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Abstract. This paper describes methods and tools for automatic safety analysis 
of UML statechart specifications. Two types of analysis are presented. The first 
one checks completeness and consistency based on the static structure of the 
specification, thus it does not requires the generation of the reachability graph. 
Accordingly, this method scales up well to large systems. The second one 
performs dynamic analysis by checking safety related reachability properties 
with the help of a model checker. It is restricted to core critical parts of the 
system. Two approaches of the implementation of the static checking are 
discussed. The use of the tools is presented by a case study. 

1 Introduction 

Our life relies more and more on the dependability (especially safety) of embedded 
computer control systems. As the complexity of these systems increases, the task of 
the engineers in specifying, designing and validating the system becomes increasingly 
difficult. The need for efficient design has triggered the development of well-
specified and standardized design methods and languages. Such languages should 
satisfy multiple requirements. First, designers ask for a general-purpose language 
which is easy to understand, close to their way of thinking, and has clearly arranged 
(self-documenting) visual models covering various aspects of the system. Second, 
validation and formal verification of the design require precise syntax and well-
defined semantics in mathematical terms. Third, the development of integrated, 
computer-assisted design environments demands languages which are easy to process, 
navigate and manage. The recently created Unified Modeling Language (UML) [1] is 
a language designed to satisfy most of these requirements. It is a general-purpose 
object-oriented modeling language used to specify, visualize, construct and document 
different aspects of systems. UML is expected to become a de-facto standard for the 
design of systems from small embedded controllers to large and complex distributed 
systems. 

UML can be used to construct software specification of embedded (real-time) 
systems [2], often implementing safety-critical functions. The specification is usually 
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elaborated by the cooperation of users, domain experts and system engineers. 
Unfortunately, it is often incomplete, inconsistent and ambiguous. The errors in the 
specification are not only difficult and expensive to correct in the further phases of the 
life cycle, but also often lead to safety related failures. Accordingly, the early 
checking of the UML specification is crucial. 

Our work aims at the elaboration of methods and tools for the checking of some 
aspects of completeness and consistency in UML models. We concentrate especially 
on the behavioral part of UML, namely the statechart diagrams. Statecharts are the 
most complex formalism used in UML (therefore errors occur most likely here) and  
have some specific features, like hierarchy and concurrency, which require non-trivial 
checking methods. 

Our examination is focused on embedded control systems. In these systems, the 
controller continuously interacts with operators and with the plant by receiving sensor 
signals as events and activating actuators by actions. UML statechart formalism 
allows to construct a state-based model of the controller, describing both its internal 
behavior and the reaction to external events. Here we assume that the behavior of the 
controller is specified by a single statechart (unfortunately, standard UML does not 
specify the semantics of interacting objects precisely). 

The paper is structured as follows. Section 2 is a short overview of the safety 
criteria and checking methods proposed in the literature. Section 3 outlines the main 
concepts of UML statecharts. Section 4 and 5 describe our work in static checking 
and reachability analysis, respectively. Our automatic tool is introduced in Section 6. 
The paper is closed by a short Conclusion. 

2 Checking Completeness and Consistency Criteria 

A safe system is free from accidents or unacceptable losses. Safety analysis should 
identify hazards based on the (formal) model of the system. Accidents related to 
computers are usually resulted from flaws in the specification (model). In [1] and [4] 
47 formal criteria were defined that should be satisfied to avoid incorrect 
specifications. These criteria cover general aspects of the specification of a control 
system, including also peculiar ones like environmental capacity and data age. 

The most important desirable properties of a specification are completeness and 
consistency. Completeness with respect to an embedded control system means that a 
response is specified for every possible input sequence, including also timing 
variations (early, lately, delayed etc. signals). Consistency of the specification implies 
that there are no conflicting requirements and no (unintentional) non-determinism. 

