
1

Completeness and Consistency Analysis of UML
Statechart Specifications

Zs. Pap, I. Majzik1, A. Pataricza and A. Szegi

Dept. of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Műegyetem rkp. 9.
Fax: +36-1-4634112

[papzs,majzik,pataric,szegi]@mit.bme.hu

Abstract. This paper describes methods and tools for automatic safety analysis
of UML statechart specifications. Two types of analysis are presented. The first
one checks completeness and consistency based on the static structure of the
specification, thus it does not requires the generation of the reachability graph.
Accordingly, this method scales up well to large systems. The second one
performs dynamic analysis by checking safety related reachability properties
with the help of a model checker. It is restricted to core critical parts of the
system. Two approaches of the implementation of the static checking are
discussed. The use of the tools is presented by a case study.

1 Introduction

Our life relies more and more on the dependability (especially safety) of embedded
computer control systems. As the complexity of these systems increases, the task of
the engineers in specifying, designing and validating the system becomes increasingly
difficult. The need for efficient design has triggered the development of well-
specified and standardized design methods and languages. Such languages should
satisfy multiple requirements. First, designers ask for a general-purpose language
which is easy to understand, close to their way of thinking, and has clearly arranged
(self-documenting) visual models covering various aspects of the system. Second,
validation and formal verification of the design require precise syntax and well-
defined semantics in mathematical terms. Third, the development of integrated,
computer-assisted design environments demands languages which are easy to process,
navigate and manage. The recently created Unified Modeling Language (UML) [1] is
a language designed to satisfy most of these requirements. It is a general-purpose
object-oriented modeling language used to specify, visualize, construct and document
different aspects of systems. UML is expected to become a de-facto standard for the
design of systems from small embedded controllers to large and complex distributed
systems.

UML can be used to construct software specification of embedded (real-time)
systems [2], often implementing safety-critical functions. The specification is usually

1 Supported by the Hungarian Scientific Research Fund under contract OTKA-F030553.

mailto:papzs@mit.bme.hu

2

elaborated by the cooperation of users, domain experts and system engineers.
Unfortunately, it is often incomplete, inconsistent and ambiguous. The errors in the
specification are not only difficult and expensive to correct in the further phases of the
life cycle, but also often lead to safety related failures. Accordingly, the early
checking of the UML specification is crucial.

Our work aims at the elaboration of methods and tools for the checking of some
aspects of completeness and consistency in UML models. We concentrate especially
on the behavioral part of UML, namely the statechart diagrams. Statecharts are the
most complex formalism used in UML (therefore errors occur most likely here) and
have some specific features, like hierarchy and concurrency, which require non-trivial
checking methods.

Our examination is focused on embedded control systems. In these systems, the
controller continuously interacts with operators and with the plant by receiving sensor
signals as events and activating actuators by actions. UML statechart formalism
allows to construct a state-based model of the controller, describing both its internal
behavior and the reaction to external events. Here we assume that the behavior of the
controller is specified by a single statechart (unfortunately, standard UML does not
specify the semantics of interacting objects precisely).

The paper is structured as follows. Section 2 is a short overview of the safety
criteria and checking methods proposed in the literature. Section 3 outlines the main
concepts of UML statecharts. Section 4 and 5 describe our work in static checking
and reachability analysis, respectively. Our automatic tool is introduced in Section 6.
The paper is closed by a short Conclusion.

2 Checking Completeness and Consistency Criteria

A safe system is free from accidents or unacceptable losses. Safety analysis should
identify hazards based on the (formal) model of the system. Accidents related to
computers are usually resulted from flaws in the specification (model). In [1] and [4]
47 formal criteria were defined that should be satisfied to avoid incorrect
specifications. These criteria cover general aspects of the specification of a control
system, including also peculiar ones like environmental capacity and data age.

The most important desirable properties of a specification are completeness and
consistency. Completeness with respect to an embedded control system means that a
response is specified for every possible input sequence, including also timing
variations (early, lately, delayed etc. signals). Consistency of the specification implies
that there are no conflicting requirements and no (unintentional) non-determinism.

