

• If one them has higher priority than the other one, then
it is placed closer to the leaves of the tree structure, and
the sub-SRN corresponding to the other transition can
only fire if the event was not consumed by the sub-SRN
corresponding to this transition.

• If they have the same priority, then the transitions are
placed on different arcs of the tree, and the conflict is
resolved by the guards and the firing times of the timed
UML transitions. Two conflicting transitions cannot
fire in the same step, because the one of them firing
first removes the token from the “next” place represent-
ing the common parent state to leave. If two transitions
have no common state to leave, they are not conflicting.

A joining node of the tree only merges the event chains
of the subtrees (Figure 6). All of the UML transitions in the
subtree have higher priority than any transitions along the
common path of the tree above the joining node, therefore
the event is unconsumed in this common path if and only if
the event was not consumed by any of the transitions of the
subtree.

2

uncons_4cons_4

up_cons_2_3

waiting_up_2_3

[waiting_up_2_3]

up_uncons_2_3up_3_uncons

up_3_cons

[waiting_up_2_3]

up_2_unconsup_2_cons

uncons_3cons_3uncons_2cons_2

FIGURE 6. SRN pattern of a joining node in the tree structure

The event is already “consumed” in the common path
when some of the transitions of the subtree have already
fired (they had carried over the tokens on the “consumed”
chain) and the other transitions could not fire (they passed
on the tokens along the chain). This construction ensures
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that if the token representing the event reaches the root of
the tree, no more sub-SRNs corresponding to transitions of
the statechart will fire, the step have to be finished.

In our example the two joining arcs are represented by the
place pairscons2, uncons2 andcons3, uncons3. Accord-
ing to the previous pattern (Figure 5), one token can be found
either in placecons2 or in placeuncons2, and another to-
ken either in placecons3 or in placeuncons3.

If the event was not consumed by the transitions on the
joining arcs, then there are tokens in placesuncons2 and
uncons3. In this case transitionup uncons2 3 can fire, and
the control is passed to a transition on the common (joined)
arc with lower priority (here a token is put to placeuncons4)
or, if there are no transitions with lower priority, a token is
put to the placeREADY.

If the event was consumed by one or both of the transi-
tions on the joining arcs, then there is a token in placecons2
or/and in placecons3. Thus, transitionup 2 consor/and
up 3 conscan fire. Token(s) will be put to the placewait-
ing up 2 3, which may enable to remove the token from the
place representing an unconsumed event (if any). If there
are as many tokens in placewaiting up 2 3 as the number of
arcs to be joined (here 2), then transitionup cons2 3 will
fire and a token appears in the placecons4representing on
the common arc that the event was already consumed.

It can be proved that the properties of the UML SC se-
mantics are satisfied by these patterns, i.e. an SRN transition
corresponding to an UML transition can only fire if the pre-
decessor states of the transition are active, its guard evaluates
to true and no transition with higher priority was enabled and
triggered.

4.2.3. Semantics of timed transitions
The relationship of timing and guard evaluation is not spec-
ified in standard UML. In our approach, time delay is as-
sociated with UML transitions, assuming that this delay is
produced e.g. by program code execution or communication
delay. Accordingly, the guard expressions have to be eval-
uated before the firing of the (timed) transitions. Another
possible way is to associate the delays to the states, where
the evaluation of the guards and the selection of the transi-
tions is preceded by some delay. In our opinion, the former
approach fits better to the majority of practical problems.

We describe three possible semantics for timed and guar-
ded UML transitions and their transformation patterns. They
may fit to different applications. The three alternatives are as
follows (Figure 7 shows the implementations):

• The selection of the transitions is irrespective of timing
(a).

• The guard has to be true during the delay else the tran-
sition will be deselected (b).

• The “fastest” enabled transition wins (c). This is the
one used in the example in this paper.

Since only enabled UML transitions can be selected for
firing, the first transitions of each pattern below must be
guarded. This guard contains the guard of the appropriate
UML transition extended by a conjunctive term to express

[guard]

[guard]

[guard][!guard]

predecessor states predecessor states predecessor states

[guard]

successor statessuccessor statessuccessor states

a. b. c.