Tool support for checking completeness and consistency is required, since manual 
checking is error-prone and time-consuming. From the point of view of the automated 
methods and techniques, different approaches can be distinguished: 
- Pure reachability analysis of the state space of the system can detect ambiguous 

situations resulting e.g. from unreachable states, undesired global states (in 
concurrent models) or unwanted sequence of actions. The examination of the 
global state space requires the generation of the reachability graph, which often 
results in state space explosion. 
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- Model checking examines properties expressed in temporal logics. Modern model 
checkers try to handle the state space explosion by applying sophisticated 
methods in representing and analyzing the global state space (e.g. symbolic 
techniques, partial ordering). 

- Theorem proving systems require to describe both the specification and the 
criteria in a formal logic, and prove that the criteria and the specification are 
suitably related. 

- Static analysis is performed directly on the model and checks those criteria that 
are not related with the global state space. 

The automatic tools proposed in the literature are in strict relationship with the 
formalism (language) intended to be checked, i.e. the complexity of the checking is 
heavily influenced by the formalism. In [5] a black-box system specification language 
RSML (Requirements State Machine Language) was proposed which enabled the 
automated checking of some criteria [6]. The latest development of the same authors 
is the experimental toolset SpecTRM [7] and the corresponding formal specification 
language SpecTRM-RL [8]. This language is designed especially to enforce the 
satisfaction of the safety criteria and enhance the ability to build tools that check 
them. 

UML was developed without considering strict rules to force the designer to 
prepare a complete and consistent specification. The flexibility and extensibility of 
the language, and some of the applied constructs (like internal broadcast of events, 
which was identified as one of the typical sources of specification errors [8]) and 
semantic constructs (non-determinism) could make the hazard analysis of the 
specification of safety-critical systems difficult. However, it has to be pointed out that 
UML incorporates a technique to include static constraints on the usage of its model 
elements. OCL, the Object Constraint Language [9] is designed to specify well-
formedness rules of the UML model (OCL expressions are used also in the language 
definition itself). By defining appropriate rules, well-formedness in the sense of 
completeness and consistency can be prescribed and then checked. 

UML statecharts, as state-based specifications, can be subject of both static 
analysis and model checking (reachability analysis). Static analysis aims at the 
checking of general, application-independent criteria, while model checking is 
suitable to examine also application-specific requirements. The former checks mainly 
the proper static structure of the model, while the latter requires the formalization of 
the dynamic semantics of the language. 

3 UML Statecharts 

UML statecharts is an (object-oriented) variant of classical Harel statecharts [10]. The 
statecharts formalism itself is an extension of traditional state transition diagrams 
including the following additional concepts (explained with the help of the statechart 
presented in Figure 1): 
- State hierarchy and concurrency.  A state is called a composite state if it contains 

one or more substates (e.g. Work contains Phase1, Task1, etc.). A composite 
state can be decomposed into mutually exclusive disjoint substates or into 
orthogonal substates. In the latter case, the composite state is concurrent and its 
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direct substates are called regions (e.g. Group1 and Group2). Regions must be 
further refined into substates (Group1 is refined by Phase1 and Phase2). 
States without further refinement, at the lowest level of the hierarchy, are called 
basic states (e.g. Passed). 

- Compound transitions. A simple transition indicates that the system may change 
its state and perform a sequence of actions when a specified event occurs and a 
specified guard condition is satisfied (e.g. the transition from Work to 
Failure). Compound transitions have multiple segments. Join segments (e.g. to 
the state Passed) originate from concurrent regions (representing 
synchronization), while fork segments (e.g. from the state Prepare) are 
connected to concurrent regions (representing splitting of control). Branch 
segments labeled with guards compose different possible paths depending on 
conditions (e.g. the transition triggered by the error event). 

- History states. A transition drawn to a history state is equivalent to a transition 
drawn to the last active direct substate of the composite state in which the history 
state resides (the circle with H in Figure 1). Firing of a transition drawn to a deep 
history state causes the last active substates of the composite state be entered 
recursively. 

- Enriched set of events and actions. Events may have parameters. Actions are 
distinguished as call, return, send, terminate, create and destroy actions, 
according to the (object-oriented) software context. 