Tool support for checking completeness and consistency is required, since manual
checking is error-prone and time-consuming. From the point of view of the automated
methods and techniques, different approaches can be distinguished:
- Pure reachability analysis of the state space of the system can detect ambiguous

situations resulting e.g. from unreachable states, undesired global states (in
concurrent models) or unwanted sequence of actions. The examination of the
global state space requires the generation of the reachability graph, which often
results in state space explosion.

3

- Model checking examines properties expressed in temporal logics. Modern model
checkers try to handle the state space explosion by applying sophisticated
methods in representing and analyzing the global state space (e.g. symbolic
techniques, partial ordering).

- Theorem proving systems require to describe both the specification and the
criteria in a formal logic, and prove that the criteria and the specification are
suitably related.

- Static analysis is performed directly on the model and checks those criteria that
are not related with the global state space.

The automatic tools proposed in the literature are in strict relationship with the
formalism (language) intended to be checked, i.e. the complexity of the checking is
heavily influenced by the formalism. In [5] a black-box system specification language
RSML (Requirements State Machine Language) was proposed which enabled the
automated checking of some criteria [6]. The latest development of the same authors
is the experimental toolset SpecTRM [7] and the corresponding formal specification
language SpecTRM-RL [8]. This language is designed especially to enforce the
satisfaction of the safety criteria and enhance the ability to build tools that check
them.

UML was developed without considering strict rules to force the designer to
prepare a complete and consistent specification. The flexibility and extensibility of
the language, and some of the applied constructs (like internal broadcast of events,
which was identified as one of the typical sources of specification errors [8]) and
semantic constructs (non-determinism) could make the hazard analysis of the
specification of safety-critical systems difficult. However, it has to be pointed out that
UML incorporates a technique to include static constraints on the usage of its model
elements. OCL, the Object Constraint Language [9] is designed to specify well-
formedness rules of the UML model (OCL expressions are used also in the language
definition itself). By defining appropriate rules, well-formedness in the sense of
completeness and consistency can be prescribed and then checked.

UML statecharts, as state-based specifications, can be subject of both static
analysis and model checking (reachability analysis). Static analysis aims at the
checking of general, application-independent criteria, while model checking is
suitable to examine also application-specific requirements. The former checks mainly
the proper static structure of the model, while the latter requires the formalization of
the dynamic semantics of the language.

3 UML Statecharts

UML statecharts is an (object-oriented) variant of classical Harel statecharts [10]. The
statecharts formalism itself is an extension of traditional state transition diagrams
including the following additional concepts (explained with the help of the statechart
presented in Figure 1):
- State hierarchy and concurrency. A state is called a composite state if it contains

one or more substates (e.g. Work contains Phase1, Task1, etc.). A composite
state can be decomposed into mutually exclusive disjoint substates or into
orthogonal substates. In the latter case, the composite state is concurrent and its

4

direct substates are called regions (e.g. Group1 and Group2). Regions must be
further refined into substates (Group1 is refined by Phase1 and Phase2).
States without further refinement, at the lowest level of the hierarchy, are called
basic states (e.g. Passed).

- Compound transitions. A simple transition indicates that the system may change
its state and perform a sequence of actions when a specified event occurs and a
specified guard condition is satisfied (e.g. the transition from Work to
Failure). Compound transitions have multiple segments. Join segments (e.g. to
the state Passed) originate from concurrent regions (representing
synchronization), while fork segments (e.g. from the state Prepare) are
connected to concurrent regions (representing splitting of control). Branch
segments labeled with guards compose different possible paths depending on
conditions (e.g. the transition triggered by the error event).

- History states. A transition drawn to a history state is equivalent to a transition
drawn to the last active direct substate of the composite state in which the history
state resides (the circle with H in Figure 1). Firing of a transition drawn to a deep
history state causes the last active substates of the composite state be entered
recursively.

- Enriched set of events and actions. Events may have parameters. Actions are
distinguished as call, return, send, terminate, create and destroy actions,
according to the (object-oriented) software context.

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

Failure

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

Resum
e H

[non_fatal]

Fig. 1. An example statechart

The peculiarities of UML semantics can be summarized as follows:
- Single event processing. The hypothetical state machine which implements the

statechart diagram processes event instances that are selected by a dispatcher
from an event queue. Events are processed one by one, each after the other.
Accordingly, transitions are triggered by at most one event.

