Quantitative Analysis of UML
Statechart Models of Dependable
Systems

GABOR HUsZERLY, KONSTANTINOS KOSMIDIS?, MARIO DAL CINZ,
ISTVAN MAJzik! AND ANDRAS PaTARICZAL

lDepartment of Measurement and Information Systems,
Budapest University of Technology and Economics, Hungary
2Department of Computer Science 11l (Computer Structures),
Friedrich-Alexander University of Erlangen-Nuremberg, Germany
Email: huszerl@mit.bme.hu

The paper introduces a method which allows quantitative performance and de-
pendability analysis of systems modeled by using UML statechart diagrams. The
analysis is performed by transforming the UML model to Stochastic Reward Nets
(SRN). A large subset of statechart model elements is supported including event
processing, state hierarchy and transition priorities. The transformation is pre-
sented by a set of SRN patterns. Performance measures can be directly derived
using SRN tools, while dependability analysis requires explicit modeling of erro-
neous states and faulty behavior.

Keywords: UML statecharts, dependability analysis, performance analysis

Received November 1, 2000

1. INTRODUCTION viewpoint of design re-use and tool support, standardized

design languages are preferred. The Unified Modeling Lan-
The role of formal modeling and analysis techniques in the guage (UML) [RIB99] provides a visual notation (standard-
development process of modern computer controlled sys-ized by the Object Management Group [OMG97]) for ex-
tems becomes more and more important. Well-specified pressing the artifacts of complex distributed systems rang-
and easy-to-use design languages and environments are réng from embedded systems to business applications. UML
guired that enable multi-aspect analysis and verification of is supported by a wide variety of well-established tools and
the designs. In critical systems like transportation, produc- environments, offering services for specification, design re-
tion etc. not only the functional correctness, but also the reli- finement and automatic code generation. In the recent years,
ability, availability, safety and performability have to be an- several methods were elaborated to enable us also the for-
alyzed. The analysis is especially important in the early de- mal analysis of UML based designs. Among others, prob-
sign phases, since modifications and re-design are extremelyems of system-level dependability modeling, formal veri-
costly if an inadequacy is detected in the later phases of thefication, performance analysis of (subsets of) UML models
development. were solved [BDLP99].

A core requirement for dependability-critical systems is ~ Our work is focused on the quantitative dependability and
the ability to cope with faults. It is important that this non- performance analysis of the UML behavioral models of em-
functional property can be validated before the system is li- bedded systems. The dynamic behavior of the system is
censed for use in applications that affect, for instance, hu- given in UML by statechart diagrams [OMG97], an object-
man life. This requires a quantitative analysis, which deals, oriented mutation of classical Harel statecharts [Har87].
for instance, with error coverage, mean duration of a recov- They describe the internal behavior of components (objects,
ery cycle, the probability of tolerating certain state perturba- hardware nodes etc.) as well as their reactions to external
tions, or the probability of a failure. For such an analysis, events. The detailed description of the behavior by state-
additionally to the system'’s function, also the modeling of charts enables both quantitative performance analysis, when
faults is necessary, including both the possible internal faults timing information is assigned to state transitions, and de-
and the faults concerning the system’s interaction with its en- pendability analysis, if the model is extended with explicit
vironment (via sensors and actuators). failure states/events and probabilistic information. Although

Nowadays a wide variety of formalisms, languages and the UML notation has not been designed for these purposes,
analysis techniques are offered to the designer. From theits standard mechanisms enable to extend the model both

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

2 G. HuszeRL, M. DAL CIN, I. MAJZIK, K. KOSMIDIS AND A. PATARICZA

with timing/stochastic information (in the form of tagged 2. THE HIDE APPROACH
values) and classification of model elements (in the form of

stereotyped states and events). UML models are not directly amenable to quantitative anal-

ysis. Therefore, a method has to be introduced which gener-

) ates a mathematical model that can be evaluated. The HIDE
Evaluation of embedded systems tends to be very com-(yjgh | evel Integrated Design Environment for Depend-

plex. Therefore, when modeling embedded systems a trade'abilityz) project aimed at proposing a general answer to this

off has to be made between the degree of details in modelingaaq integrating the design, validation and verification tech-
and the degree of possible automation of the analysis. Th'sniques through #ransformational approacthat targets the
lead us to define a sub-class of UML statecharts comprising st common analysis tools [BDLP99]. The UML design
so-called Guarded Statecharts (GSC) [DHK99b]. GSC mod- 55 extended by using its standard mechanisms to include
els fit well for modeling of embedded systems where syn- g the necessary details and parameters that are required to
chronization among components can be described solely by, o antitative analysis. Then the UML model was trans-
Boolean predicates on the active stat_es of concurrent_compoTormed automatically to the input formalism of the analy-
nents [DHK99a]. This kind of modeling can be considered gjg o0, The results of the analysis were back-annotated to
as a higher-level, behavioral view of.the system.. However, o original UML model highlighting design faults, bottle-
GSC models do not support more implementation-related ocs and identifying to a certain level the possible causes.
details like event processing, which concept may be of €ru- Accordingly, the entire background mathematics were com-
cial importance in modeling the real architecture of the sys- yja1a1y hidden to the designer, thus eliminating the need for
tem. Moreover, this formalism prohibits the use of state hi- 5 ghecific expertise in abstract mathematics and the error-

erarchy, one of the most useful concepts in statechart dia-pone re-modeling of the system for mathematical analysis.
grams. Accordingly, we covered event processing and state’ |, 15 now three transformations were elaborated in the

hierarchy. Reaching the level of full UML statecharts in this 5 environment. The first one targets formal verification
way, the modeler is allowed to prepare more compactand in- 4t gependability-related attributes like freedom from dead-

tuitive models, however, the complexity, time and resource |ocys avoidance of unsafe system states. A transformation
requirements of the analysis will increase. has been defined and implemented which maps a subset of
UML statechart diagrams to Kripke structures for formal
The analysis is based on a transformation from these stat-verification using the model checker SPIN [LMM99a]. The
echart models to Petri nets with timing and stochastic ex- transformation is proved correct with respect to the proper-
tensions. Petri nets (PN) are a widely accepted formalism ties defined in the UML standard. The next transformation
for modeling and analysis of distributed systems. For per- targets system-level dependability modeling that covers re-
formance and dependability evaluation extensions of PNsdundancy structures and fault tolerance schemes. Structural
with firing time distributions of transitions, like General- UML diagrams are transformed to Timed Petri Net depend-
ized Stochastic Petri Nets [AM91] and Stochastic Reward ability models [BMM99b]. The analysis helps the designer
Nets [CBCM92, MCT94], offer not only precise mathe- to identify dependability bottlenecks and to compare differ-
matical background but also sophisticated analysis tools. Al- ent architectural solutions. The third transformation, which
though there are also other methods for quantitative analysisis the topic of the current paper, targets detailed quantitative
(like queuing networks [BBK94], stochastic process algebra analysis of dynamic behavior.
[BG96] etc.) Petri nets are still considered to be the most The HIDE framework thus integrates in a user-friendly
mature in terms of the scope of theoretical results, the effi- way the standard design language UML with a set of val-
ciency of the analysis algorithms and the number of avail- idation, verification and evaluation techniques for assuring
able tools [DHR95]. Accordingly, our choice was the class the quality of service of the system during the early de-
of Stochastic Reward Nets (SRN). SRNs generalize classicalsign phases. Design refinement is driven by the information
PNs by rewards (various measures) and by assigning guardgjained during the validation process, thus allowing adequate
and distributions of the firing time to transitions. system designs to be produced before implementation and
experimental validation. This allows to shorten the neces-

The paper is structured as follows. The next section intro- Sary validation cycle.
duces the approach of UML-based model analysis and the
design environment. In Section 3 the Guarded Statechart2.1. The HIDE Environment
models and the corresponding model transformation are pre- .) .]
sented. In Section 4 we extend the model with event pro- 1he HIDE environmentis built up from three main compo-
cessing and state hierarchy and identify the correspondingn€nts: . .
model transformation patterns. Fault modeling, as a crucial ~The user-enanodeling platformis an UML CASE tool,
step in dependability analysis, is discussed in Section 5. Theil Which the designer can build up his/her UML model. All

application of the transformations in dependability and per- 2T TIDE T « was develoned under EU ESPRITO
. e ramework was developed under EU contract pen
formance anaIySIS is discussed in Section 6. An illustrative LTR 27439, participants were the University of Erlangen-Nuremberg, Con-

examplc—_z is presented_ in Section 7. The paper is closed bysoio pisa Ricerche - Pisa Dependable Computing Centre, Technical Uni-
the section of conclusions. versity of Budapest, MID GmbH, and INTECS Sistemi S.p.A.