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

Failure

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

Resum
e H

[non_fatal]

 
Fig. 1. An example statechart 

The peculiarities of UML semantics can be summarized as follows:  
- Single event processing. The hypothetical state machine which implements the 

statechart diagram processes event instances that are selected by a dispatcher 
from an event queue. Events are processed one by one, each after the other. 
Accordingly, transitions are triggered by at most one event. 
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- Run-to-completion processing. An event stimulates a run-to-completion step. 
Transitions that fire have to be fully executed and the state machine has to reach 
a stable state configuration before it can respond to the next event. 

- Priority concept. Transitions are in conflict when the intersection of the sets of 
states they exit is non-empty. Some conflicts can be resolved by using priorities. 
A transition has higher priority than an other one if its source state is a substate of 
the source of the other one. If the conflicting transitions are not related 
hierarchically then there is no priority defined between them, and the conflict is 
resolved by selecting one of the transitions non-deterministically. 

- Execution step. The set of transitions that will fire is a maximal set in which all 
transitions are enabled (i.e. they are triggered by the actual event, their guards are 
satisfied and their source states are active), there is no conflict within the set, and 
there is no enabled transition outside the set that has higher priority than a 
transition in the set. The firing order of transitions in the set is not defined. 

4 Static Analysis 

Completeness and consistency can be given as criteria to be satisfied by the 
hypothetical state machine (automaton) implementing the statechart specification. The 
global states of this automaton are called statuses, its transitions are called step 
transitions. Statuses are composed of active states of the statechart by considering that 
if a composite state (concurrent composite state) is active then one of its substates has 
to be active (in each of its regions, respectively). Step transitions are composed of 
(concurrent) transitions of the statechart. Completeness means that in all possible 
statuses of the automaton, for all possible events, there must be a step transition (in a 
special case an internal transition) defined which is triggered by the event. 
Consistency means that in each status, each event should trigger only a single step 
transition. 

Static checking requires to re-formulate these criteria in syntactic terms of the 
statechart, taking into account the UML semantics covering hierarchy, concurrency, 
and priority scheme. In the following we examine states, transitions, guards and 
compound transitions of the statechart and formulate the criteria in these terms. 

4.1 States and Transitions 

The hierarchical structure of statecharts could be unfolded to a flat state diagram, but 
this representation would not make the checking easier (due to the increased size of 
the flat state diagram). Accordingly, we decided to check the hierarchical model 
directly. In this model, the basic states fully determine the status of the automaton. 

Transitions of composite states are taken into account by considering that substates 
virtually inherit the transitions of their parent states. Implicit transitions and 
transitions from/to composite states are resolved as follows. A transition drawn to a 
boundary of a composite state means a transition to its initial substate or to the initial 
substates of its regions. A transition drawn from a boundary of a composite state 
means that all of its substates are exited when the transition is taken (fires). If a 
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transition enters a region of a concurrent state, then the other regions are also entered 
(explicitly by fork segments or by default entering their initial states).  Similarly, if a 
transition exits a region of a concurrent state then all of the other regions are also 
exited. 

When completeness is being checked, the basic states are examined and all 
inherited transitions are considered. Consistency requires the checking of individual 
states, since conflicts among transitions on different hierarchy levels are resolved by 
the priority scheme of UML. In this subsection, we consider transitions without 
guards (guards are discussed in the next subsection). 

Completeness requires that in each basic state, for all possible events, there must 
be a transition defined. If an event should not have any effect in a given state, then the 
designer should define it as an event triggering an internal transition (that does not 
change the state) with no action. Note that self-loop transitions in UML are not 
suitable for this purpose, since firing of this kind of transitions induces the execution 
of the entry and exit actions of the state. 

In a concurrent composite state, it is possible that a transition is defined only in one 
of the regions (remember that the status of the automaton is a composition of the basic 
states of the regions). The exploration of the possible combinations of basic states in 
the regions would need the generation of the reachability graph. To avoid this 
problem and allow the static checking, it is required that basic states in concurrent 
regions are defined by the designer in the same way as non-orthogonal states (i.e. the 
above criterion should be satisfied). 