5

- Run-to-completion processing. An event stimulates a run-to-completion step.
Transitions that fire have to be fully executed and the state machine has to reach
a stable state configuration before it can respond to the next event.

- Priority concept. Transitions are in conflict when the intersection of the sets of
states they exit is non-empty. Some conflicts can be resolved by using priorities.
A transition has higher priority than an other one if its source state is a substate of
the source of the other one. If the conflicting transitions are not related
hierarchically then there is no priority defined between them, and the conflict is
resolved by selecting one of the transitions non-deterministically.

- Execution step. The set of transitions that will fire is a maximal set in which all
transitions are enabled (i.e. they are triggered by the actual event, their guards are
satisfied and their source states are active), there is no conflict within the set, and
there is no enabled transition outside the set that has higher priority than a
transition in the set. The firing order of transitions in the set is not defined.

4 Static Analysis

Completeness and consistency can be given as criteria to be satisfied by the
hypothetical state machine (automaton) implementing the statechart specification. The
global states of this automaton are called statuses, its transitions are called step
transitions. Statuses are composed of active states of the statechart by considering that
if a composite state (concurrent composite state) is active then one of its substates has
to be active (in each of its regions, respectively). Step transitions are composed of
(concurrent) transitions of the statechart. Completeness means that in all possible
statuses of the automaton, for all possible events, there must be a step transition (in a
special case an internal transition) defined which is triggered by the event.
Consistency means that in each status, each event should trigger only a single step
transition.

Static checking requires to re-formulate these criteria in syntactic terms of the
statechart, taking into account the UML semantics covering hierarchy, concurrency,
and priority scheme. In the following we examine states, transitions, guards and
compound transitions of the statechart and formulate the criteria in these terms.

4.1 States and Transitions

The hierarchical structure of statecharts could be unfolded to a flat state diagram, but
this representation would not make the checking easier (due to the increased size of
the flat state diagram). Accordingly, we decided to check the hierarchical model
directly. In this model, the basic states fully determine the status of the automaton.

Transitions of composite states are taken into account by considering that substates
virtually inherit the transitions of their parent states. Implicit transitions and
transitions from/to composite states are resolved as follows. A transition drawn to a
boundary of a composite state means a transition to its initial substate or to the initial
substates of its regions. A transition drawn from a boundary of a composite state
means that all of its substates are exited when the transition is taken (fires). If a

6

transition enters a region of a concurrent state, then the other regions are also entered
(explicitly by fork segments or by default entering their initial states). Similarly, if a
transition exits a region of a concurrent state then all of the other regions are also
exited.

When completeness is being checked, the basic states are examined and all
inherited transitions are considered. Consistency requires the checking of individual
states, since conflicts among transitions on different hierarchy levels are resolved by
the priority scheme of UML. In this subsection, we consider transitions without
guards (guards are discussed in the next subsection).

Completeness requires that in each basic state, for all possible events, there must
be a transition defined. If an event should not have any effect in a given state, then the
designer should define it as an event triggering an internal transition (that does not
change the state) with no action. Note that self-loop transitions in UML are not
suitable for this purpose, since firing of this kind of transitions induces the execution
of the entry and exit actions of the state.

In a concurrent composite state, it is possible that a transition is defined only in one
of the regions (remember that the status of the automaton is a composition of the basic
states of the regions). The exploration of the possible combinations of basic states in
the regions would need the generation of the reachability graph. To avoid this
problem and allow the static checking, it is required that basic states in concurrent
regions are defined by the designer in the same way as non-orthogonal states (i.e. the
above criterion should be satisfied).

Completeness requires that each state is targeted by (at least one) transition. Note
that initial states have an incoming transition from the initial pseudo-state.

Consistency of the specification requires that in each state, only a single transition
is triggered by a given event. It means that there are no conflicts that are not resolved
by the priority scheme of UML. Namely, conflicts among different hierarchy levels
are always resolved as the transition with source state at the lowest level fires.
Conflicts not resolved by the priority scheme, thus requiring non-deterministic choice,
occur only at the same hierarchy level.

Another source of possible inconsistency is that the firing order of transitions
enabled in concurrent regions is undefined. From the point of view of the
environment, it may result in non-deterministic execution order of actions belonging
to these transitions. The consistency criteria says in this case that there are no pairs of
transitions in concurrent regions that may fire at the same time, and both have actions
defined. Reachability analysis is required to check this criteria, since these aspects of
concurrency (i.e. the possible statuses of the automaton) can not be checked by the
static analysis.

