
IWCIT’01

A Design Pattern of the User Interface of
Safety-Critical Systems

Zsigmond Pap, Dániel Petri
Department of Measurement and Information Systems

Budapest University of Technology and Economics

Abstract: This paper describes a design pattern for safety-critical user
interfaces. This design is a version on of the Model-View-Controller
architecture, but accepts safety and ergonomics criteria based on the
literature.

Introduction
A safe system never processes such an operation, which can cause incidents, acci-

dents, human or environment harm. Our life relies on more and more on the safety of
embedded computer control systems, and as the complexity of these systems (espe-
cially the programs) increases, the assurance of the system safety becomes increas-
ingly difficult.

Most often the accidents that are caused by computer, happens due to software
faults or operator errors. These two reasons have two common parts:
• many of the problems occur in an unusual situation;
• the operator errors can be a result of an unadvised program behavior.

Since nowadays can the automated software designer tools highly help the process
of software verification, the programs can correspond to the specification. Unfortu-
nately when the specification has got errors already, the program cannot be good. This
is why the verification of the specification is very important.

 47 safety criteria for software specification has been published by N. Leveson.
These criteria are mainly for the specification completeness and consistency, includ-
ing to the user interfaces as well.

The specification can be written by using UML [1], the de-facto industrial stan-
dard modeling language of the object-oriented systems. Unfortunately the UML has
not got any effective mechanism to specify the user interface of the program. Natu-
rally somebody can use the Use-Case model form to specify the human-computer
interface, but nowadays the programs have very difficult and complex user interfaces,
so they need a more precise methodology, like the State chart or the Class diagram.

These methodologies are very effective, but have not got any support to specify
user interface models. To verify the use of these criteria and general rules we need
some additional constraints in the use of UML. If the designer uses a restricted form
to specify the human-computer interface, the checker program can work more effi-

IWCIT’01

ciently, and some criteria do not need checking: the restricted form structurally satis-
fies them.

This paper describes a design pattern using UML semantics, which supports the
design of the user interface of safety critical systems with applying many of the crite-
ria mentioned above.

User interface problems
In every computer-human interaction the operator has a mental model of the con-

trolled system. This model is different from the real state of the computer, especially
the user interface. This difference, called the “semantic gap” is the main source of the
operator errors, and some property of the user interface can increase this.

Based on real and simulated accidents of airplanes [2] N. Leveson and her team
has identified the following factors as problem sources of operator errors:
• Ambiguous or misunderstood display, which highly increases the semantic gap.
• Mode changing as a side effect. The side effects –independently of their character-

istic- are always very dangerous. They can cause unexpected situations, in particular
when the operator has no feedback information about the unwanted operation.

• Unexpected context changing,
• Unexpected side effect at a function. They are asynchronous operations, which can

cause slips, since the operator cannot recognize the context changing in time, and
continues the intervention. This looks like as an inconsistent or indeterministic be-
havior.

• Inconsistent operation; In this case the operator gives a sequence of operations to
the system twice from the same starting state, but the result in the two cases are not
the same. Note that, the basic indeterminism (without unexpected context changing)
has two types. The first is the mathematical indeterminism. In this case the automa-
ton has a state from where starts a set of transition into another state at the same
event, and a machine chooses one randomly. This type of indeterminism is well
checkable.
The second type is the virtual indeterminism. In this case the automaton is mathe-
matically deterministic, but the operator cannot observe one of the internal state
variables. As a result, the behavior of automaton can be different according to this
hidden variable. For the operator this looks like an indeterminism.

• Lack of feedback of operator events. If the operator does not receive some kind of
feedback information about the command, they will repeat it. This can result in un-
wanted multiple commands.

• Lack of operator rights. This means that, the operator should access one of the sys-
tem functions, but he is unable to do this due to a problem. For instance the operator
can switch ON the engine, but can’t access the OFF menu.

Design Patterns
At the development of a system it is a natural demand not to plan it from the prin-

ciples but reuse as much proven solutions and structures as possible. The design pat-
tern is suitable for this purpose. It is intended to document a problem in a context, it

IWCIT’01

1

1 1

Model
View

Controller

*

Controller

View

Model

Model-View-
Controller

Pattern

*

1

Figure 1. Structure of the MCV

gives a core solution to this problem, which can be configured or customized, and it
also names the consequences of applying the solution.