Completeness requires that each state is targeted by (at least one) transition. Note 
that initial states have an incoming transition from the initial pseudo-state. 

Consistency of the specification requires that in each state, only a single transition 
is triggered by a given event. It means that there are no conflicts that are not resolved 
by the priority scheme of UML. Namely, conflicts among different hierarchy levels 
are always resolved as the transition with source state at the lowest level fires. 
Conflicts not resolved by the priority scheme, thus requiring non-deterministic choice, 
occur only at the same hierarchy level. 

Another source of possible inconsistency is that the firing order of transitions 
enabled in concurrent regions is undefined. From the point of view of the 
environment, it may result in non-deterministic execution order of actions belonging 
to these transitions. The consistency criteria says in this case that there are no pairs of 
transitions in concurrent regions that may fire at the same time, and both have actions 
defined. Reachability analysis is required to check this criteria, since these aspects of 
concurrency (i.e. the possible statuses of the automaton) can not be checked by the 
static analysis. 

4.2 Guards 

Completeness requires that in each basic state, considering also inherited transitions, 
guards of transitions triggered by the same event form a tautology. 

Consistency is checked by the following criterion: If there are two or more 
transitions that are originating from the same state and triggered by the same event, 
then their guards could not be true at the same time. 
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The specification is ambiguous if the designer utilizes the priority scheme of UML 
in a strange way: guards of transitions originating from a given state and triggered by 
the same event form a tautology, and at the same time there is a transition which is 
triggered by the same event and originates from a parent state. This latter transition 
will never fire. 

Checking of these rules is difficult, since in UML guard conditions can refer to 
variables, functions, parameters of events, and orthogonal states (by in_state() 
predicates prescribing that some orthogonal states are active). Accordingly, the 
checking would require in worst case both reachability analysis and the interpretation 
of the program code assigned to actions. Static checking of guard conditions is 
possible only if the guard expressions are restricted and expressed in a special 
canonical form (as proposed in RSML and SpecTRM). Simple guards referring to 
constants can be checked more easily, this type of checking is built into our checker. 

Completion transitions have no trigger events and are executed as soon as the 
source state is reached and the guard is true. They can be checked according to the 
above rules, i.e. (i) completeness requires that guard expressions of completion 
transitions originating from a basic state (considering also inherited transitions) form 
a tautology, and (ii) consistency requires that only one of them is true at the same 
time. If there is a state in which the guards of a normal and a completion transition 
can be true at the same time then the specification is ambiguous, since in this case the 
normal transition will never fire. 

4.3 Compound Transitions 

Compound transitions are transitions consisting of multiple segments like conditional 
branches, fork and join transitions. For the sake of the analysis the compound 
transitions are transformed to simple ones, that can be checked using the above rules. 

Conditional branches are converted into separate simple transitions originating 
from the common source state and reaching the target state of each possible path of 
segments. The guard conditions are formed by the AND relation of the individual 
guards along the segments on the path from the source state to the target one. 

Fork transitions consist of multiple segments originating from a state and reaching 
concurrent regions. They are converted into simple transitions in the same way as 
conditional branches, but the redundant transitions are marked at the source state. 

Join transitions originate from concurrent regions and reach a single state. They are 
converted into a set of simple transitions that originate from each source state, reach 
the original target state, and inherit the original guard. A join transition can be taken 
only if all source states are active. This condition is expressed on the set of the newly 
generated transitions by additional in_state() guards referring to the other source 
states and being in AND relation with the above mentioned guard expression. 
Accordingly, the consistency checking of join transitions requires reachability 
analysis. 
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4.4 Classification of States 

In embedded control systems the controller manages an internal model of the 
controlled system. Similarly, the operator has a mental model of the controller 
interface. The differences between these models, i.e. the semantic distance, should be 
minimized. 