4.2 Guards

Completeness requires that in each basic state, considering also inherited transitions,
guards of transitions triggered by the same event form a tautology.

Consistency is checked by the following criterion: If there are two or more
transitions that are originating from the same state and triggered by the same event,
then their guards could not be true at the same time.

7

The specification is ambiguous if the designer utilizes the priority scheme of UML
in a strange way: guards of transitions originating from a given state and triggered by
the same event form a tautology, and at the same time there is a transition which is
triggered by the same event and originates from a parent state. This latter transition
will never fire.

Checking of these rules is difficult, since in UML guard conditions can refer to
variables, functions, parameters of events, and orthogonal states (by in_state()
predicates prescribing that some orthogonal states are active). Accordingly, the
checking would require in worst case both reachability analysis and the interpretation
of the program code assigned to actions. Static checking of guard conditions is
possible only if the guard expressions are restricted and expressed in a special
canonical form (as proposed in RSML and SpecTRM). Simple guards referring to
constants can be checked more easily, this type of checking is built into our checker.

Completion transitions have no trigger events and are executed as soon as the
source state is reached and the guard is true. They can be checked according to the
above rules, i.e. (i) completeness requires that guard expressions of completion
transitions originating from a basic state (considering also inherited transitions) form
a tautology, and (ii) consistency requires that only one of them is true at the same
time. If there is a state in which the guards of a normal and a completion transition
can be true at the same time then the specification is ambiguous, since in this case the
normal transition will never fire.

4.3 Compound Transitions

Compound transitions are transitions consisting of multiple segments like conditional
branches, fork and join transitions. For the sake of the analysis the compound
transitions are transformed to simple ones, that can be checked using the above rules.

Conditional branches are converted into separate simple transitions originating
from the common source state and reaching the target state of each possible path of
segments. The guard conditions are formed by the AND relation of the individual
guards along the segments on the path from the source state to the target one.

Fork transitions consist of multiple segments originating from a state and reaching
concurrent regions. They are converted into simple transitions in the same way as
conditional branches, but the redundant transitions are marked at the source state.

Join transitions originate from concurrent regions and reach a single state. They are
converted into a set of simple transitions that originate from each source state, reach
the original target state, and inherit the original guard. A join transition can be taken
only if all source states are active. This condition is expressed on the set of the newly
generated transitions by additional in_state() guards referring to the other source
states and being in AND relation with the above mentioned guard expression.
Accordingly, the consistency checking of join transitions requires reachability
analysis.

8

4.4 Classification of States

In embedded control systems the controller manages an internal model of the
controlled system. Similarly, the operator has a mental model of the controller
interface. The differences between these models, i.e. the semantic distance, should be
minimized.

Immediately after controller startup or in exceptional situations the internal model
is not synchronized with the state of the controlled system. Until the synchronization
is performed (e.g. by reading sensor signals), the actions of the controller should be
restricted. The designer should convince the checker that he/she considered this
requirement by marking some (sequence of) states as Unknown. UML stereotypes,
that allow a high-level classification of model elements, can be used for this purpose.
Initial states should always be stereotyped as Unknown.

Accordingly, completeness requires the existence of the Unknown stereotype in the
initial state(s) of the controller's statechart.

4.5 Time-out

If the controller stays in a specific state too long, then it could induce that the
consistency between the controller and the controlled system has been lost (due to
missing or unexpected events). The designer should handle this kind of exception by
specifying a time-out transition, i.e. a transition triggered by a time event, from each
status of the automaton. In UML, a time event can specify a trigger, which denotes
the time elapsed since the state was entered. The time-out transition should lead to
Unknown states, where the lost synchronization is restored.

Accordingly, completeness requires that in each basic state of the statechart of the
classes used as Models (considering the inherited transitions) there is a time-out
transition leading to a state stereotyped as Unknown.

Consistency requires that at most one time-out transition is found in each basic
state (it is ambiguous if both a substate and its parent state have time-out transitions).