FIGURE 7. Models for combining guards and timing

that the transition can only fire if the appropriate state was
active before the actual step. The three figures show sub-
SRNs corresponding to the transitions of the statechart.

The types and parameters of the timed SRN transitions
correspond to the types and parameters of the correspond-
ing SC transitions. The timing policy (resampling, race with
age/enabling memory, ...) is determined by the designer (and
must be implemented by the SRN-tool used for the analysis).

4.2.4. Step semantics
The UML semantics requires the evaluation of the guards
of the transitions at the beginning of a step, before firing of
any transition. The guards refer to the consistent state con-
figuration before the actual step. In SRNs, the guard of a
transition will be evaluated just before the given transition
fires, the evaluation is not scheduled to the beginning of a
“step” and the results are not stored. In SRNs it is possible,
that some transitions have already fired before the guard ex-
pressions of another transitions are evaluated. To the correct
evaluation of guards the last stable state configuration of the
state machine (i.e. the state before the actual step) must be
recorded. To do that, the places representing the states of the
SC are duplicated. For a stateA there is a placeA contain-
ing a token if and only if the stateA was active just before
the actual step (called in the followinglast place), and there
is an other placeA n containing a token if and only if the
stateA will be active after the actual step (callednext place
in the following).

The placesDS n and DG n in Figure 5 depict thenext
places, while the guards of the appropriate transitions in the
subnet are expressions over marking of the places record-
ing the last stable state of the system (i.e.last places). The
contention is for the tokens of thenextplaces, while thelast
places provide a consistent guard evaluation during the firing
of the guarded transitions.

This concept necessitates a synchronization of the dupli-
cated places at the end of each step. In the tree structure
of the triggered transitions, when the token representing the
selected event reaches the root of the tree, it is passed to
a synchronization chain. This chain controls the synchro-
nization of the duplicated places. All states of the SC are
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included in this chain, where every state precedes all of its
substates, otherwise the order is arbitrary (we used a depth
first order). In the SRN model, the synchronization chain
is the chain of places corresponding to the SC states. The
synchronization of the duplicated places could happen inde-
pendently, but this non-deterministic order would increase
the state space of the SRN without any further advantage.
The fixed ordering avoids this kind of state space explosion.

&& S_DS]

[!DC]

S_DG

S_DS
DS

DS_n

[!DS && !DS_n ||

  DS && DS_n && DC]

[DS && !DS_n

&& S_DS]

[!DS && DS_n

FIGURE 8. Synchronization of the duplicated places

Figure 8 depicts the synchronization pattern of stateDS,
where placesDSandDS n are synchronized. There is a to-
ken in DS if and only if the stateDS of the SC was active
just before the actual step, and there is a token in placeDS n
if and only if the stateDS of the SC will be active after the
actual step. The placeDC represents the direct parent state
of DS. The placesS DSandS DG are two places in the syn-
chronization chain. A token is passed fromS DS to S DG
(for synchronizing the next state in the order of the synchro-
nization chain) ifDSandDS n are already synchronized by
the transitions on the right side of the figure, or the places
are cleared when the parent state ofDS is not active.

This pattern not only synchronizes the duplicated places,
but also corrects transient inconsistencies in the markings.
Due to the incompleteness of identifying the dynamically
changing set of active states when an SC transition fires, the
tokens must be removed from places representing states con-
sidered to be inconsistently active, since their parent states
are inactive. Remember that the predecessor states on Fig-
ure 5 are only the source and parent states of the SC transi-
tion, which are to be exited. However, there may be other
states also to be exited, namely the active substates, and
the active states of parallel regions of states to be exited.
Since they cannot be identified statically, these states were
not emptied when the predecessor states were exited. This
inconsistency must be resolved at the end of the step. Note
that this vanishing problem does not affect the result of the
step.

For example, on Figure 4 a small statechart is presented.
The predecessor states of the transitiona areAB1AA, AB1A
andAB. If a is enabled then eitherAB2Aor AB2Bmust be
active (since their parent stateAB is active). It cannot be
identified statically, which of them is active at the given sit-
uation, therefore they do not appear in the set of predecessor
states ofa. Before the end of the step whena fires, the ac-
tive one of them must be exited, because their parent state
ABwas exited.