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS 3

Q Verification be briefly referred to as SRN transitions, in contrast to
& the UML transitions),

‘ Dependaility 3. afinite set of inarcs (from places to transitions),
HIDE ‘ analysis 4. afinite set of outarcs (from transitions to places),
repository . .
(design 5. aninteger weight for every arc,
detabase) Performance 6. aguard function for every transition,
Export analysis 7. aninitial marking,
script _ 8. a distribution of the firing time for every transition (it
Transformation Other A oL
scripts analyses can be exponential, deterministic, Cox etc. or a deter-
ministic value 0 for immediate transition),
FIGURE 1. The HIDE environment 9. a priority relation (irreflexive, transitive) among the
transitions,

_ _ _ _ ~10. afinite set of measures.
tool-provided features like code generation, round-trip engi-

neering and documentation generation, can be used without AN SRN transitiort is enabled for a given marking if and
modifications. However, during the creation of the UML only if the guard function of the transition evaluates to true,

model some new constraints and extensions determined b)}here is no other enabled transition with higher priority, and

the formal analysis tools must be observed. in the given marking there are not fewer tokens on every
The analysis toolsare off-the-shelf components. The Placep than the weight of the inarc from the plapeio the

HIDE core acts as an "end-user” toward the analysis tools ransitiont. When the transition fires, every place has in

by supplying the input for the tool and then by processing _the next marking as much token fewer, as the welgh_t of the

and back-annotating the result. The proper modeling for- Iar¢ fromptot, and as much token more, as the weight of

malisms and supporting tools are selected in order to be ableiN€ arc fromt to p. The weight of a non-existing arcis 0.
to perform the analysis required by the designer. The target models of our transformation are SRNs with

The HIDE core establishes the bridge from the UML guarded transitions (immediate or timed). SRNs could be
CASE tool to the various analysis tools which require dif- defined including inhibitor arcs, but our transformation does

ferent input formats (based on different mathematical for- N0t necessitate this extension.
malisms). Instead of implementing a set of direct model W0 SRN tools, SPNP [CMT89] and PANDA [AD97]

transformations from the model repository of the CASE tool Were used in our analysis environment (both of them have a
to the input formalism of each analysis tool, the HIDE en- compatible input format called CSPL, the C-based SPN Lan-

vironment incorporates a common representation, the so-9429€). PANDA allows to annotate transitions with guards
called HIDE model repository, which enables to develop the @nd 0 use state dependent capacities for arcs. Moreover,
model transformations in a uniform framework. The struc- PANDA accepts not onl_y exponential distribution functhns,
ture of this database corresponds to the structure of the UML PUt also non-exponential ones (Erlang-k, gamma, Weibull,
metamodel. Thus, full compliance with the UML standard normal, lognormal, hyperexponential, etc.). Dependabil-
and a straightforward mapping from the product-dependent'ty measures can be spe_cmed_by reward functions. To this
repository of the CASE tool is assured. Based on the com-e”d’_ a reward concept is _a_/a|lable based on reward rates
mon representation, specialized scripts (rules) implement@nd impulse rewards combining knowledge of the net model
the automatic model transformations to the input formalisms @nd the state space. (The net view is not lost when defin-

of the analysis tools (Figure 1). ing reward functions on the state space). Reward func-

Two versions of the transformation framework exist. In fions are built from so-called characterizing functions like
the first one, the model transformations were implemented Mark(place)vhich delivers the number of tokens in an SRN
in standard database language (PL/SQL). In the new versionPlace. PANDA computes the expectation value of a reward
the rules of the transformation are described by a high-level, function (e.g. availability or throughput) as well as accumu-
visual graph language [VVPOO] which is interpreted over the 'ated rewards.

HIDE repository.
P y 3. GUARDED STATECHART MODELS

2.2. Analysis Formalisms and Tools Guarded Statecharts (GSC) are a sub-class of UML state-
In our case the quantitative analysis of UML statechart dia- charts. GSC represent finite state machines and describe the

grams is performed by transforming them to Stochastic Re- behavior. of objects in response tq external stimuli (s.uch as
ward Nets (SRN). The HIDE environment is utilized to de- sensor signals), modeling state-driven system behavior. The
fine and implement the transformation main elements of a Guarded Statechart are states (container

SRN are a GSPN-like formalism based on a semi-Markoy States, basic states, and initial states) and transitions with

reward process [CBC92, MCT94]. By definition, an SRN guards. Labels of transitions describe timing information,
is a 10-tuple consisting of: ' ’ e.g. arrival distribution of signals, or static information, e.g.

probabilities of possible outcomes. These labels can be pro-
1. afinite set of places, vided as UML tagged values in the form e.g. “rate=10" or
2. afinite set of transitions (the transitions of an SRN will “weight=0.6".

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

G. HuszerL, M. DAL CIN, |. MAJZIK,

K. KOSMIDIS AND A. PATARICZA

3.1. The GSC Formalism

Given a set of external event variables, a GSC is a finite set
A of state transitions and a finite s&bf states. Transitions
include the following elements:

e thetriggeris a Boolean expression of atomic predicates
over event variables,

the guard is a Boolean expression of predicates
in(state)wherein(state)evaluates to true, gtateis the
actual state of the GSC or of some concurrent GSC,

theset of target statet be entered.

When state transitions are depicted graphically, they are
labeled with labels of the formguard] , whereguard
is (the name of) a guard amd is (the name of) a trigger.
GSCs are not hierarchic - rather, there are only two levels.
At the upper level there are container states that describe
concurrent behavior by comprising simple state machines.
With GSCs also non-deterministic behavior can be mod-
eled. This is important, since although the software of em-

bedded systems is completely deterministic, the system can

not know if and when external events or faults will occur.

We restrict guards of a transition by stipulating that, if a
guard contains more than one stateSpfthe predicates of
these states are OR-connected. The transition is execute
atomically and instantaneously, if its trigger and its guard
evaluate to TRUE. The execution effects the nondeterminis-
tic choice of exactly one state of the set of target states as
next state of the GSC. A guard expression of a @%Gay
not contain predicates of statesMf it may, however, con-
tain state predicates of a concurrent GSC. If such a guard
evaluates to TRUBM takes one of the target states irrespec-
tively of its actual state.

An example of a transition is the following:
startsignal_on [in(M.up) && in(N.ready)]
and the target states are
{M.ready, M.waiting}

Here M.up, M.ready and M.waiting are states of
GSCM andN.ready is a state of the concurrent GSC,
&&is the logical AND operator.

02.

GSC models, hardware and software components are only
allowed to communicate via such sensor and actuator states.
This interaction is expressed by guard expressions contain-
ing predicates over sensor or actuator states (so-called public
states). Similarly, interactions between tasks of the control
software are also modeled by guarded state transitions. This
corresponds to an asynchronous synchronization pattern be-
tween tasks. This pattern is inherently multi-threaded, be-
cause it models a message being passed to another object
without the yielding of control [Dou98].