5 Reachability Analysis

Reachability analysis can check both general properties requiring the generation of
the reachability tree (e.g. completeness criteria referring to join transitions mentioned
in the previous section) and application-specific safety requirements (e.g. avoidance
of unsafe statuses in concurrent specifications). We consider here model checking as a
technique which covers the traditional reachability analysis.

A mandatory prerequisite for model checking is to map statechart diagrams to a
formal semantics model. In a previous work a subset of UML statecharts was mapped
to Kripke structures [11], and it was proved that the mapping satisfies the properties
of UML semantics given informally in [12]. The subset does not consider dynamic
object-oriented features like inheritance, creation and destruction of objects, but
includes all aspects related to concurrency like sequentialization, non-determinism
and parallelism. Accordingly, it is suitable to be used in our environment.

9

Based on the Kripke structure a translation to Promela, input language of the model
checker SPIN [13] was also defined. SPIN was selected since it is one of the most
efficient tools available, and Promela allows the specification of state variables,
communication actions, and a variety of requirements. There are built-in capabilities
to check deadlocks, invalid endstates, non-progress and acceptance cycles.
Application-specific requirements can be given in the form of assertions (invariants
inserted into the Promela code), a never claim (an automaton that defines a behavior
that should not be matched) or linear temporal logic formula (among others
invariance, response, and precedence properties).

SPIN helps in checking completeness as follows:
- Unreachable states (unreachable code) are reported automatically by SPIN.
- Missing transitions are detected by analyzing invalid endstates.
- Enabledness of join transitions can be checked by assertions.
- Tautology of guards can be checked by using assertions formed by the OR

relation of the guards. In Promela, in_state() guards and Boolean logic formula
referring to integers can be easily evaluated.

Theoretically, it is also possible to check consistency by inserting assertions that
evaluate to false if two or more transitions are enabled at the same time. (SPIN has no
built-in capability to report non-determinism.)

6 The Checker Tools

We have considered three approaches to implement the static checking of the
completeness and consistency criteria in UML statecharts:
− Theoretically, the majority of the criteria can be expressed in the form of OCL

expressions interpreted on the UML metamodel of statechart diagrams. The
metamodel defines (in a form of class diagrams) the UML model elements like
State, Transition, Event etc. and gives their possible relationships and the
syntactic constraints. By enriching these constraints (called here well-formedness
rules), a "safety-critical UML" sub-language can be defined. Since completeness
and consistency criteria can be given as additional well-formedness rules, the
approach fits very well to the semantics of UML. The implementation of the
checking requires either deep integration with the CASE tool used by the
designer or an external interpreter, which can examine the design with respect to
the restricted metamodel. This approach was considered as a subject of our future
work.

− It is a natural idea to formulate the criteria in a general logic language. We
selected Prolog for this purpose. The Prolog expressions are interpreted on the
standard database of the UML model elements given in the design. Accordingly,
a well-scalable, flexible and general solution is provided.

− The (hard-coded) direct implementation of the checking is the less flexible, but
has the best performance characteristics. Fortunately, most of the UML based
CASE tools support a standard interchange format (eXtensible Markup Language
Metadata Interchange, XMI). The checking can be based on this output.

In the following, we will report our experiences with these variants of the tools and
compare their advantages and disadvantages. It can be mentioned that these variants

10

can also be considered as N-version programming [14] of the same problem, thus
allowing a fault-tolerant implementation of the completeness and consistency checks.
Accordingly, the trustworthiness of the analysis can be increased, which is an
important factor e.g. from the point of view of an audit.

6.1 The Prolog Approach

The Prolog-based tool variant was implemented utilizing the environment developed
in the framework of the HIDE project (High-Level Integrated Design Environment for
Dependability, ESPRIT Open LTR No. 27439) [15]. In this environment, a
commercial UML-based CASE tool (MID Innovator [16]) was included for user-end
modeling.

To interface this tool with other analysis and evaluation tools, a database
representation of the UML model was elaborated. The structure of this database
corresponds to the structure of the UML metamodel. From our point of view this
representation is especially useful, since it assures an easy navigation and searching in
the UML model, which task is the crucial point of completeness checking. A
commercial database manager was used to handle the model database. The static
completeness and consistency criteria were formulated as Prolog program predicates.
Logic programming is suitable for the compact definition and easy analysis of these
criteria.