4.3. Composition of subnets

The SRN corresponding to a given UML statechart is com-
posed of the subnets (transformation patterns) like those pre-
sented in the previous sections. The subnets are connected
with each other according to the interface places identified
by the same name in the patterns.

The necessary number of patterns is the following:

• The number of event queues and the type of the event
dispatcher(s) is defined by the designer (additional in-
formation is attached to the UML model). Global event
dispatching, event dispatching per objects, event dis-
patching per statecharts, FIFO or non-deterministic dis-
patching can be selected.

• There are as many transition hierarchy trees as the num-
ber of events handled by the transitions of the state-
charts of each event dispatchers.

• The number of sub-SRNs representing transitions is the
same as the number of transitions in the model.

• Each state of the statechart is represented by a pair of
places in the SRN.

• For each state of the statechart, there is a synchroniza-
tion subnet.

The initial state of the SRN is defined as follows. If the
event queue contains events in the initial state then these
events are represented by the initial marking of the appro-
priate places. The initial state configuration of the SC has
to be mapped to the SRN by inserting tokens into the cor-
responding pairs of places. The initial marking of the place
READY has to be 1.

The external environment can be modeled (in closed sys-
tems) by separate UML statechart(s) which will be trans-
formed to SRNs with outarc(s) to the appropriate places of
the event queue(s).

5. FAULT MODELING

In this section it is shown how faults and errors can be mod-
eled by defining appropriate fault/error models. The follow-
ing types and locations of a fault can be distinguished. De-
sign faults can exist in hardware and software. (In fact the
co-design paradigm is gradually making hardware and soft-
ware indistinguishable.) Certain physical faults occur inside
a single component of the system and can be handled by that
component. Some physical faults occur inside a component
but must be handled by another component. External faults
occur in the environment and are often transient. Faults can
give rise to errors, that is to undesired system states, which
in turn can lead to the failure of the system [LA90].

Augmenting the system model with a realistic fault model
is the basis for the dependability analysis. Faults are mod-
eled, for instance, by message losses or loss of synchrony.
Errors can be modeled by so-called state perturbations. State
perturbations include distinguished states corresponding to
degraded performance of the modeled system, paths lead-
ing to such states, erroneous state transitions, trigger events
due to external faults giving rise to erroneous state transi-
tions and the use of guards to express fault-tree like failure
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conditions. Thus, a wide spectrum of possible errors can be
modeled.

Our error-model is based on the notion of state perturba-
tions. For example, unintended state transitions are state per-
turbations. An unintended transition from states to stateq
may be due to a permanent or temporary fault andq may
be an erroneous state. An unintended state transition due to
a temporary fault occurs at most once in the considered pe-
riod. An unintended state transition caused by a permanent
fault can occur whenever the system is in the state that gives
rise to the erroneous transition. Such state perturbations can
be modeled by binary and reflexive relation over the state
space of a SC [Dal98a, Dal97, Dal98b, Hus98].

Signal losses can cause that events or in-state guards are
not observed. The trigger event is lost or the guard always
evaluates to TRUE. This way, also sensor and actuator faults
or loss of messages can easily be modeled.

Finally, using guards also dependability requirements, ex-
pressed as negations of fault trees over component states, can
be integrated. This way, dependability requirements, result-
ing from the requirement analysis, can directly be integrated
into the system model. For instance, a fault tree defining
possible collisions of certain devices, that could lead to the
failure can be specified as guard expression.

As mentioned, our fault model includes corrupted actuator
and sensor signals. Besides modeling the loss, duplication
or corruption of events (spurious events), a guard can also
sense an active signal state as being inactive and vice versa.
In this case we duplicate the places corresponding to signal
states (Figure 9). PlaceA’ models the state of the signal and
placeA models the presence of the signal (public state). A
fault occurs when placesA’ andA have different markings
(see below). The arc annotation1*mark(...) defines a state
dependent capacity of the arc. For example, ifmark(A) =
0, then firing of the output-transitionT depends only on the
marking of placeA’.