The following steps lead to a GSC model of an embedded
system and its environment which comprises controllers and
the controlled units interacting by sensors and actuators.

1. Produce the component models. Specific states (the
public states) describe the events, system components
(controllers and controlled units) generate or respond
to. These states represent, for example, sensor and
actuator signals. The controllers manage disjoint sets
of actuator signals. The modeling of controlled units,
usually, needs not to be very detailed, since its only
purpose is to restrict the state space of the controllers
to reasonable state transitions, and to inform the con-
trollers about faults, e.g. sensor or actuator failures.
Specify guards for state transitions. These guards rep-
resent the component’s inferred knowledge about its
environment, i.e. about the actual public states of cer-
tain system components, and determine the response of
the components to this knowledge.

Specify the state transition rates and branching proba-
bilities (weights). Transition rates label timed transi-
tions and specify the mean transition time. Weights la-
bel immediate, timeless transitions. They can specify
alternatives.

Specify the performance and dependability measures.
These measures can be expressed in terms of reward
functions [CBC92], assigned to the UML model in
the form of structured comments.

3.

3.3. From GSC to Stochastic Reward Nets

Guards can be considered as high-level abstractions ofror a performance and dependability analysis the GSC-
synchronization mechanisms. Outputs are considered to bémodels are transformed to SRN models amenable to mathe-

part of the state in which they occur.

3.2. Modeling with GSC

In this section we indicate how GSC can be use to model the
behavior, for example, of an embedded control system.
Using GSCs we can abstract continuous signals to dis-
crete signals assuming a finite set of critical values. For ex-
ample, it is only important to observe whether a robot arm is
directed in a position allowing for unloading, or pointing to-
ward a press; all intermediate positions can be collapsed into
a single third value. This way, we model sensor and actua-

matical analysis. The transformation neglects the concurrent
container states, since they have no counterparts in the SRN
structure. The following three simple patterns are used:

1. The basic states are represented as SRN places. The
place holds the name of the basic state. The initial
marking of the place is 1, if there is an initial transition

in the GSC leading to the corresponding state. Other-
wise the initial marking is 0.

State transitions labeled with rates are transformed to
timed SRN transitions with the same rates. Guards and
triggers become guards of SRN transitions.

2.

tor signals via states. A state representing an actuator signal3.
being active means that the actuator is set to a certain dis-
crete value. Analogous, if a componentis in a state which
represents a sensor signal, it means that this sensor is set. In

State transitions labeled with weights are transformed
to immediate SRN transitions with the same weight.
Immediate transitions have priority over timed transi-
tions. The weights of conflicting immediate transitions

THE COMPUTERJOURNAL,

\ol. ??,

No. ??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS

are normalized such that they become branching prob-
abilities.

Additional SRN transitions are generated for loss of sig-
nals or generation of spurious signals (see Section 5). The
modeler has only to specify the rates.

This way we obtain a set of topologically isolated sub-
nets which interact by guards. This approach requires fewer
modeling elements than a single SRN without guards and,
thus, makes the model more comprehensible.

4. EVENT PROCESSING AND STATE HIERARCHY

Extending the Guarded Statechart model with event process-

ble state, a next event can be dispatched. The selection
policy of the dispatcher is not defined.

A state machine processing the dispatched events. The
reaction of the machine is determined by its actual state
configuration and the possible transitions triggered by
the selected event.

The dynamic operation consists of cyclic event dispatch-
ing and state changing phases, called steps of the state ma-
chine. Steps are characterized by run-to-completion pro-
cessing of events, i.e. there is no new event dispatched until
the previous one is completely processed (the state machine
reaches a stable state configuration). During a step, several
state transitions can be executed, since the statechart may

ing and state hierarchy needs a thorough analysis of the sexontain concurrent substates. Each step consists of the fol-

mantics of UML statecharts. In this section first we summa-
rize and compare the semantics of the source and target mod
els of the transformation. The discussion of the UML stat-
echart semantics is based on the (informal) UML standard
[OMG97] and on the formalization presented in [LMM99b].

In the next subsection the transformation from UML stat-

echarts to SRN is discussed. Our transformation is presented

in a modular way, by introducing a set of SRfdnsforma-

tion patterns These patterns are assigned to peculiar con-
structs (like event dispatcher) or concepts (like state hierar-
chy, synchronization) of the UML statechart formalism, this
way they help in decomposing the problem and understand-

lowing hypothetical phases:

e dispatching an event,

collecting the enabled transitions,

selecting a maximal subset of them, where enabled
transitions with higher priority must not left out if an-
other transitions with lower priority are therein,

firing the selected transitions (the order is not speci-

fied).

Other peculiar aspects of the semantics are discussed in
the following subsections where the particular transforma-

ing the proposed solutions. These patterns are combinedion patterns are presented:

automatically by using well-defined interfaces and compo-
sition rules. The modularity of the definition helps also in
proving the properties of the resulting SRN model accord-
ing to the informal requirements of the UML semantics as
defined in the standard [OMG97].

The source models of the transformation described in
this paper are restricted to UML statecharts without history
states. Actions are restricted to generation of new events,
while events cannot have parameters.

4.1. Semantics of models

While checking the semantics, we were faced with two prob-
lems. The first is, that some aspects of UML semantics are
not defined in the standard. In this case we tried to param-
eterize our transformation by elaborating patterns for differ-
ent possible cases. The next problem is, that the semantics o
UML statecharts with timed state transitions was not formal-
ized yet. While considering the issues of time, we were stuck
to the requirements of the untimed case: run-to-completion
processing and execution steps.

The semantics of UML statecharts is expressed in terms
of a hypothetical machine with the following components:

e An event queue storing events coming from the ma-
chine itself or from the environment. The internal struc-

ture of the event queue is not specified in UML.

An event dispatcher selecting one event at a time from
the queue. If an event is dispatched, it will be passed to
the machine to react to it. When the machine finished

its reaction (possible state changes) and reached a sta

Event queues and event dispatchers:The events arriving
from the environment or from the state machine it-
self are collected in the queue and dispatched by the
dispatcher one at a time. Event queues provide the
interfaces among state machines belonging to differ-
ent objects. The queue and the dispatcher can be im-
plemented by distinguished objects or by the services
of the run-time environment (operating system). The
UML standard defines precisely neither the policy of
the dispatcher nor the number and distribution of event
gueues. Accordingly, we will define patterns for sev-
eral policies and leave it to the designer to specify the
details in the UML model (e.g. by using stereotypes).

Hierarchy of states and transitions: One important fea-

f ture of statecharts is the hierarchic structure of states.
States can contain substates (only one of them is ac-
tive at the same time) or concurrent sub-machines (all
of them are active if their parent state is active). Transi-
tions of an SC may have their source and target states at
different levels of the state hierarchy. Due to the state
hierarchy, multiple transitions (triggered by the same
event and having source states being active in the cur-
rent state configuration) may be enabled at the same
time. Enabled transitions which have common state(s)
to exit (i.e. not in concurrent sub-machines) are in con-
flict. Some conflicts can be resolved by the priority re-
lation: a transition having source state at lower level has
higher priority. From the point of view of the priority,
enabled transitions can be represented in the form of a

THE COMPUTERJOURNAL,

Vol. ??, No.??, 2001

G. HuszeRL, M. DAL CIN, I. MAJZIK, K. KOSMIDIS AND A. PATARICZA

tree according to the state hierarchy. Transitions on dif- eventsask downandup are collected in placesskQ downO
ferent branches of this tree can fire independently, while andup0, respectively (these events are generated by actions).
the conflicts of transitions being on the same path from At the end of a step, a token appears at the pRiEADYand

the root to a leaf are resolved by the priority scheme atoken from a non-empty place on the left side is movedto a
(the transition being closer to the root has lower prior- place representing the selected evesk(, downlor upl).

ity). Conflicts among transitions emanating from the It corresponds to a non-deterministic selection of an event
same state are resolved non-deterministically. by the dispatcher. All non-selected events are preserved and
no more events (tokens) can be selected until a new token
appears in the pladeEADY. The selected event can be pro-
cessed by accessing the token on the right side. For example
if an up event triggers two concurrent UML transitions then
the SRN transitiorsplit up has to be inserted to generate to-
kens in two placesncons0 andunconsl.

