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Preface

This volume contains the proceedings of the Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2006), held
in Vienna, Austria on April 1 and 2, 2006, as a satellite event to the Euro-
pean Joint Conference on Theory and Practice of Software (ETAPS’06). The
GT-VMT workshop series serves as a forum for all researchers and practition-
ers interested in the use of graph-based notation, techniques and tools for the
specification, modeling, validation, manipulation and verification of complex
systems. Previous workshops have been organized in Geneva (2000), Crete
(2001), Barcelona (2002 and 2004).

Due to the variety of languages and methods used in different domains, the
aim of the workshop is to promote engineering approaches that starting from
high-level specifications and robust formalizations allow for the design and the
implementation of such visual modeling techniques, hence providing effective
tool support at the semantic level (e.g., for model analysis, transformation, and
consistency management). In fact, the workshop series attracts the interest of
communities working on popular visual modeling notations like UML, Graph
Transformation, Business Process/Workflow Models.

This year’s workshop had an additional focus on Models for Mobile Systems
and Services (including Service-Oriented and Global Computing architectures)
where huge and highly dynamic graph-like structures offer a challenging ground
for the application of graph transformation techniques and tools.

We are very glad to announce that GT-VMT 2006 received a record number
of submissions (exactly 40), requiring unexpected efforts from the PC members.
In fact, to guarantee the fairness and quality of the selection, each paper received
at least three reviews. Given that many submissions proposed very promising
ideas and tools, even if not fully developed yet, we decided to include some
of them both in the workshop programme, to stimulate the discussion among
participants, and in these proceedings, tagged as short contributions.

The Program Committee selected 13 regular contributions for presentation
plus 10 short contributions. These were grouped in six sessions on “Theory
of Graph Transformation”, “QVT and Graph transformation”, “Verification
of Validation”, “Models, Code, Metrics”, “Programming and Implementation
Techniques”, “UML and OCL”.

Additionally, the programme included two invited talks by

• Jeff Magee (Imperial College, London, UK);

• Jana Koehler (IBM Research, Zurich, Switzerland).

Jana Koehler’s lecture is included in these proceedings.
The organizers acknowledge the support by the European Research Train-

ing Network SegraVis (Syntactic and Semantic Integration of Visual Modelling
Techniques), and by the IST Integrated Project SENSORIA (Software Engineer-
ing for Service-Oriented Overlay Computers) funded by the European Union in
the 6th framework programme as part of the Global Computing Initiative. We

vi



warmly thank Reiko Heckel and Andrea Corradini for proposing us to organize
the workshop in connection with ETAPS 2006 (for the second time, after the
venue of ETAPS 2004 in Barcelona). We also thank all our colleagues in the
Program Committee and those who helped us as external reviewers for their
tremendous efforts in producing their reports under a very tight schedule, that
coincided essentially with Christmas holidays. A special thank goes to Silvia
Masini for drawing the workshop logo. We are very grateful to the ETAPS
organizers, especially to Andreas Krall, for taking care of all the local organiza-
tion, including the printing of these proceedings and for accommodating all our
special requests.

These proceedings will be published in the series Electronic Notes in Theo-
retical Computer Science (ENTCS). ENTCS is published electronically through
the facilities of Elsevier Science B.V. and under its auspices. The volumes in
the ENTCS series are available online at http://www.elsevier.com/locate/
entcs. We are grateful to ENTCS for their support, in particular to Michael
Mislove, Managing Editor of the ENTCS series.

April 2006

Roberto Bruni and Dániel Varró
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GT-VMT 2006

The Role of Visual Modeling and Model
Transformations in Business-driven

Development

Jana Koehler Rainer Hauser Jochen Küster
Ksenia Ryndina Jussi Vanhatalo Michael Wahler

IBM Zurich Research Laboratory, Business Integration Technologies
Säumerstr. 4, CH-8803 Rüschlikon, Switzerland

Abstract

This paper explores the emerging paradigm of business-driven development, which
presupposes a methodology for developing IT solutions that directly satisfy business
requirements and needs. At the core of business-driven development are business
processes, which are usually modeled by combining graphical and textual notations.
During the business-driven development process, business-process models are taken
down to the IT level, where they describe the so-called choreography of services in
a Service-Oriented Architecture. The derivation of a service choreography based
on a business-process model is simple and straightforward for toy examples only—
for realistic applications, many challenges at the methodological and technical level
have to be solved. This paper explores these challenges and describes selected
solutions that have been developed by the research team of the IBM Zurich Research
Laboratory.