Immediately after controller startup or in exceptional situations the internal model 
is not synchronized with the state of the controlled system. Until the synchronization 
is performed (e.g. by reading sensor signals), the actions of the controller should be 
restricted. The designer should convince the checker that he/she considered this 
requirement by marking some (sequence of) states as Unknown. UML stereotypes, 
that allow a high-level classification of model elements, can be used for this purpose. 
Initial states should always be stereotyped as Unknown. 

Accordingly, completeness requires the existence of the Unknown stereotype in the 
initial state(s) of the controller's statechart. 

4.5 Time-out 

If the controller stays in a specific state too long, then it could induce that the 
consistency between the controller and the controlled system has been lost (due to 
missing or unexpected events). The designer should handle this kind of exception by 
specifying a time-out transition, i.e. a transition triggered by a time event, from each 
status of the automaton. In UML, a time event can specify a trigger, which denotes 
the time elapsed since the state was entered. The time-out transition should lead to 
Unknown states, where the lost synchronization is restored. 

Accordingly, completeness requires that in each basic state of the statechart of the 
classes used as Models (considering the inherited transitions) there is a time-out 
transition leading to a state stereotyped as Unknown. 

Consistency requires that at most one time-out transition is found in each basic 
state (it is ambiguous if both a substate and its parent state have time-out transitions). 

5 Reachability Analysis 

Reachability analysis can check both general properties requiring the generation of 
the reachability tree (e.g. completeness criteria referring to join transitions mentioned 
in the previous section) and application-specific safety requirements (e.g. avoidance 
of unsafe statuses in concurrent specifications). We consider here model checking as a 
technique which covers the traditional reachability analysis. 

A mandatory prerequisite for model checking is to map statechart diagrams to a 
formal semantics model. In a previous work a subset of UML statecharts was mapped 
to Kripke structures [11], and it was proved that the mapping satisfies the properties 
of UML semantics given informally in [12]. The subset does not consider dynamic 
object-oriented features like inheritance, creation and destruction of objects, but 
includes all aspects related to concurrency like sequentialization, non-determinism 
and parallelism. Accordingly, it is suitable to be used in our environment. 
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Based on the Kripke structure a translation to Promela, input language of the model 
checker SPIN [13] was also defined. SPIN was selected since it is one of the most 
efficient tools available, and Promela allows the specification of state variables, 
communication actions, and a variety of requirements. There are built-in capabilities 
to check deadlocks, invalid endstates, non-progress and acceptance cycles. 
Application-specific requirements can be given in the form of assertions (invariants 
inserted into the Promela code), a never claim (an automaton that defines a behavior 
that should not be matched) or linear temporal logic formula (among others 
invariance, response, and precedence properties). 

SPIN helps in checking completeness as follows: 
- Unreachable states (unreachable code) are reported automatically by SPIN. 
- Missing transitions are detected by analyzing invalid endstates. 
- Enabledness of join transitions can be checked by assertions. 
- Tautology of guards can be checked by using assertions formed by the OR 

relation of the guards. In Promela, in_state() guards and Boolean logic formula 
referring to integers can be easily evaluated. 

Theoretically, it is also possible to check consistency by inserting assertions that 
evaluate to false if two or more transitions are enabled at the same time. (SPIN has no 
built-in capability to report non-determinism.) 

6 The Checker Tools 

We have considered three approaches to implement the static checking of the 
completeness and consistency criteria in UML statecharts: 
− Theoretically, the majority of the criteria can be expressed in the form of OCL 

expressions interpreted on the UML metamodel of statechart diagrams. The 
metamodel defines (in a form of class diagrams) the UML model elements like 
State, Transition, Event etc. and gives their possible relationships and the 
syntactic constraints. By enriching these constraints (called here well-formedness 
rules), a "safety-critical UML" sub-language can be defined. Since completeness 
and consistency criteria can be given as additional well-formedness rules, the 
approach fits very well to the semantics of UML. The implementation of the 
checking requires either deep integration with the CASE tool used by the 
designer or an external interpreter, which can examine the design with respect to 
the restricted metamodel. This approach was considered as a subject of our future 
work. 