Semantics of timed transitions: The standard UML does
not define the semantics of timed transitions, therefore
the relationship of guard evaluation and time progress
is not specified. We will define various patterns for the
possible combinations of timing and guard evaluation.

Step semantics: The transitions of the UML statechart fire

in steps, i.e. a stable state configuration is reached only
if the maximal set of enabled transitions has already
fired. In contrary, SRN reaches a stable state after each
firing. Since guards are evaluated in stable states, the
behavior of the UML state machine and of the SRN
model may differ. The consistent evaluation of the
guards has to be forced in the SRN.

The main distinguishing feature of the semantics of
UML statecharts and of SRN is that the firing of SRN
transitions has only local effects, i.e. the firing of a tran-
sition depends only on the source places and on the
guard and timing of the transition, and modifies only its
local environment. There is no central event dispatch- FIGURE 2. SRN pattern of a non-deterministic event dispatcher
ing, and firings of transitions enabled by the same stim-
ulus cannot be divided into steps. Accordingly, event
dispatching, the synchronization of guard evaluation,
and the step completion need extra constructions in the
transformation.

downQ

downl :

upl

uncons 0

0

7

uncons_1

split_up

Figure 3 shows a subnet belonging to the pattern for the
FIFO event dispatcher. The pattern presented here depicts
only two kind of eventsyp anddown), but the concept is
the same for more events. The input of the queue structure
is at the top of the figure, and the output is at the bottom,
therefore the tokens will flow downwards in the figure. Here
the length of the queue is three.

The general transformation patterns introduced above are There are three columns (of the length of the FIFO) of
presented in [HMOQ]. In this section we show typical ap- places: the left-most group is controlling the FIFO structure,
plications of the patterns by subnets (corresponding to thethe other two groups are for storing the different events. The
example in Section 7). tokens representing the incoming events arrive at the top of

In the figures, the guards of transitions will be depicted as the figure to placespOanddown(Q and the just selected one
expressions in square brackets, placed close to their guardeik issued at the bottom in plac@1or downl The structure
transitions. Aplace namen a guard, or anark(place name) of the pattern guarantees that there are either exactly zero or
expression is true if and only if the named place is not empty. two tokens in each row. If there are two tokens in a row, one
‘I “&&” and * | |” are logical NOT, AND and OR opera- of them is placed in the left-most (i.e. controlling) column.
tors, respectively. The guafduard] means an arbitrary If the queue is full, the incoming tokens will be discarded
guard expression. (by transitionsdiscardup anddiscarddown), else they are

placed in the uppermost place of the column corresponding
4.2.1. Event queue and dispatcher to the type of the evenup_queue2 or downqueue2, re-
We have defined two patterns for event dispatchers [HMOQ]. spectively). Simultaneously a token is generated in the up-
One is selecting events from the queue non-deterministical-permost placequeue2) of the control (left-most) column.
ly. It is easy to implement with SRNs, and it covers all po- The pair of tokens is running downwards to the bottommost
tential behaviors. Another dispatcher is also elaborated, se-row with a free place in the control column. Accordingly,
lecting events in the order of their arrival (FIFO, First In, if there is an event on the n-th place of the UML event dis-
First Out). These dispatching policies are adequate for dif- patcher queue, then there is a token in the n-th place (from
ferent applications. Both of them can be extended also to the bottom) of the operation column and of the column cor-

4.2. Transformation patterns

support multi-level priority dispatching.
Figure 2 shows a subnet corresponding to the pattern for

responding to the type of the event as well.
Dispatching of events is modeled in the same way as in

nondeterministic event dispatcher. Tokens representing thethe case of the non-deterministic event dispatcher (tokens

THE COMPUTERJOURNAL,

Vol. ??, No.??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS 7

and “down” have to be understood accordingly.) A transi-

down0 tion with higher priority is located closer to the leaves, and
discard_down non-conflicting transitions and conflicting ones with equal
[down_queue 2] priorities are located on different arcs of the tree. Compound
| Tidown_queue 2] transitions are mapped to a set of simple transitions.

A
> down_queue_2 AA

| ['down_queue 1]

<> down_queue_1

| ['up_queue 0] | ['down_queue 0]
> up_queue 0 <> down_queue 0

READY

upl downl

it up FIGURE 4. The tree structure of the priority relation

Figure 4 shows a small statechart as an example. 8 tran-
sitions @ to g) are presented, all of them being triggered by
the same event. (Transitions triggered by other events are not
FIGURE 3. SRN pattern of a FIFO event dispatcher depicted.) The tree structure of the transitions is shown at the
bottom of the figure. The structure of the tree strongly de-
pends on the priority structure of the transitions to be trans-
formed.

The tree structure can be considered as a tree-like daisy-
] - chain of the UML transitions. When an event is selected, the
4.2.2. Hierarchy of states and transitions . tokens representing the selected event should run through
One important feature of statecharts is the hierarchical struc-ie tree from the leaves to the root. On parallel arcs they run
_ture of states. A state of an SC can be a _bgsic state (Containsimultaneously, the arcs are synchronized only at the join
ing no other states), an OR-state (containing only substates,sints. Every transition has to know, whether the transi-
being active alterpgtively if the state itself is actiye), Or an yions with higher priority have consumed the event or not,
AND-state (containing only concurrent sub-machines). because an enabled transition may only fire if the transitions

Transitions are enabled when their source states are acyyith higher priority could not fire. In the tree structure, the
tive, their triggering event is dispatched and the guard ex- yansitions get the event in the order of their priorities.
pressions of the transitions evaluate to true. Two transitions Accordingly, the SRN representing the selection of UML
are conflicting when firing of one of them inhibits the other yanitions is a tree of interconnected subnets (each of them
from flr!ng, that is the intersection of the two sets of states representing a single UML transition) with an auxiliary con-
they exit is not empty. trol structure. This control structure consist of two chains

Transitions originating from substates of the source state ¢ places, where the tokens representing the events can run
of another transition have higher priority than the other tran- through the tree. A given token runs on one of the chains,
sition. When several transitions are enabled, the maximal,\hen the event is not yet consumed by the transitions on the
non-conflicting set of them (with maximal priority) may firé given arc of the tree, and the token runs on the other chain,
at the same time in a single step. The priority relation de- \yhen the event is already consumed. These chains will be

fines a partial ordering relation over the set of the transi- \eferred to in this paper as chains of unconsumed/consumed
tions (because there can be source states not containing eacfents.

other). Partial ordering relations are usually represented as Figure 5(b) shows the SRN pattern of a simple (i.e. not
tree structures. N _ joining) node of the tree, belonging to the UML transition
The priority relation of transitions has to be implemented presented in Figure 5(a). The UML transition is represented

by the transformation. The transitions triggered by the same by the SRN transitiomp_t1. The places of the SRN subnet
event can be arranged in a tree corresponding to the hier‘represent the following items:

archy of the transitions. (Trees are depicted having root at
the top and leaves at the bottom, thus the directions “up” e Predecessor states, i.e. states to be left when the UML

uncons_0 uncons_1

are forwarded by the “split’-transitions to the places repre-
senting unconsumed events).