Prolog was extended with an interface toward SQL. Accordingly, Prolog questions
are converted internally into SQL commands, which are executed by the database
manager. Results of the database search are back-annotated by the interface again as
Prolog predicates. Final result of checking is the detected set of errors and the
generated warnings of the Prolog program.

The concepts are demonstrated by the following example:
compare(STATEID,EVENTNAME,STATENAME):-
 (\+ trans(STATEID, TRANSITIONID, EVENTNAME, LEVEL, ISLEAF,

GUARDBODY, GUARDEVAULATED, LEAFSTATEID)),!,
 format("~n-Error: Transition not specified in state:",[]),
 write(STATENAME), format(" Event:",[]), write(EVENTNAME).

This code segment is one of the definitions of the expression compare, which
will find unspecified transitions. In the first row transitions fitting to STATEID and
EVENTNAME are found. Here trans is an SQL view of the Transition and
ModelElement tables of the database. It is processed by the SQL interface, which
provides a dynamic knowledge base for Prolog. The second row is activated only if
the first fitting was empty. If there is no transition with the specified state and event
then an error message is produced.

The expression compare is used as follows:
check(STATE, NAME):-
 eventnames(EVENTNAME),
 compare(STATE, EVENTNAME, NAME),
 fail.
check(STATE, NAME).

11

Here eventnames is a set of dynamic predicates containing the names of all
events. This function enumerates the events and compares it with the parameter
STATE. It is used as follows:

check_model:-
 leafs(STATE, NAME),
 format("~nChecking State:",[]), write(NAME),
 check(STATE, NAME),
 fail.
check_model.

where leafs is again an SQL view referring to the set of basic states.
The time requirements of the checking are high, since (i) Prolog is an interpreted

language, (ii) communication with the database manager is time-consuming by using
relatively slow network connections, (iii) the Prolog-SQL interface is not optimized,
and (iv) the model database is very fragmented (over 120 tables). The tool was
optimized by implementing table joins in SQL. After this optimization the speed of
the program has increased up to 200%.

Since the database server can handle extremely large tables, it does not limit the
size of the model to be checked in a single step. On the other hand, the Prolog
program must access and transfer this amount of information via local area network.
Thus, if the model is large, this process can be very slow. Moreover, the Prolog
program uses dynamic predicates from several tables, which requires a great amount
of memory (in addition to the Prolog interpreter which is itself a memory-consuming
program).
Main advantages of the Prolog approach are as follows:
- it is easy to formalize and implement the criteria (including also possible domain-

specific additional rules),
- it is easy to read, understand and verify the Prolog program,
- the checker tool is portable (machine and operation system independent).

Unfortunately, in the case of large models the Prolog implementation is extremely
slow. For instance the verification of the example model (see Section 7) needs more
than 10 seconds. Of course, this time depends also on the speed of the local area
network.

6.2 The Direct Approach

The model representation used by the second variant of the checker tool is the XMI
compliant output of the UML CASE tool. XMI (eXtensible Markup Language
Metadata Interchange) was standardized by the OMG in order to provide an easy
interchange of metadata among tools using UML as their modeling language [17]. It
integrates the metamodel architecture, UML and XML (Extensible Markup
Language). Accordingly, the XMI compliant output consists of the standard
Document Type Definition (DTD) file corresponding to the UML metamodel and the
XMI document in XML format.

When processing the XMI output, our parser is based on the UML DTD definition.
After processing, the UML model itself is loaded into the memory and the checker
procedures (written in Visual C++) are executed.

12

The loader processes the behavioral part of the UML metamodel, builds the
corresponding data structure in the memory and fills it with data from the XMI
document. All elements of the XMI file are represented by objects. These objects are
linked together into a hierarchical tree structure by using linked lists. The basic
objects like ModelElement, Action, Signal, etc. and the classes of the
BehavioralElements are implemented by special child classes, the others are loaded as
general XMI elements. The special classes implement the metamodel of the
Statechart, the derived objects can load the attributes of the metamodel. The other
XMI elements read only the standard XMI attributes like ID, UUID, idref, etc. The
cross-links are realized by textual references (idrefs). It would be possible to use
pointers for this purpose, but in this case the loader could not process the XMI file in
one step.