Key words: Business-process modeling, business-driven
development, Service-Oriented Architecture

1 Introduction

An improved alignment of the IT infrastructure of an enterprise with its busi-
ness needs and requirements is a trend that has dominated and driven inno-
vations in information technology over the past couple of years. Terms such
as Web services [24], Service-Oriented Architecture [7], model-driven [23] and
agile [18] development, and industry standards such as the Web Service De-
scription Language, WSDL [5], and the Business Process Execution Language,

1 Email: koe@zurich.ibm.com, http://www.zurich.ibm.com/csc/bit
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Koehler et al.

BPEL [1], or recent specifications such as the Service-Component Architec-
ture [2] all relate to this trend.

The new technologies focus on improving the agility of the enterprise soft-
ware development process to match the pace at which the business needs to
change in order to keep up with market trends and competition. A key to
improved software development agility is the capability of IT departments
to create solutions that directly realize business goals through well-designed
business processes.

Business-driven development (BDD) [19] is a methodology for develop-
ing IT solutions that directly satisfy business requirements and needs. BDD
requires that “a mechanism needs to be devised by which IT efforts are inter-
locked with business strategy and requirements through an execution frame-
work that is standardized, well understood, and can be executed repeatedly
and successfully” [19]. The main phases of such a “mechanism” are illustrated
in Figure 1.

Business 
Requirements

IT 
Requirements

Fig. 1 Main BDD phases.

The Model phase comprises the identi-
fication of business goals and requirements
and the modeling of the underlying business
processes. The business-process models are
an essential means to create a link between
the business needs and the IT implementa-
tions. In the Develop phase, the business-
process models are refined through a num-
ber of transformations until an implementa-
tion is obtained that can then be integrated
with the existing IT infrastructure in the De-

ploy phase. The resulting deployed solution
is monitored to measure how it achieves the
originally stated business goals. Finally, needs for changes and adaptation of
the running business processes can be derived and fed back into the origi-
nal business-process models. In the BDD process, business requirements flow
downwards from the business level to the IT level, while IT requirements flow
upwards from the IT level to the business level. What sounds so straight-
forward and easy in theory turns out to be a very challenging endeavor in
practice. In this paper, we will focus on the two predominant of the chal-
lenges encountered:

(i) A business-process model that has been designed with business require-
ments and goals in mind is not necessarily a model that describes a
scalable, reliable, and performant choreography of reusable IT services.

(ii) A service choreography derived in a top-down manner from a business-
process model may not so easily or even not at all integrate with an
existing IT infrastructure.

The first challenge results from a large gap between the world and perspec-
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tive of a business analyst and the realities of today’s programming models and
software-engineering approaches. The second challenge results from the gap
between an ideally designed new solution and the realities of the existing IT
infrastructure involving software, hardware, and network topology. The next
section will work through a small example to discuss in which form these
challenges occur and how they can be addressed.

2 From Analysis Models to Design Models of Business

Processes

There seems to be a widely accepted belief that the model of a business pro-
cess exists, i.e., that there is a single model that describes the business process
and that this single model is suitable for the business expert as well as the IT
expert who is supposed to implement the business process. In our own work,
we came to the conclusion that this assumption is very unrealistic. Instead, it
is necessary (as it is common today in object-oriented programming) to distin-
guish between the analysis model of a business process and its design model,
and to develop a methodology that enables the seamless transition from the
analysis model to the design model. To illustrate the problem, let us consider
the example in Figure 2, which describes a very simplified process for handling
insurance claims as it may be initially depicted by a claims specialist. 2 The
process consists of three subprocesses Search Information, Record Claim, and
Settle Claim.