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

8 G. HuszeRL, M. DAL CIN, I. MAJZIK, K. KOSMIDIS AND A. PATARICZA

e The guard ofup_t1 contains the expressianG1 (belong-
ing to the guard of the UML transition) ardS that refers
wIUeH e to the predecessor state. Note first that the guard of this
@ racio transition refers tdS, while it is connected tdS.n (and

DG_n). The distinction between the input/output places of
the transition (the “next” places) and the places referred to
in its guard (the “last” places) will be described in details in
section 4.2.4. Second, checking of the marking of the place
[DS] is necessary to avoid firing when a token is generated
to a “next” place by another transition.

In this example a simple timing policy was chosen, where
the fastest of the enabled conflicting transitions can fire.
There are other possible policies as well, some of them are
uncons 1 described in section 4.2.3.

If there are two conflicting transitions of the statechart en-
abled at the same time then the firing of the corresponding
SRN transitions occurs as follows:

uncons_2

cons_2 | Qasko

up_tl
[UG1 && DS]

up_t1_not

rae=10 [1UGL||!DS [!DS 1

(b)

FIGURE 5. A simple UML transition (a) and the corresponding

SRN pattern (b) e If one them has higher priority than the other one, then

it is placed closer to the leaves of the tree structure, and
the sub-SRN corresponding to the other transition can
transition fires (in this case it is only the st@§). The only fire if the event was not consumed by the sub-SRN
predecessor states are the source state of the transition ~ corresponding to this transition. N
and all of its parent states which are not parent states ® If they have the same priority, then the transitions are

of the target state. They can be identified by looking at placed on different arcs of the tree, and the conflict is
the static structure of the statechart. Here both the pre- ~ resolved by the guards and the firing times of the timed
stateDC. fire in the same step, because the one of them firing

There could be also other states to be left, namely the first removes the token from the “next” place represent-
active states of parallel regions of the SC. These states iNg the common parent state to leave. If two transitions
can not be identified unambiguously by the static anal- have no common state to leave, they are not conflicting.
ysis of the SC, thus exiting these states necessitates an
other construction (described later). These states would
not be represented in the SRN corresponding to the
transition.

e Successor states, i.e. states to be entered when the tra
sition fires (in this case it is the single st&€). This
set of states can be unambiguously identified by ana-
lyzing the static structure of the statechart.

e The chain of unconsumed events. At the beginning of é

uncons_4

A joining node of the tree only merges the event chains
of the subtrees (Figure 6). All of the UML transitions in the
subtree have higher priority than any transitions along the
common path of the tree above the joining node, therefore
"the event is unconsumed in this common path if and only if
the event was not consumed by any of the transitions of the
subtree.

a step, the selected event is not consumed, i.e. no tran- cons 4
sition has fired processing that event. Accordingly, the

tokens representing the event appear in the chain of un- 2
consumed events on the several arcs of the appropriate waiting up. 2.3
tree structure of the triggered transitions. In Figure 5,
placesunconsl anduncons2 are in this chain.

e The chain of consumed events. The token represent-
ing the event will be moved from the chain of uncon-
sumed events to the chain of consumed events (here cons2 uncons 2 maQ uncons 3
placecons?), if the transitionup_t1 fires. If up_tl can- ! t
not fire, up_t1_not fires, putting the token to plaaen-
cons2, i.e. the event remains unconsumed. (The guard FIGURE 6. SRN pattern of a joining node in the tree structure
of the transitionup_tl_not describes thatip_t1 cannot
fire.) The event is already “consumed” in the common path

e Eventsending by the transitions is implemented by out- when some of the transitions of the subtree have already
arc(s) from the timed SRN transition to the appropriate fired (they had carried over the tokens on the “consumed”
place(s) of the event dispatcher Here a token is passedchain) and the other transitions could not fire (they passed
to the placeaskQ on the tokens along the chain). This construction ensures

up_cons 2 3

up_3_uncons
[waiting_up_2_3]

up_uncons 2 3
up_2_cons

up_2_uncons up_3_cons
[waiting_up_2 3]

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS

predecessor states predecessor states predecessor states

that if the token representing the event reaches the root of
the tree, no more sub-SRNs corresponding to transitions of
the statechart will fire, the step have to be finished.

In our example the two joining arcs are represented by the
place paireons2, uncons2 andcons3, uncons3. Accord-
ing to the previous pattern (Figure 5), one token can be found
either in placecons2 or in placeuncons2, and another to-
ken either in placeons3 or in placeuncons3.

If the event was not consumed by the transitions on the
joining arcs, then there are tokens in placesons2 and
uncons3. In this case transitionp_uncons2_3 can fire, and
the control is passed to a transition on the common (joined)
arc with lower priority (here atoken is put to plasecons4)
or, if there are no transitions with lower priority, a token is
put to the placé&READY.

If the event was consumed by one or both of the transi-
tions on the joining arcs, then there is a token in plemes 2
or/and in placecons3. Thus, transitiorup_2_consor/and
up_3_conscan fire. Token(s) will be put to the plaegit-
ing_up_2_3, which may enable to remove the token from the
place representing an unconsumed event (if any). If there
are as many tokens in plaeaiting-up_2_3 as the number of
arcs to be joined (here 2), then transitiop.cons2_3 will
fire and a token appears in the plamms4representing on
the common arc that the event was already consumed.

It can be proved that the properties of the UML SC se-
mantics are satisfied by these patterns, i.e. an SRN transitior4.2.4. Step semantics
corresponding to an UML transition can only fire if the pre- The UML semantics requires the evaluation of the guards
decessor states of the transition are active, its guard evaluatesf the transitions at the beginning of a step, before firing of
to true and no transition with higher priority was enabled and any transition. The guards refer to the consistent state con-
triggered. figuration before the actual step. In SRNs, the guard of a

transition will be evaluated just before the given transition
4.2.3. Semantics of timed transitions fires, the evaluation is not scheduled to the beginning of a
The relationship of timing and guard evaluation is not spec- “step” and the results are not stored. In SRNs it is possible,
ified in standard UML. In our approach, time delay is as- that some transitions have already fired before the guard ex-
sociated with UML transitions, assuming that this delay is pressions of another transitions are evaluated. To the correct
produced e.g. by program code execution or communicationevaluation of guards the last stable state configuration of the
delay. Accordingly, the guard expressions have to be eval-state machine (i.e. the state before the actual step) must be
uated before the firing of the (timed) transitions. Another recorded. To do that, the places representing the states of the
possible way is to associate the delays to the states, wheréSC are duplicated. For a stafethere is a placé\ contain-
the evaluation of the guards and the selection of the transi-ing a token if and only if the staté was active just before
tions is preceded by some delay. In our opinion, the former the actual step (called in the followitast place), and there
approach fits better to the majority of practical problems. is an other placeéA_n containing a token if and only if the

We describe three possible semantics for timed and guar-state A will be active after the actual step (calladxt place
ded UML transitions and their transformation patterns. They in the following).

[guard] ['guard] [guard]

[guard]

[guard]

successor states successor states

b.

successor states

a C.

FIGURE 7. Models for combining guards and timing

that the transition can only fire if the appropriate state was
active before the actual step. The three figures show sub-
SRNs corresponding to the transitions of the statechart.

The types and parameters of the timed SRN transitions
correspond to the types and parameters of the correspond-
ing SC transitions. The timing policy (resampling, race with
age/enabling memory, ...) is determined by the designer (and
must be implemented by the SRN-tool used for the analysis).

may fit to different applications. The three alternatives are as
follows (Figure 7 shows the implementations):

e The selection of the transitions is irrespective of timing

().

The guard has to be true during the delay else the tran-
sition will be deselected (b).

The “fastest” enabled transition wins (c). This is the
one used in the example in this paper.

The placesDS.n and DG_n in Figure 5 depict thenext
places, while the guards of the appropriate transitions in the
subnet are expressions over marking of the places record-
ing the last stable state of the system (iast places). The
contention is for the tokens of thextplaces, while théast
places provide a consistent guard evaluation during the firing
of the guarded transitions.