Essentially, the XMI loader builds the internal representation on which the checker
procedures are executed. Typically, these procedures are recursive ones. If a
statechart is embedded in another one (e.g. in a composite state), the checker
procedure can automatically examine this as a part of the "parent" statechart.
Naturally, two independent statecharts must be verified independently.

The checker procedures run noticeably faster than the Prolog-based
implementation. The verification on the same example model (described in the next
section) needed only 2 seconds, including also the time required to process the XMI
file. Note that in the Prolog approach, the time required to generate the common
database, which is again a few tens of seconds, was not included. If we converted all
textual references into direct pointers, the verification process could be even faster.

In a typical UML model there are less than 1000 states [6]. An XMI object
representation needs about 60-100 bytes in the memory. Accordingly, the full model
could be about 10 MB large. This means that a standard model can fit into the
memory of a common PC.

This variant of the tool is fast and efficient, but it has a few disadvantages as
follows:
- The model representation is less scalable and robust than that of a general

purpose database manager.
- The implementation of the checker procedures is more complex than in the case

of the Prolog version.
- The portability of the tool is problematic.

Theoretically, the database approach could support teamwork (when designers
work on different parts of the same model concurrently) very well. This is not
possible in the current implementation of the direct approach.

We can also combine some advantages of the direct and the Prolog/SQL-based
approaches. The tool-dependent database export is replaced by a loader that fills the
database structures by processing the XMI model output. This method behaves
similarly to the Prolog approach.

7 Case Study

Our work on the completeness and consistency checking was motivated partially by
our experiences gathered during the design of a safety-critical, embedded real-time

13

system, a fire-alarm backup controller (referred to as VE in the following) which is
part of a complex fire/gas/security alarm system.

The VE is a complex unit, its software model has more than 50 classes and 60
modules, and the program implementation itself is longer than 30,000 rows in C. The
operating platform is an embedded microcontroller, which made the testing and de-
bugging difficult.

The original version of the VE software was created by conventional programming
techniques based on a natural language specification. After the implementation the
testers tried to examine the most important scenarios, but of course not all possible
cases could be tested (as asynchronous input signals are processed by the unit).

The unit was put into operation and, unfortunately, hard-to-check intermittent
failures were detected. On average once in every week (after a few millions of correct
polling cycles) the module of the system responsible for the communication came to
an erroneous state for 3-4 seconds. During this time the communication was broken,
the control station generated an error alarm and for a few minutes the fire protection
was disabled, which resulted in a hazardous situation. Since this software problem
occurred randomly, the thorough testing and debugging of the problem seemed to be
hopeless.

The decision was to re-implement the module from the beginning. The natural
language specification was formalized in UML and the model was checked also for
the sake of completeness and consistency.

On Figure 1 part of the UML statechart specification of the serial communication
controller module of the VE is presented. (The shaded rounded rectangles represent
stable states, while the others are temporary states.). This module controls two
independent serial ports: one for the data-collector units (CVKE) and one for the
central station. When the central station polls the CVKEs, the VE forwards the polling
commands and the responses (this is called “Transparent Mode”). If the central station
does not send polling commands for a predefined period of time (here 3 seconds), the
VE starts an autonomous operation (called here “Master Mode”) and starts sending
the polling commands itself. If the central station resumes the polling then the VE
must switch back to Transparent Mode.

14

Fig. 2. Statechart of the serial communication module

The statechart model of the VE was checked by our completeness and consistency
checkers. Several deficiencies were detected. For example, considering the statechart
depicted in Figure 1, the following problems were identified (shown on the figure by
thick lines):
- There was no transition specified for the Timeout condition “MasterLost” in state

“MasterMode:WaitForCVKEAnswer”.
- There was no transition specified for the Timeout condition “MasterLost” in state

“MasterMode:WaitForEndOfRound”.
- There was no transition specified for the Timeout condition “MasterLost” in state

“TransparentMode:WaitForCVKEAnswer”.
- There was no transition specified for the Timeout condition “SlaveLost” in state

“TransparentMode:WaitForMasterCommand”.
- There was no transition specified for the event “CommandArrived” in state

“WaitForEndOfRound”.
- In State “TransparentMode:WaitForCVKEAnswer”, event “SlaveLost” triggered

two transitions (one of them is shown by dashed line) resulting in a potentially
non-deterministic operation.