[mark(A’)]

AA’

rate=’loss’

rate=’inj’

rate=10

F1

F2

T

1*mark(A)

[!mark(A’)&&!mark(A)]

FIGURE 9. Modeling of corrupt signals

There are four cases:

1. Both places are empty, the transitionT can not fire.
2. Both places contain tokens, the transitionT can fire.
3. Only A’ contains a token, i.e. the fault ’signal is lost’

has been injected. Then the transitionT can fire.
4. OnlyA contains a token, i.e. a spurious signal has been

injected. Then the transitionT can not fire. However,
the guards of other transitions (which refer to this pub-
lic state) evaluate to TRUE.

These faults are injected by the transitionsFl andF2. The
modeler has only to provide the corresponding failure (fir-
ing) rates‘inj’ and‘loss’.

6. MODEL ANALYSIS

The model can be analyzed by the SRN tools PANDA or
SPNP. In certain cases (in the case of exponential transition
firing times) analytic solution is possible, otherwise simula-
tion has to be performed. If a steady state exists then steady
state measures can be computed, otherwise transient analy-
sis can be executed.

The results of the analysis of the SRN (and so of the trans-
formed UML model) are, for example,

• the reachable state configurations of the system,
• the expected probability that a state is active,
• the expected value of the throughput of a transition,
• the expected probability that a transition is enabled,
• the expected probability that a transition fires.

These results can be utilized to gain both performance and
dependability measures of the model.

Simple performance measures (throughput, utilization)
can be derived directly from the above presented results. In
more complex cases, user-defined reward functions can also
be used.

Dependability-based analysis in this framework requires
the explicit modeling of faulty behavior and the explicit
identification of erroneous states, as presented in the pre-
vious section. The analysis of the probability of erroneous
states leads to reliability (if no repair is modeled) and avail-
ability characteristics (if repair is modeled). Analogously,
safety figures can be derived by distinguishing the unsafe
states in the model. Other, application-specific measures
may combine performance characteristics with fault mod-
eling (e.g. the performance of the system in the case of an
error, utilization of a repair facility, etc.).

The analysis of detailed GSC and statechart models is
very time consuming and needs high-performance comput-
ers. Full models of realistic applications are usually above
the complexity modern tools and computers can handle.
Thus, quantitative analysis should be focused on certain sys-
tem components such as core parts of the embedded con-
trollers. They can be modeled in more detail, while the other
system components need not be modeled in details. Here
the connection with the system-level structural dependability
analysis [BMM99a] could be important: system-level sen-
sitivity analysis can identify critical components, while the
analysis of dynamic behavior provides parameters useful in
the computation of (system-level) dependability attributes.

Another way to reduce complexity is to deduce from the
statechart model certain scenarios and to model them by
sequence diagrams. Usually these sequence diagrams are
much less complex than the statechart model itself. The
transformation of sequence diagrams to SRNs was also elab-
orated. Performance characteristics like run time, termina-
tion probability of selected scenarios can be computed by
the SRN tools [DHK99a].
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7. AN EXAMPLE

Although the mentioned transformation procedures have
been worked out, no examples of applying the transforma-
tions for large systems are available yet. Accordingly, we
are not able to provide real quantitative assessment of the
transformation, however, some qualitative remarks are pos-
sible.

We illustrate our approach by a small example of a fault-
tolerant system, a variation of a production cell model
[LT94, MPW97]. The system contains a press that processes
metal plates, a robot with an extensible arm (with an elec-
tromagnet) for loading and unloading the press, and a re-
pair console. The feed belt as well as the deposit belt are
not modeled explicitly. The breakdown of the press can be
sensed by the repair console. Then the repairman (worker)
can repair the press. Also the robot arm may stuck and then
be repaired by the repairman.

The complete UML model of an extended version of this
example is given in [CDH+98]. It comprises a requirement
model, an object model, a deployment model and packages.

• The requirement model describes the actors and use
cases of the modeled system. Typical scenarios are
modeled by sequence diagrams.

• The static view of the system is captured in class, ob-
ject and deployment diagrams. The object model of the
production cell is organized around the four object dia-
grams: ProductionCell, Controllers, Machines, and En-
vironment. The deployment diagram describes a possi-
ble architecture of the system and shows a given assign-
ment of the components to the nodes; e.g. centralized
or distributed control.