− It is a natural idea to formulate the criteria in a general logic language. We 
selected Prolog for this purpose. The Prolog expressions are interpreted on the 
standard database of the UML model elements given in the design. Accordingly, 
a well-scalable, flexible and general solution is provided. 

− The (hard-coded) direct implementation of the checking is the less flexible, but 
has the best performance characteristics. Fortunately, most of the UML based 
CASE tools support a standard interchange format (eXtensible Markup Language 
Metadata Interchange, XMI). The checking can be based on this output. 

In the following, we will report our experiences with these variants of the tools and 
compare their advantages and disadvantages. It can be mentioned that these variants 
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can also be considered as N-version programming [14] of the same problem, thus 
allowing a fault-tolerant implementation of the completeness and consistency checks. 
Accordingly, the trustworthiness of the analysis can be increased, which is an 
important factor e.g. from the point of view of an audit. 

6.1 The Prolog Approach 

The Prolog-based tool variant was implemented utilizing the environment developed 
in the framework of the HIDE project (High-Level Integrated Design Environment for 
Dependability, ESPRIT Open LTR No. 27439) [15]. In this environment, a 
commercial UML-based CASE tool (MID Innovator [16]) was included for user-end 
modeling. 

To interface this tool with other analysis and evaluation tools, a database 
representation of the UML model was elaborated. The structure of this database 
corresponds to the structure of the UML metamodel. From our point of view this 
representation is especially useful, since it assures an easy navigation and searching in 
the UML model, which task is the crucial point of completeness checking. A 
commercial database manager was used to handle the model database. The static 
completeness and consistency criteria were formulated as Prolog program predicates. 
Logic programming is suitable for the compact definition and easy analysis of these 
criteria. 

Prolog was extended with an interface toward SQL. Accordingly, Prolog questions 
are converted internally into SQL commands, which are executed by the database 
manager. Results of the database search are back-annotated by the interface again as 
Prolog predicates. Final result of checking is the detected set of errors and the 
generated warnings of the Prolog program. 

The concepts are demonstrated by the following example: 
compare(STATEID,EVENTNAME,STATENAME):- 
 (\+ trans(STATEID, TRANSITIONID, EVENTNAME, LEVEL, ISLEAF, 

GUARDBODY, GUARDEVAULATED, LEAFSTATEID)),!, 
 format("~n-Error: Transition not specified in state:",[]), 
 write(STATENAME), format(" Event:",[]), write(EVENTNAME). 

This code segment is one of the definitions of the expression compare, which 
will find unspecified transitions. In the first row transitions fitting to STATEID and 
EVENTNAME are found. Here trans is an SQL view of the Transition and 
ModelElement tables of the database. It is processed by the SQL interface, which 
provides a dynamic knowledge base for Prolog. The second row is activated only if 
the first fitting was empty. If there is no transition with the specified state and event 
then an error message is produced. 

The expression compare is used as follows: 
check(STATE, NAME):- 
        eventnames(EVENTNAME), 
        compare(STATE, EVENTNAME, NAME), 
        fail. 
check(STATE, NAME).    
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Here eventnames is a set of dynamic predicates containing the names of all 
events. This function enumerates the events and compares it with the parameter 
STATE. It is used as follows: 

check_model:- 
        leafs(STATE, NAME), 
        format("~nChecking State:",[]), write(NAME), 
        check(STATE, NAME), 
        fail. 
check_model. 

where leafs is again an SQL view referring to the set of basic states. 
The time requirements of the checking are high, since (i) Prolog is an interpreted 

language, (ii) communication with the database manager is time-consuming by using 
relatively slow network connections, (iii) the Prolog-SQL interface is not optimized, 
and (iv) the model database is very fragmented (over 120 tables). The tool was 
optimized by implementing table joins in SQL. After this optimization the speed of 
the program has increased up to 200%. 