Design patterns have four essential parts:
i) The name of the pattern, which can describe the problem and the solution in one

or two words.
ii) The problem introduces the context and describes when to apply the pattern.
iii) The solution describes the participants of the solution, their collaborations, rela-

tionships, and responsibilities. It is not an exhaustive solution and implementation
to the problem but rather a template which can be applied in many different situa-
tions and contexts.

iv) And finally the consequences, which include the results and trade-offs of applying
the pattern.
We chose the Model-View-Controller

pattern [7] showed by the Figure 1 as a basis,
because it is the most popular user interface
pattern and many of the other interface patterns
are using similar philosophy.

The MVC pattern gives a solution to the
following problem: Most of the applications
handle some data (e.g. make decisions based upon
them or run algorithms on them), display them to
the user and receive user input, which influences
the data. If these tasks are combined into a single
object, they are tightly coupled which limits the reusability of the components and the
changes in any part require changing the whole object. The MVC pattern shows how
to decompose an application into orthogonal parts thus removes their tight coupling
and allowing portability and reusability.

Solution: The participants of this pattern are: Model, View and Controller object
(groups). The Model part contains the application objects; it holds the data of interest
and updates the view and the controller if necessary. The View objects represent the
data to the user and the controller objects receive and respond to events related to the
view of the model.

Consequences: There are many advantages of this structure. If for example we
want to change the way of the data that is displayed to the user, the modifications
influence only the objects included in the View part.

The Safe User Interface Pattern
Leveson [2] and Paterno [4] have published criteria and rules for user interfaces.

Based on these and the general rules of software ergonomics (see in [5]) our pattern
should accept the following criteria-groups. Table 1. shows the detailed criteria.
• Using checkable form (for details see [3])
• Avoiding of operator leaps and misunderstanding
• Handling data modification and consistency
• Satisfying ergonomic criteria
• Time-related criteria

IWCIT’01

Description of the pattern and its functions
The name of our pattern is Safe User Interface pattern.
This pattern gives a core solution to the problems described above, and it is in-

tended to help the developers to take care of the criteria and rules defined in [2] and
[4].

The solution:
The structure of our Safe User Interface pattern can be seen on Figure 2. The

collaborations and responsibilities:
Although this pattern is designed for safety critical systems, this architecture can be
applied to other embedded systems too, where data manipulation functions and safety
described below are achieved.
“Using checkable form (for details see [3])”

As it is based on the Model-View-Controller pattern, its participants (the objects)
are divided into three groups (represented by packages). The most important object of
the controller group is the UIHandler, which processes the user input commands
received from the InputDriver and stores them in FIFOs according to the priorities of
the commands. The OpEventFIFO is the common object, which handles the FIFOs.

The main part of the user interface is one or more final-state automaton, specified
by the state charts in the ScreenHandler classes. The user interface can handle more
than one ScreenHandler object. Such an object can be active or inactive. The setting
of activity state is the task of the UIHandler object. The easiest method is the token-
oriented operation: in the system there is a token, and that ScreenHandler is active,
which has the token.

 When active, the main handler class, the UIHandler can call the DrawSelf func-
tion and can send the keyboard events to this object.
“Avoiding of operator leaps and misunderstanding”

The objects shown in the view group are the interfaces between the user and the
system. The ScreenHandler object holds display objects (e.g. a dialog box or the
whole screen). It has a descendant called DefaultScreenwhere the system must return
after an idle period. The task of the DisplayDriver object is to refresh the relevant
information on the display device. This operation is also controlled by the UIHandler
object.

When the data model is changing, the DataModel class sends an “Invalidate” mes-
sage to the UIHandler, which forwards it to the active ScreenHandler objects, and
they can refresh the information on the screen.

Every user event generates a “bip” sound (using the OutputDriver object), which
is the feedback to the operator. The events can generate another sound if they were
success or they were failed, and –as an alarm- some ScreenHandler object can play
different sounds at the activation or refresh.
“Handling data modification and consistency”

Since the data model is handled by the controller and the user interface too, there
must be a mechanism to allow mutual locking out. The databases use transaction-
oriented data access to solve this problem. This method has the advantage of transac-
tion rollback, which is important, when there is a problem with one of the user com-
mands of a sequence.