Fig. 2. Analysis model of a simplified claim handling process in insurance.

The intended meaning is described by the claims specialist as follows: “The
process starts when a new claim is recorded or by revisiting an existing one
to search for additional information on the claim. New information about the
claim is recorded, and then the settling of the claim is attempted. The process
finishes if the claim was settled, i.e., if either a benefit is payed or the claim is
rejected because it is not covered by the insurance policy of the claimant, for
example. If a settlement cannot be achieved, e.g., the benefit offered by the

2 A realistic claim-handling process such as the reference process contained in the IBM
Insurance Application Architecture [12] contains about a dozen subprocesses and more
than 100 individual process activities.
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insurance is not accepted by the claimant, the process has to be resumed by
searching for additional information.”

The graphical model shown in Figure 2 depicts each of the subprocesses
by a rectangle, explicitly denotes start and end points of the process, and
shows the control-flow inside the process by connecting the modeling elements
with directed edges. 3 Multiple incoming or outgoing edges denote alterna-
tive, sequential paths of execution in the process, i.e., there is no parallelism
involved in this example. The decisions that select among these alternative
execution paths are not explicitly represented in this model. The model is
a typical analysis model of a business process. An analysis model describes
what the process is doing. It shows the initial partitioning of the process into
subprocesses and activities with the main flow of control and, optionally, of
data. It completely abstracts from IT-related aspects, but can be used for
simulation and discussion with business analysts.

However, this model is not yet ready for implementation. First, we do not
know which data will drive the process and represent the claim information.
Secondly, we have no information on the underlying decision logic or business
rules that guide the selection of the alternative execution paths. This infor-
mation is added to the model in Figure 3, which shows a data-flow model with
explicit decision and merge points. The figure shows the initial design model

for the claim-handling process. In general, a design model contains a refined
partitioning of the process that reflects existing application systems and shows
an IT-based flow of data and control. It must be ready to be mapped to the
desired target programming model. A fully refined design model in addition
describes how the process is realized using hardware, software, and people.

Fig. 3. Initial design model with data-flow, decision and merge points made explicit.

The transition from Figure 2 to Figure 3 is a process that consists of man-
ual and automatic steps, involving the domain expert and an IT or Business
architect who is able to work between the business and IT worlds, taking input
from both sides:

• In a fully automatic step, the sequential and parallel branching and merging
in a process model can be made explicit by adding explicit control actions
to the process model such as Join, Fork, Decision, Merge, e.g., known from
UML activity diagrams [21]. In our example, the original control-flow model
is transformed into a control-action normal form, which explicitly adds con-

3 The figures show screenshots of the example model represented in IBM WebSphere Busi-
ness Modeler, version 6.
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trol actions to the graphical model and restricts activity nodes to having
only a single incoming and outgoing edge. Two decision and merge nodes
are automatically added to the model, whereas the names of the decisions,
Claim Exists? and Settled?, are added by the user.

• The flow of business information is made explicit in a manual top-down
analysis step, e.g., it means that one annotates the input and outputs of
the subprocesses with data abstractions such as claim, policy, customer

information, and these inputs and outputs are possibly connected to model
the data-flow inside the process.

• In a manual bottom-up step, data structures existing in the available IT
infrastructure are revisited, which can reveal a reusable data type that can
capture the required business information and drive the process. Similarly,
reusable services that exist in this infrastructure can be identified to imple-
ment parts of the process. In our example, an existing Web service Provide

Information can be reused to implement the Search Information subprocess.
This Web service uses a message of type Claim that is found suitable for
representing all necessary information to drive the claim-handling process.

• In a fully automatic bottom-up step, reusable data types and services can
be imported into the business-process modeling tool, where they become
available as modeling elements. Service models will usually be added man-
ually to a process model, where they are used to replace or refine existing
process activities, whereas a control-flow can be refined fully automatically
into a data-flow once the data type has been selected by the user. In our
example, the Search Information subprocess is replaced by the Provide In-

formation service and the Claim message type is assigned to the control-flow
of Figure 2 to yield the corresponding data-flow model in Figure 3.