Since the database server can handle extremely large tables, it does not limit the 
size of the model to be checked in a single step. On the other hand, the Prolog 
program must access and transfer this amount of information via local area network. 
Thus, if the model is large, this process can be very slow. Moreover, the Prolog 
program uses dynamic predicates from several tables, which requires a great amount 
of memory (in addition to the Prolog interpreter which is itself a memory-consuming 
program). 
Main advantages of the Prolog approach are as follows: 
- it is easy to formalize and implement the criteria (including also possible domain-

specific additional rules), 
- it is easy to read, understand and verify the Prolog program, 
- the checker tool is portable (machine and operation system independent). 

Unfortunately, in the case of large models the Prolog implementation is extremely 
slow. For instance the verification of the example model (see Section 7) needs more 
than 10 seconds. Of course, this time depends also on the speed of the local area 
network. 

6.2 The Direct Approach 

The model representation used by the second variant of the checker tool is the XMI 
compliant output of the UML CASE tool. XMI (eXtensible Markup Language 
Metadata Interchange) was standardized by the OMG in order to provide an easy 
interchange of metadata among tools using UML as their modeling language [17]. It 
integrates the metamodel architecture, UML and XML (Extensible Markup 
Language). Accordingly, the XMI compliant output consists of the standard 
Document Type Definition (DTD) file corresponding to the UML metamodel and the 
XMI document in XML format. 

When processing the XMI output, our parser is based on the UML DTD definition. 
After processing, the UML model itself is loaded into the memory and the checker 
procedures (written in Visual C++) are executed. 
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The loader processes the behavioral part of the UML metamodel, builds the 
corresponding data structure in the memory and fills it with data from the XMI 
document. All elements of the XMI file are represented by objects. These objects are 
linked together into a hierarchical tree structure by using linked lists. The basic 
objects like ModelElement, Action, Signal, etc. and the classes of the 
BehavioralElements are implemented by special child classes, the others are loaded as 
general XMI elements. The special classes implement the metamodel of the 
Statechart, the derived objects can load the attributes of the metamodel. The other 
XMI elements read only the standard XMI attributes like ID, UUID, idref, etc. The 
cross-links are realized by textual references (idrefs). It would be possible to use 
pointers for this purpose, but in this case the loader could not process the XMI file in 
one step. 

Essentially, the XMI loader builds the internal representation on which the checker 
procedures are executed. Typically, these procedures are recursive ones. If a 
statechart is embedded in another one (e.g. in a composite state), the checker 
procedure can automatically examine this as a part of the "parent" statechart. 
Naturally, two independent statecharts must be verified independently. 

The checker procedures run noticeably faster than the Prolog-based 
implementation. The verification on the same example model (described in the next 
section) needed only 2 seconds, including also the time required to process the XMI 
file. Note that in the Prolog approach, the time required to generate the common 
database, which is again a few tens of seconds, was not included. If we converted all 
textual references into direct pointers, the verification process could be even faster. 

In a typical UML model there are less than 1000 states [6]. An XMI object 
representation needs about 60-100 bytes in the memory. Accordingly, the full model 
could be about 10 MB large. This means that a standard model can fit into the 
memory of a common PC. 

This variant of the tool is fast and efficient, but it has a few disadvantages as 
follows: 
- The model representation is less scalable and robust than that of a general 

purpose database manager. 
- The implementation of the checker procedures is more complex than in the case 

of the Prolog version. 
- The portability of the tool is problematic. 

Theoretically, the database approach could support teamwork (when designers 
work on different parts of the same model concurrently) very well. This is not 
possible in the current implementation of the direct approach. 

We can also combine some advantages of the direct and the Prolog/SQL-based 
approaches. The tool-dependent database export is replaced by a loader that fills the 
database structures by processing the XMI model output. This method behaves 
similarly to the Prolog approach. 

7 Case Study 

Our work on the completeness and consistency checking was motivated partially by 
our experiences gathered during the design of a safety-critical, embedded real-time 
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system, a fire-alarm backup controller (referred to as VE in the following) which is 
part of a complex fire/gas/security alarm system. 

The VE is a complex unit, its software model has more than 50 classes and 60 
modules, and the program implementation itself is longer than 30,000 rows in C. The 
operating platform is an embedded microcontroller, which made the testing and de-
bugging difficult. 