This concept necessitates a synchronization of the dupli-
cated places at the end of each step. In the tree structure

Since only enabled UML transitions can be selected for of the triggered transitions, when the token representing the
firing, the first transitions of each pattern below must be selected event reaches the root of the tree, it is passed to
guarded. This guard contains the guard of the appropriatea synchronization chain This chain controls the synchro-
UML transition extended by a conjunctive term to express nization of the duplicated places. All states of the SC are

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

10 G. HUszERL, M. DAL CIN, |I. MAJzIK, K. KOSMIDIS AND A. PATARICZA

included in this chain, where every state precedes all of its 4.3. Composition of subnets

substates, otherwise the order is arbitrary (we used a depthThe SRN corresponding to a given UML statechart is com-

first order). In the SRN model, the synchronization chain . :

. 4 . posed of the subnets (transformation patterns) like those pre-

is the chain of places corresponding to the SC states. The . . :
o : . sented in the previous sections. The subnets are connected

synchronization of the duplicated places could happen inde-

pendently, but this non-deterministic order would increase with each other according to the interface places identified

the state space of the SRN without any further advantage.by_IEE ieelrg;sg:rm?\:Jnn:Eer(?fttea:?t:rns is the followina:
The fixed ordering avoids this kind of state space explosion. y P 9

sps<::>

e The number of event queues and the type of the event
dispatcher(s) is defined by the designer (additional in-
L~ psaapsn formation is attached to the UML model). Global event
- dispatching, event dispatching per objects, event dis-
patching per statecharts, FIFO or non-deterministic dis-
patching can be selected.

&& S DY)

]
['DS&& DS n|| [Zi&f_ ,';]S‘n e There are as many transition hierarchy trees as the num-
DS&& DS n&& DC] ber of events handled by the transitions of the state-
s DG charts of each event dispatchers.
e The number of sub-SRNs representing transitions is the
FIGURE 8. Synchronization of the duplicated places same as the number of transitions in the model.
e Each state of the statechart is represented by a pair of
places in the SRN.

Figure 8 depicts the synchronization pattern of s8 e For each state of the statechart, there is a synchroniza-

where place®SandDS.n are synchronized. There is a to- tion subnet.

ken in DS if and only if the stateDS of the SC was active
just before the actual step, and there is a token in [ix&a

if and only if the stateDS of the SC will be active after the
actual step. The pladeC represents the direct parent state
of DS The placess DSandS DG are two places in the syn-
chronization chain. A token is passed fr@DSto SDG

(for synchronizing the next state in the order of the synchro-
nization chain) ifDSandDS.n are already synchronized by
the transitions on the right side of the figure, or the places
are cleared when the parent statd&is not active.

This pattern not only synchronizes the duplicated places,
but also corrects transient inconsistencies in the markings.
Due to the incompleteness of identifying the dynamically
changing set of active states when an SC transition fires, the5' FAULT MODELING
tokens must be removed from places representing states conh this section it is shown how faults and errors can be mod-
sidered to be inconsistently active, since their parent stateseled by defining appropriate fault/error models. The follow-
are inactive. Remember that the predecessor states on Figing types and locations of a fault can be distinguished. De-
ure 5 are only the source and parent states of the SC transisign faults can exist in hardware and software. (In fact the
tion, which are to be exited. However, there may be other co-design paradigm is gradually making hardware and soft-
states also to be exited, namely the active substates, andvare indistinguishable.) Certain physical faults occur inside
the active states of parallel regions of states to be exited.a single component of the system and can be handled by that
Since they cannot be identified statically, these states werecomponent. Some physical faults occur inside a component
not emptied when the predecessor states were exited. Thidut must be handled by another component. External faults
inconsistency must be resolved at the end of the step. Noteoccur in the environment and are often transient. Faults can
that this vanishing problem does not affect the result of the give rise to errors, that is to undesired system states, which
step. in turn can lead to the failure of the system [LA90Q].

For example, on Figure 4 a small statechart is presented. Augmenting the system model with a realistic fault model
The predecessor states of the transiticare AB1AA AB1A is the basis for the dependability analysis. Faults are mod-
andAB. If ais enabled then eitheékB2Aor AB2Bmust be eled, for instance, by message losses or loss of synchrony.
active (since their parent stafB is active). It cannot be Errors can be modeled by so-called state perturbations. State
identified statically, which of them is active at the given sit- perturbations include distinguished states corresponding to
uation, therefore they do not appear in the set of predecessodegraded performance of the modeled system, paths lead-

The initial state of the SRN is defined as follows. If the
event queue contains events in the initial state then these
events are represented by the initial marking of the appro-
priate places. The initial state configuration of the SC has
to be mapped to the SRN by inserting tokens into the cor-
responding pairs of places. The initial marking of the place
READY has to be 1.

The external environment can be modeled (in closed sys-
tems) by separate UML statechart(s) which will be trans-
formed to SRNs with outarc(s) to the appropriate places of
the event queue(s).

states ofa. Before the end of the step wherfires, the ac- ing to such states, erroneous state transitions, trigger events
tive one of them must be exited, because their parent statedue to external faults giving rise to erroneous state transi-
ABwas exited. tions and the use of guards to express fault-tree like failure

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS 11

conditions. Thus, a wide spectrum of possible errors can be These faults are injected by the transitiéthg&ndF2. The

modeled. modeler has only to provide the corresponding failure (fir-
Our error-model is based on the notion of state perturba- ing) ratesinj’ and‘loss’.

tions. For example, unintended state transitions are state per-

turbations. An unintended transition from stat&o stateq 6. MODEL ANALYSIS

may be due to a permanent or temporary fault gnaay
be an erroneous state. An unintended state transition due tol '€ model can be analyzed by the SRN tools PANDA or

a temporary fault occurs at most once in the considered pe_SPNP. In certain cases (in the case of exponential transition

fiod. An unintended state transition caused by a permanentﬁring times) analytic solution is possible, otherwise simula-

fault can occur whenever the system is in the state that giveslion has to be performed. If a steady state exists then steady

fise to the erroneous transition. Such state perturbations carstate measures can be computed, otherwise transient analy-

be modeled by binary and reflexive relation over the state SIS can be executed. _
space of a SC [Dal98a, Dal97, Dal98b, Hus98]. The results of the analysis of the SRN (and so of the trans-

Signal losses can cause that events or in-state guards arfPrmed UML model) are, for example,

not observed. The trigger event is lost or the guard always , ihe reachable state configurations of the system,
evaluates to TRUE. This way, also sensor and actuator faults ;e expected probability that a state is active

or loss of messages can easily be modeled. e the expected value of the throughput of a transition,
Finally, using guards also dependability requirements, ex- , the expected probability that a transition is enabled,
pressed as negations of fault trees over componentstates, cay he expected probability that a transition fires.