The two automatic steps in our example can be implemented as model
transformations that transform the business-process model in Figure 2 to the
model shown in Figure 3. First, the original control-flow model is transformed
into a control-action normal form. Second, a message type Claim was selected
by the user and then used in an automatic model transformation that changes
the control-flow into a data-flow driven by Claim. Once the data or message
type entering each decision point in the process is known, the decision condi-
tions can be expressed by referring to the attributes and values of the data or
message type. The specification of the decision condition based on the process
data is a further manual refinement step of the design model.

However, we are still not done. Specific target platforms may further
restrict the control- and data-flows of design models that can be mapped to
code. Our simple example contains a forward edge from the Claim Exists?

decision to the Record Claim activity and a backward edge from the Settled?

decision to a merge preceding the Provide Information service. The backward
edge leads to a cyclic process model. Unfortunately, a language such as BPEL
does not support unstructured cycles, but only offers well-structured loops
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in the form of while-activities [1]. This means, another transformation must
be applied that transforms models with unstructured cycles into models with
loops. Figures 4 and 5 show the result of such a fully automatic cycle-removal
transformation [11,15].

Fig. 4. Design model with loop.

Figure 4 shows a newly created loop activity that was added by the model
transformation and encapsulates all those activities of the process that were
reachable by the cycle. A map activity was added that receives the arriv-
ing Claim message, puts it into a data store visualized by a repository sym-
bol (which can also represent a variable in the target programming model,
e.g., BPEL), and then triggers the loop via a control-flow edge. Once the loop
has terminated, another map activity receives the modified Claim message and
the control-flow from the loop to pass the message on to the process interface.

Figure 5 shows the loop body contents. In our example, all activities have
been placed inside a loop and a Bypass Region decision has been added to
encapsulate the Provide Information service, which is only invoked in some
of the process executions. The access of the loop body to the data in the
repository is not directly visible in the graphical visualization, it is visible
only via additional textual attributes, which we do not show here because of
space restrictions.

Fig. 5. The loop body containing the repeatable process activities.

Our final example design model is no longer in a representation format
that would be ideal for business people. However, only from this model of
the process, can now runtime code be generated automatically that meets the
requirements of our intended target programming model using BPEL/WSDL.
With our transformations, we have made a systematic step-by-step transition
from the business view to the IT view of the process, in which each model re-
sults from its predecessor through a well-defined, gradual change. The changes
were necessary to reuse existing services and data structures and address re-
strictions of the target programming model. One can easily imagine that
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scalability and performance requirements will also significantly influence how
the analysis model is refined into the corresponding design model, for example
when we have a choice of more than one reusable service or when quality-of-
service considerations become important. The example also showed that even
a simple scenario requires a sophisticated mixture between manual and auto-
matic, bottom-up and top-down steps.

In the next section, we will review business-driven development from a
larger perspective and discuss what methodological and tooling underpinnings
are required to make this new style of software development successful.

3 Methodologies and Tools for Business-Driven Devel-

opment

Figure 6 positions business-driven development as a software development
process focusing on business processes and facing a tradeoff between the need
to preserve customer investments, while moving towards a modern Service-
Oriented Architecture.

Existing 

Business Processes

Reference Models

Other Tools

Relevant IT Models

XML Schema

BPEL, WSDL

Business Process

Analysis Model

Business Process

Design Model

Service Component

Architecture

Processes

Services

Rules

State Machines

Customer Investments Business-Driven 
Development

Import  &  Restructuring

State Machine 
Extraction

Transformations:

Control-Flow Extraction 
Data Container Assignment 
Cycle Removal

Import

Views &  Normal Form   
Search & Comparison 
Quality Assurance

BPEL Export

Service & Process Identification

Runtime

Other Runtimes

Fig. 6. Business-driven development and contributions by our research team.