The user interface can read data, but the write operation is dangerous, since the
system can get into an inconsistent state. The best method is to allow data modifica-

IWCIT’01

m_BackBuffer
m_LastDraw

DisplayDriver

BeginDraw()
EndDraw()

InputDriver
OutputDriver

PlaySignal()

m_LastChanged

StoredData

Read()
Write()

DataModel

StartTransaction()
ProcessUserOP()
RollBack()
Transmit()
ReadData()

DefaultScreen

UIHandler

Invalidate()
SendUserOP()
Signal()
OnKeyDown()

FIFO

AddUserOp()
ReadUserOp()
GetUserOp()

Safe
User Interface

Pattern

Model View
Controller

1..*
1

*

1..*

1

1

1..*

1

1

1

1

1

1

1

1..*

1

1

0..*

0..1

+TransitionNext

+theBuffer

+theFIFOs

+theUIHandler

<<create>>
<<read>>

+theData

User

OpEventFIFO

AddUserOp()
ProcessUserOp()

m_Command
m_ParameterList
m_TimeStamp

UserOp

m_Active
m_Visible
m_Enabled
m_LastKeyTime
m_SignalOnActivate
m_TimeToDeactivate

ScreenHandler

OnKey()
DrawSelf()
Activate()
Inactivate()
InternalTimeOut()
HandleGenKey()
OnCancel()

Figure 2. The structure of Safe User Interface Pattern

tion only via user command messages, via a dedicated path (the FIFOs). This path
contains one or more FIFOs to store the messages.

The commands stored in the FIFOs are represented by UserOp objects. The
structure of this object allows handling coupled commands (via the TransitionNext
pointer), which is important when canceling operations. The model part contains the
data of the application. The DataModel object is responsible for handling the data
(e.g. read, rollback) and the data is held in the StoredData objects.
“Satisfying ergonomic criteria”

In the embedded systems hardly ever exist a default screen. This is a special ver-
sion of the ScreenHandler. The state chart of this class must have a “Default” state,
which is the start state and the destination of the timeout transitions.

Most of the embedded systems have some special buttons, which are not usable
for general purpose. These buttons should be handled on another level than the other
buttons. To support this, the class ScreenHandler has two Keyboard handler func-
tions: the OnKey for all keys and the HandleGenKey for the special purpose buttons.
“Time-related criteria”
The class ScreenHandler is responsible for timeout implementation when there is no
user activity for a
long time (using the
member variable
m_LastKeyTime
and member func-
tion InternalTime-
Out).

If the system
cannot process one
of the user com-
mands, it can wait
for a long time. To
remove unaccepted
commands from the
FIFOs, every mes-
sage has a time
stamp. If a message
is getting rather old,
the FIFO can remove
it, with the associ-
ated other messages
too.

The data model
object can drop the
operator event
(clearing it from the
FIFO), when it
comes too quick
after the last data-
change.

IWCIT’01

Problems solved by the pattern (the consequences)

Table 1. Properties of the design pattern.

Principle R S P
using of state chart and class model (for UML) ü ü ü
fully specified, and consistent. ü
for all operator event there should be a feedback mechanism ü
all internal states of the currently handled user interface mode should be displayed
for the user (to avoid virtual indeterminism)

ü

no side effects allowed ü
avoiding the overloading of the operator ü
when the information is changing the operator should be warned ü
automatic data refreshing and clearing mechanism ü
the operator commands should not refer to external state variables ü
the internal data model must be protected from direct manipulation ü
the operator commands should be grouped into roll-backable transactions ü
in every UI states, (except the defaults) should be a “Cancel” function ü
shortly after a data-change all operations on the data should be disabled ü
after a time of no user activity switching to the default screen ü
no automatic context switching, except in the former case ü
every operator event should have a time stamp ü

Legend: N = number = Reference number
R = realize = the structure performs the rule
S = support = the structure allow performing the rule
P = possible = the structure does not prohibit performing the rule.

Unfortunately the design pattern does not solve all safety-related problems, but at
least supports them, and allowing the verification of the rule by external checker pro-
grams. Naturally the design pattern should be converted into the particular system,
and this operator can modify the properties shown in the Table 1. Unfortunately the
design patterns have no methods to protect the model.

References
1. Object Management Group: Unified Modeling Language Specification v 1.3. (1999).
2. N. G. Leveson: Safeware: System Safety and Computers. Addison-Wesley (1995)
3. N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese: Requirements Specification

for Process-Control Systems. IEEE Trans. on SE, pp. 684-706 (1994)
4. F. Paternó, C. Santoro, B Field: Analysing User Deviations in Interactive Safety-Critical Appli-

cations (1998)
5. SHNEIDERMAN, B. 1987, 1996. Designing the User Interface. Reading, MA: Addison-

Wesley. ISBN 0-201-57286-9
6. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional Computing Series, Addison-Wesley, Reading
Mass. 1994.

7. Bruce Powel Douglass: Real-time UML: Developing Efficient Objects for Embedded Systems.
Addison-Wesley Object Technology Series. 1997.