The original version of the VE software was created by conventional programming 
techniques based on a natural language specification. After the implementation the 
testers tried to examine the most important scenarios, but of course not all possible 
cases could be tested (as asynchronous input signals are processed by the unit). 

The unit was put into operation and, unfortunately, hard-to-check intermittent 
failures were detected. On average once in every week (after a few millions of correct 
polling cycles) the module of the system responsible for the communication came to 
an erroneous state for 3-4 seconds. During this time the communication was broken, 
the control station generated an error alarm and for a few minutes the fire protection 
was disabled, which resulted in a hazardous situation. Since this software problem 
occurred randomly, the thorough testing and debugging of the problem seemed to be 
hopeless. 

The decision was to re-implement the module from the beginning. The natural 
language specification was formalized in UML and the model was checked also for 
the sake of completeness and consistency. 

On Figure 1 part of the UML statechart specification of the serial communication 
controller module of the VE is presented. (The shaded rounded rectangles represent 
stable states, while the others are temporary states.). This module controls two 
independent serial ports: one for the data-collector units (CVKE) and one for the 
central station. When the central station polls the CVKEs, the VE forwards the polling 
commands and the responses (this is called “Transparent Mode”). If the central station 
does not send polling commands for a predefined period of time (here 3 seconds), the 
VE starts an autonomous operation (called here “Master Mode”) and starts sending 
the polling commands itself. If the central station resumes the polling then the VE 
must switch back to Transparent Mode. 
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Fig. 2. Statechart of the serial communication module 

The statechart model of the VE was checked by our completeness and consistency 
checkers. Several deficiencies were detected. For example, considering the statechart 
depicted in Figure 1, the following problems were identified (shown on the figure by 
thick lines): 
- There was no transition specified for the Timeout condition “MasterLost” in state 

“MasterMode:WaitForCVKEAnswer”. 
- There was no transition specified for the Timeout condition “MasterLost” in state 

“MasterMode:WaitForEndOfRound”. 
- There was no transition specified for the Timeout condition “MasterLost” in state 

“TransparentMode:WaitForCVKEAnswer”. 
- There was no transition specified for the Timeout condition “SlaveLost” in state 

“TransparentMode:WaitForMasterCommand”. 
- There was no transition specified for the event “CommandArrived” in state 

“WaitForEndOfRound”. 
- In State “TransparentMode:WaitForCVKEAnswer”, event “SlaveLost” triggered 

two transitions (one of them is shown by dashed line) resulting in a potentially 
non-deterministic operation. 

We have performed also some additional completeness and consistency checks, 
which are specific for this control system. For instance we had to check whether for 
all scenario, the Timeout Timer is re-started in every stable state. The reachability 
analysis was performed completely in the HIDE environment since the mapping of 
UML statecharts to Promela code was implemented there. 

The full verification and the correction of the specification of the communication 
module required approx. 4 hours. Then the skeleton of the program code was 
generated automatically, based on the checked UML model. The finalization of the 
code was made manually. 
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The new code was tested, integrated and the system was put into operation. The 
intermittent failures disappeared from the system. The problems were presumably 
caused by the incompleteness of the specification in the case of Timeout events. 

7 Conclusion 

The paper presented methods and tools for the checking of some aspects of 
completeness and consistency in UML statechart specifications of embedded 
controllers. Criteria were formulated and their checking was proposed both by 
applying static methods and reachability analysis (model checking). The main 
contribution of our work are (i) the adaptation of existing criteria to the UML 
statechart formalism and (ii) the experimental implementation of the checker 
methods. This work can be considered as a first step towards the automatic analysis of 
the majority of criteria given in [4]. 

Our further research concentrates on two main topics. The first goal is the 
extension of the set of criteria to be checked. The next area of research is the 
investigation of the use of OCL to express and check safety criteria. Finally the 
research could lead to the definition of a sub-language of UML suitable for specifying 
safety-critical systems. 
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