• The dynamic view of the system is given by the state-
charts. According to our modeling approach, each de-
vice model consists of a hardware behavioral model and
the statechart of the corresponding controller (a single,
central cell controller or that of several distributed de-
vice controllers).

In the following, we concentrate on the dynamic view in
the form of GSC and full statechart diagrams.

The complete GSC model comprises 5 statecharts (with 9
state transition diagrams and 34 basic states, of which 8 are
sensor states and 8 are actuator states). The GSC model of
the press (Figure 10) consists of two components, one for the
hardware of the press, and one for its controlling unit. This
part of the model contains 2 sensor and 4 actuator states.
(The guards of some transitions on the figure apply to states
of another components not presented here.) A possible mal-
function of the press hardware is modeled as a kind of state
perturbation, which can be detected by the controlling unit.
For the sake of simplicity, the transitions of the reparation
are omitted.

The full statechart model of the same system consists of
one single hierarchical statechart with 15 concurrent states
containing 50 substates, and 68 transitions triggered by 42
events (14 timer events). A single global event queue is sup-
posed with non-deterministic dispatching policy. This state-

Empty
One More

Belt Robot

Crash

Full

TableHW

product2/offtable

product1/ontable

up
down

up

down product1

TabPos Table

FIGURE 11. Statechart model of the table (hardware)

chart was transformed to an SRN with 373 places, 472 tran-
sitions (304 guarded, 82 timed), 547 inarcs and 558 outarcs.
To illustrate the modeling, the statechart corresponding to
the hardware of the rotary table is depicted on Figure 11.

For the quantitative analysis of the models, the SRN tool
PANDA was used. The transformed GSC model (as the
components are strongly coupled by the guards) has 9316
reachable states. The size of the state space of the full state-
chart model increases if FIFO dispatching policy is selected;
the increase depends heavily on the length of the queue.

With PANDA, for example, the following parameters can
be examined: absorbing states of the system or of its compo-
nents, the number of reachable states of the system, the ex-
pected number of firings of a given transition until an given
point in time, the expected time the system spends in a given
state until a given point in time. From these data perfor-
mance and dependability measures (defined by reward func-
tions) like throughput, utilization, mean turn-around time,
reliability, availability, etc. can be derived.

Various performance and dependability results were com-
puted [DHK99a]. For example, computing the utilization
of the repairman as function of the elapsed time shows that
the utilization increases to 0.15. The throughput of the sys-
tem (the mean number of forged plates per time unit) was
also computed as function of the signal loss rate. There is a
domain between 10 and 1000 where the throughput is par-
ticularly sensitive to the loss rate (the throughput rapidly de-
creases to 20%).

Special scenarios like the break-down of the robot arm
and its repair were analyzed as special scenarios. The distri-
bution function of the time to load the press after the break-
down shows that in average 64s is required. Another experi-
ment compared the fault-free case and the scenario when the
signal from the robot control was lost twice. The average
duration increased by 33%.

8. CONCLUSION

We presented a method which allows quantitative depend-
ability and performance analysis of systems modeled by us-
ing UML statechart diagrams. To find a trade-off between
the details of modeling and the complexity of the analysis,
both the higher-level, simplified formalism (GSC) and the
full UML statecharts were supported by the transformation
and the corresponding analysis.

Our transformation from UML statecharts to Stochastic
Reward Nets covered a large subset of model elements in-
cluding event processing, state hierarchy and transition pri-
orities. By using the transformation and analyzing the re-
sulted SRN performance and dependability measures can
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FIGURE 10. GSC model and the corresponding SRN model of the press

be computed. This way the possibility of UML to model
and analyze error-prone and fault-tolerant system behavior
is greatly enhanced. Since the analysis is based on a detailed
model of the system, in the case of complex systems this
kind of analysis should be restricted to core critical parts of
the system.

The transformations were presented in the form of trans-
formation patterns. The properties of the resulting SRN sat-
isfy the requirements defined in the UML standard. The
number of places and transitions in the generated model is
proportional to the number of model elements in the state-
chart. The generated number of states (state space of the un-
derlying Markov chain) corresponds to the number of state
configurations of the UML model.
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