be integrated. This way, dependability requirements, result-
ing from the requirement analysis, can directly be integrated These results can be utilized to gain both performance and
into the system model. For instance, a fault tree defining dependability measures of the model.
possible collisions of certain devices, that could lead to the Simple performance measures (throughput, utilization)
failure can be specified as guard expression. can be derived directly from the above presented results. In
As mentioned, our fault model includes corrupted actuator more complex cases, user-defined reward functions can also
and sensor signals. Besides modeling the loss, duplicationbe used.
or corruption of events (spurious events), a guard can also Dependability-based analysis in this framework requires
sense an active signal state as being inactive and vice versathe explicit modeling of faulty behavior and the explicit
In this case we duplicate the places corresponding to signalidentification of erroneous states, as presented in the pre-
states (Figure 9). Plagg€ models the state of the signal and vious section. The analysis of the probability of erroneous
placeA models the presence of the signal (public state). A states leads to reliability (if no repair is modeled) and avail-
fault occurs when place&’ andA have different markings ability characteristics (if repair is modeled). Analogously,
(see below). The arc annotatidfmark(...) defines a state safety figures can be derived by distinguishing the unsafe

dependent capacity of the arc. For examplenérk(A) = states in the model. Other, application-specific measures
0, then firing of the output-transitioh depends only onthe may combine performance characteristics with fault mod-
marking of place\'. eling (e.g. the performance of the system in the case of an
error, utilization of a repair facility, etc.).
rate="inj’ The analysis of detailed GSC and statechart models is
F1 [!mark(A’)&& 'mark(A)] very time consuming and needs high-performance comput-
/[ers. Full models of realistic applications are usually above
the complexity modern tools and computers can handle.
A A Thus, quantitative analysis should be focused on certain sys-
1 tem components such as core parts of the embedded con-
mark . . .
rate="loss trollers. They can be modeled in more detail, while the other
F2 [mark(A’)] system components need not be modeled in details. Here
T rate=10 the connection with the system-level structural dependability

_ _ analysis [BMM99a] could be important: system-level sen-
FIGURE 9. Modeling of corrupt signals sitivity analysis can identify critical components, while the
analysis of dynamic behavior provides parameters useful in

There are four cases: the computation of (system-level) dependability attributes.

1. Both places are empty, the transitibican not fire. Another way to reduce complexity is to deduce from the

2. Both places contain tokens, the transitionan fire. statechart model certain scenarios and to model them by

3. Only A’ contains a token, i.e. the fault 'signal is lost’ sequence diagrams. Usually these sequence diagrams are
has been injected. Then the transitibian fire. much less complex than the statechart model itself. The

4. OnlyA contains a token, i.e. a spurious signal has been transformation of sequence diagrams to SRNs was also elab-
injected. Then the transitiof can not fire. However, orated. Performance characteristics like run time, termina-
the guards of other transitions (which refer to this pub- tion probability of selected scenarios can be computed by
lic state) evaluate to TRUE. the SRN tools [DHK99a].

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

12 G. HUszERL, M. DAL CIN, |I. MAJzIK, K. KOSMIDIS AND A. PATARICZA

7. AN EXAMPLE | — 1 m—— |
. . * :
Although the mentioned transformatlon procedures have e S ﬁ Fai
been worked out, no examples of applying the transforma- donn w PP ot ("
Crash !

tions for large systems are available yet. Accordingly, we
are not able to provide real quantitative assessment of the
transformation, however, some qualitative remarks are pos- FIGURE 11. Statechart model of the table (hardware)
sible.
We illustrate our approach by a small example of a fault-
tolerant system, a variation of a production cell model chartwas transformed to an SRN with 373 places, 472 tran-
[LT94, MPW97]. The system contains a press that processessitions (304 guarded, 82 timed), 547 inarcs and 558 outarcs.
metal plates, a robot with an extensible arm (with an elec- To illustrate the modeling, the statechart corresponding to
tromagnet) for loading and unloading the press, and a re-the hardware of the rotary table is depicted on Figure 11.
pair console. The feed belt as well as the deposit belt are For the quantitative analysis of the models, the SRN tool
not modeled explicitly. The breakdown of the press can be PANDA was used. The transformed GSC model (as the
sensed by the repair console. Then the repairman (worker)components are strongly coupled by the guards) has 9316
can repair the press. Also the robot arm may stuck and thenreachable states. The size of the state space of the full state-
be repaired by the repairman. chart model increases if FIFO dispatching policy is selected;
The complete UML model of an extended version of this the increase depends heavily on the length of the queue.
example is given in [CDH98]. It comprises a requirement With PANDA, for example, the following parameters can
model, an object model, a deployment model and packages.be examined: absorbing states of the system or of its compo-
nents, the number of reachable states of the system, the ex-
e The requirement model describes the actors and usepected number of firings of a given transition until an given
cases of the modeled system. Typical scenarios arepointin time, the expected time the system spends in a given
modeled by sequence diagrams. state until a given point in time. From these data perfor-
e The static view of the system is captured in class, ob- mance and dependability measures (defined by reward func-
ject and deployment diagrams. The object model of the tions) like throughput, utilization, mean turn-around time,
production cell is organized around the four object dia- reliability, availability, etc. can be derived.
grams: ProductionCell, Controllers, Machines, and En- Various performance and dependability results were com-
vironment. The deployment diagram describes a possi- puted [DHK99a]. For example, computing the utilization
ble architecture of the system and shows a given assign-of the repairman as function of the elapsed time shows that
ment of the components to the nodes; e.g. centralizedthe utilization increases to 0.15. The throughput of the sys-
or distributed control. tem (the mean number of forged plates per time unit) was
e The dynamic view of the system is given by the state- also computed as function of the signal loss rate. There is a
charts. According to our modeling approach, each de- domain between 10 and 1000 where the throughput is par-
vice model consists of a hardware behavioral model and ticularly sensitive to the loss rate (the throughput rapidly de-
the statechart of the corresponding controller (a single, creases to 20%).
central cell controller or that of several distributed de- Special scenarios like the break-down of the robot arm
vice controllers). and its repair were analyzed as special scenarios. The distri-
. ... bution function of the time to load the press after the break-
In the following, we concentrate on the dynamic View in -y shows that in average 64s is required. Another experi-

the form of GSC and full statechart _diagrams. . _ment compared the fault-free case and the scenario when the
The complete GSC model comprises 5 statecharts (With 9 gjo o from the robot control was lost twice. The average
state transition diagrams and 34 basic states, of which 8 arey ration increased by 33%.

sensor states and 8 are actuator states). The GSC model of

the press (Figure 10) consists of two_componer_ﬂs, one for t_he8_ CONCLUSION
hardware of the press, and one for its controlling unit. This
part of the model contains 2 sensor and 4 actuator statesWe presented a method which allows quantitative depend-
(The guards of some transitions on the figure apply to statesability and performance analysis of systems modeled by us-
of another components not presented here.) A possible maling UML statechart diagrams. To find a trade-off between
function of the press hardware is modeled as a kind of statethe details of modeling and the complexity of the analysis,
perturbation, which can be detected by the controlling unit. both the higher-level, simplified formalism (GSC) and the
For the sake of simplicity, the transitions of the reparation full UML statecharts were supported by the transformation
are omitted. and the corresponding analysis.

The full statechart model of the same system consists of Our transformation from UML statecharts to Stochastic
one single hierarchical statechart with 15 concurrent statesReward Nets covered a large subset of model elements in-
containing 50 substates, and 68 transitions triggered by 42cluding event processing, state hierarchy and transition pri-
events (14 timer events). A single global event queue is sup-orities. By using the transformation and analyzing the re-
posed with non-deterministic dispatching policy. This state- sulted SRN performance and dependability measures can

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

QUANTITATIVE ANALYSIS OF UML STATECHART MODELS OFDEPENDABLE SYSTEMS 13

HW CTR
° °
| (o) IWork weight=0.01 [N [L oaded] [Failure]
Wait Process Failure Ready Work Crashed
rate=10 rate=10
[Unloaded] weight=0.99 [Unloaded] [Done]
rate=10 rate=10 rate=10
Done Processini Bu:
(Loore i o{ o =

R g Wark’
? <t [Work] gy KO Failure { [Loaded] FatE]ZO Crashed’
t rate=10 weight=0.01 O Failure rate=10 Q Crashed
[Unloaded]

rate=10 weight=0.99 [Done]
@one ,L

rate=10
rate=1 Processing
Done' Busy Busy’

FIGURE 10. GSC model and the corresponding SRN model of the press

be computed. This way the possibility of UML to model Real-Time Dependable Systems (WORDSM6@hterey, Cal-
and analyze error-prone and fault-tolerant system behavior ifornia, USA, November 18-20. 1999.

is greatly enhanced. Since the analysis is based on a detaile@®G96: M. Bernardo and R. Gorrieri. Extended Markovian pro-
model of the system, in the case of complex systems this cess algebra. In U. Montanari and V. Sassone, edi@@s\-
kind of analysis should be restricted to core critical parts of CUR'96, 7th Int. Conf. on Concurrency ThepbNCS 1119,
the system. pages 315-330, Pisa, Italy, 1996. Springer Verlag.