We have performed also some additional completeness and consistency checks,
which are specific for this control system. For instance we had to check whether for
all scenario, the Timeout Timer is re-started in every stable state. The reachability
analysis was performed completely in the HIDE environment since the mapping of
UML statecharts to Promela code was implemented there.

The full verification and the correction of the specification of the communication
module required approx. 4 hours. Then the skeleton of the program code was
generated automatically, based on the checked UML model. The finalization of the
code was made manually.

15

The new code was tested, integrated and the system was put into operation. The
intermittent failures disappeared from the system. The problems were presumably
caused by the incompleteness of the specification in the case of Timeout events.

7 Conclusion

The paper presented methods and tools for the checking of some aspects of
completeness and consistency in UML statechart specifications of embedded
controllers. Criteria were formulated and their checking was proposed both by
applying static methods and reachability analysis (model checking). The main
contribution of our work are (i) the adaptation of existing criteria to the UML
statechart formalism and (ii) the experimental implementation of the checker
methods. This work can be considered as a first step towards the automatic analysis of
the majority of criteria given in [4].

Our further research concentrates on two main topics. The first goal is the
extension of the set of criteria to be checked. The next area of research is the
investigation of the use of OCL to express and check safety criteria. Finally the
research could lead to the definition of a sub-language of UML suitable for specifying
safety-critical systems.

References

1 J. Rumbaugh, I. Jacobson and G. Booch: The Unified Modeling Language Reference
Manual. Addison-Wesley (1999)

2 B. P. Douglass: Real-Time UML - Developing Efficient Objects for Embedded Systems.
Addison-Wesley (1998)

3 M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart: Software Requirements
Analysis for Real-Time Process-Control Systems. IEEE Trans. on Software Engineering,
Vol. 17, No. 3, pp 241-258 (1991)

4 N. G. Leveson: Safeware: System Safety and Computers. Addison-Wesley (1995)
5 N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese: Requirements

Specification for Process-Control Systems. IEEE Trans. on Software Engineering, pp.
684-706 (1994)

6 M. P. E. Heimdahl and N. G. Leveson: Completeness and Consistency Checking of
Software Requirements. IEEE Trans, on Software Engineering, Vol. 22. No. 6 (1996)

7 N. G. Leveson, J. D. Reese and M. Heimdahl: SpecTRM: A CAD System for Digital
Automation. Digital Avionics System Conference, Seattle (1998)

8 N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese: Designing Specification Languages
for Process Control Systems. Lessons Learned and Steps to the Future.
http://www.safeware-eng.com/pubs/

9 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM, ObjecTime, Platinum
Technology, Ptech, Taskon, Reich Technologies, and Softeam: Object Constraint
Language Specification, version 1.1, (1997)

10 D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, Vol. 3, No. 3, pp 231-274, (1987)

16

11 D. Latella, I. Majzik, and M. Massink: Towards a Formal Operational Semantics of UML
Statechart Diagrams. In P. Ciancarini and R. Gorrieri, editors, IFIP TC6/WG6.1 Third
International Conference on Formal Methods for Open Object-Oriented Distributed
Systems, Kluwer Academic Publishers (1999)

12 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM, ObjecTime, Platinum
Technology, Ptech, Taskon, Reich Technologies, and Softeam: UML Semantics, version
1.1, (1997)

13 G. Holzmann: The Model Checker SPIN. IEEE Transactions on Software Engineering,
Vol. 23, pp 279-295 (1997)

14 A. Avizienis and L. Chen: On the Implementation of N-Version Programming for
Software Fault-Tolerance during Program Execution. In Proc. COMPSAC-77, pp. 149-
155, 1977

15 A. Bondavalli, M. Dal Cin, D. Latella and A. Pataricza: High-Level Integrated Design
Environment for Dependability (HIDE). Proc. Fifth International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS-99), November 18-20, 1999,
Monterey, California, IEEE CS, pp. 87-92 (1999)

16 Innovator version 6.1. MID GmbH, Nuremberg, Germany, http://www.mid.de/en/
17 Object Management Group: XML Metadata Interchange. October, 1998.

http://www.omg.org

	Zs. Pap, I. Majzik�, A. Pataricza and A. Szegi