The transformations were presented in the form of trans- BMM99a: A. Bondavalli, I. Majzik, and I. Mura. Automated de-
formation patterns. The properties of the resulting SRN sat- ~ Pendability analysis of UML designs. IRroc. 2nd IEEE
isfy the requirements defined in the UML standard. The Int. Symposium on Object-Oriented Real-Time Distributed

. .) . Computing (ISORC’99)aint Malo, France, 1999.
number of places and transitions in the generated model is
. . BMM99b: A. Bondavalli, I. Majzik, and I. Mura. Automatic de-
proportional to the number of model elements in the state-

pendability analysis for supporting design decisions in UML.
chart. The generated number of states (state space of the un- | boc. HASE’99, Fourth IEEE Int. Symposium on High As-

derlying Markov chain) corresponds to the number of state surance Systems Engineering/ashington DC Metropolitan

configurations of the UML model. Area, USA, November 17-19. 1999.

CBCt92: G. Ciardo, A. Blakemore, P. Chimento, J. Muppala, and

ACKNOWLEDGEMENTS K. Trivedi. Automated generation and analysis of Markov re-

ward models using Stochastic Reward NetsLiimear Alge-

This work was partially supported by the projects ES- bra, Markov Chains and Queueing Mode&pringer Verlag,

PRIT Open LTR 27439 ‘HIDE’, the Hungarian-German Re- 1992.

searchers Exchange Program No. 8., OTKA-F030553 andCDH*98: Gy. Csemh, M. Dal Cin, G. Huszerl, J.a¥orszky,

OTKA-T30804 (Hungarian NSF). K. Kosmidis, A. Pataricza, and Cs. &Z. The demonstrator.

Technical report, Project deliverable HIDE/D5/TUB/1/v2,
1998.

REFERENCES CMT89: G. Ciardo, J. Muppala, and K. S. Trivedi. SPNP -

AD97: S. Allmaier and S. Dalibor. Panda - Petri net ANalysis and stochastic Petri net package. Rroc. IEEE 3rd Int. Workshop
Design Assistant. Ifools Descriptions, 9th Int. Conf. on on Petri Nets and Performance Models (PNPM’'8fpges
Modeling Techniques and Tools for Computer Performance 142-151., Kyoto, Japan, 1989.

Evaluation (Tools’97)St. Malo, France, 1997. Dal97: M. Dal Cin. Verifying fault-tolerant behavior of state ma-

AM91: M. Ajmone Marsan. Stochastic Petri nets: An elementary chines. InProceedings of the Second IEEE High-Assurance
introduction. In G. Rozenberg, editékdvances in Petri Nets Systems Engineering Workshop HASE @ages 94-99,
LNCS 424, pages 1-29. Springer Verlag, 1991. Bethesda, Maryland, 1997.

BBK94: F. Bause, P. Buchholz, and P. Kemper. Hierarchically Dal98a: M. Dal Cin. Checking modification tolerance. Rmo-
combined queueing Petri nets. Rroc. 11th Int. Conf. on ceedings of the Third IEEE Intemational High-Assurance Sys-
Analysis and Optimization of Systems, Discrete Event Sys- tems Engineering Symposium, HASE @#ges 9-12, 1998.
tems Sophie-Antipolis, France, June 1994, Dal98b: M. Dal Cin. Modeling fault-tolerant system behavior.

BDLP99: A. Bondavalli, M. Dal Cin, D. Latella, and A. Pataricza. Advances in Computing Scien; 1998.

High-level Integrated Design Environment for Dependability DHK99a: M. Dal Cin, G. Huszerl, and K. Kosmidis. Quantitative
(HIDE). In Proc. Fifth Int. Workshop on Object-Oriented evaluation of dependability critical systems based on guarded

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

14 G. HUszERL, M. DAL CIN, |I. MAJzIK, K. KOSMIDIS AND A. PATARICZA

statechart models. IRroc. HASE'99, Fourth IEEE Int. Sym-
posium on High Assurance Systems Engineehivshington
DC Metropolitan Area, USA, November 17-19. 1999.

DHK99b: M. Dal Cin, G. Huszerl, and K. Kosmidis. Transfor-
mation of guarded statecharts for quantitative evaluation of
embedded systems. Rroc. EWDC-10 |Oth European Work-
shop on Dependable Computingages 143-148, Vienna,
Osterreichische Computer Gesellschaft, 1999.

DHR95: S. Donatelli, J. Hillston, and M. Ribaudo. A compari-
son of performance evaluation process algebra and general-
ized stochastic Petri nets. Rroc. 6th Int. Workshop on Petri
Nets and Performance Models (PNPM’9Buke University,
North Carolina, USA, October 3-6. 1995.

Dou98: B.P. DouglassReal-Time UML Adddison-Wesley, 1998.

Har87: D. Harel. Statecharts: A visual formalism for complex
systems.Science of Computer Programmirgy(3):231-274,
1987.

HMOO: G. Huszerl and I. Majzik. Quantitative analysis of depend-
ability critical systems based on UML statechart models. In
Proc. HASE 2000, Fifth IEEE Int. Symposium on High Assur-
ance Systems Engineerifgbuquerque, NM, USA, Novem-
ber 15-17. 2000.

Hus98: G. Huszerl. Formal verification of fault-tolerant systems.
a relational approach to model checking. Master’s thesis, TU
Budapest/Univ. of Erlangen-Nuremberg, 1998.

LA90: P.A. Lee and T. Andersorfault Tolerance, Principles and
Practice Springer Verlag, Wien, New York, 1990.

LMM99a: D. Latella, I. Majzik, and M. Massink. Automatic ver-
ification of UML statechart diagrams using the SPIN model-
checker. Formal Aspects of Computingl1(6):637—664,
1999.

LMM99b: D. Latella, I. Majzik, and M. Massink. Towards a for-
mal operational semantics of UML statechart diagrams. In
Proc. FMOODS’99, IFIP TC6/WG6.1, 3rd IFIP Int. Conf. on
Formal Methods for Open Object-based Distributed Syst.
pages 331-347, Firenze, Italy, February 1999.

LT94: C. Lewerentz and Th. Lindner, editordzormal Develop-
ment of Reactive Systemsmlume 891. ofLecture Notes in
Computer ScienceSpringer, 1994.

MCT94: J. K. Muppala, G. Ciardo, and K. S. Trivedi. Stochastic
reward nets for reliability predictionCommun. in Reliability,
Maintainability and Serviceabilityl(2):9-20, July 1994.

MPW97: G. Matos, J. Purtilo, and E. White. Automated compu-
tation of decomposable synchronization conditionsPiac.
Second IEEE High-Assurance Systems Engineering Sympo-
sium HASE 9/pages 72—77, Bethesda, Maryland, 1997.

OMG97: OMG. UML Semantics, version 1.10bject Manage-
ment Group, September 1997.

RJB99: J. Rumbaugh, I. Jacobson, and G. Boodthe Unified
Modeling Language Reference ManualAddison-Wesley,
1999.

VVPO0O0: D. Varg, G. Varg, and A. Pataricza. Designing the au-
tomatic transformation of visual languages. Rroc. GRA-
TRA 2000, Joint APPLIGRAPH and GETGRATS Workshop
on Graph Transformation Systepgages 14 — 21, Technical
University of Berlin, 2000.

THE COMPUTERJOURNAL, Vol.??, No.??, 2001