In the following, we will use this figure to discuss interesting research prob-
lems and briefly review selected contributions made by our research team.
The work in Zurich started in 2001 driven by the general question of how
software based on Web services should be developed in the future. The work
was influenced by trends such as Model Driven Architecture [8] and require-
ments of business integration. Very quickly, we focused on the problem of
generating BPEL from business-process models [14] — an improved and ex-
tended BPEL code generation is part of IBM WebSphere Business Modeler
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today [16]. We realized quickly that cyclic process models are very natural for
business analysts, but their transformation into BPEL is not at all straight-
forward. Extending our process-model-to-BPEL transformation to a larger
class of process models resulted in another model transformation, called cycle

removal [11,15]. Our team continues to focus on model transformations in the
context of business-driven development, and we pursue our work today in two
strands.

In one strand, we develop methodologies that underpin business-driven de-
velopment and make it usable in concrete customer scenarios. At the core of
these methodologies is the distinction between four types of process models:
the analysis and design models, which we discussed in the previous section,
the usage of reference models that describe best practices for an industry, and
legacy process models, i.e., process models that many customers have built,
but that have only been used indirectly as input into a software development
process. The investments into these legacy models must be preserved; how-
ever, the models must also be further enhanced in their quality to serve as
starting points for the generation of high-quality code and architectural solu-
tions. This often requires their import into our own tools and a restructuring

that quite often reveals semantic errors that need to be corrected.

Reference models can help in producing better To-Be analysis models and
can also serve to guide the refinement of the analysis model into the design
model if a reference model contains not only process models but also ready-to-
use service components and data models as it is for example the case for the
IBM Insurance Application Architecture [12]. The systematic usage of refer-
ence models to improve an existing business process is a challenging task when
we think beyond toy examples. It requires a comparison of different types of
models that can be facilitated for the human expert by using a normal-form

representation and condensed process views. Specific transformations of pro-
cess models such as control-flow extraction, which changes a data-flow model
into a control-flow model, data container assignment, which changes a control-
flow model into a data-flow model, and cycle removal can be fully automated.
Other transformations that often require refinement and refactoring steps of
the current model must be done by the user, but can nevertheless be supported
by tools.

The need to interleave bottom-up and top-down steps in the development
process leads us directly to the problem of roundtripping for business-process
models. The theoretical boundaries for roundtripping between BPEL and
an expressive business-process modeling language, for example, are easy to
determine. Given the Turing equivalence of both languages, it is in general
undecidable whether an arbitrary, e.g., modified, BPEL program is equivalent
to a given business-process model. However, incomplete forms of reasoning
about model equivalence make a lot of sense in many scenarios. For ex-
ample, it makes sense to reimport a modified BPEL into a business-process
modeling tool and resort to a human expert to compare it with the original

8
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business-process model from which it was generated. This can make it easier
to communicate changes from the IT level back to the business and to support
bottom-up steps in business-driven development that require the extraction
of business-process models from the IT level.

In our methodological work, we develop detailed methodology guidelines
that show how manual and automatic steps interleave, when they are done
and why. A specific interest of us is the interleaving of bottom-up and top-
down development steps, i.e., the problem of how business requirements flow
down and how IT requirements flow up. One of the most challenging and
important tasks that needs to take place at the business and the IT level
is service and process identification—finding the right granularity of services
and thinking about reuse very early in the modeling and software development
process. Today, this still is a quite poorly understood step, rather than a well-
understood and teachable skill.

Our methodologies also address specific questions that result from the use
of different forms of models. Historically, business processes have mostly been
represented by flow diagrams. Today, there is a trend to link them with busi-
ness objects [20] and business state machines [3]. The semantic relationship
between the various forms of models and their role in business-level and pro-
gramming models are a very interesting and wide field for research.

In our second strand of research, we investigate fundamental questions
that occur in our methodologies and tooling, which are often not specific to
business-process models. Many academic solutions have been developed to
describe model transformations declaratively, e.g., [17], but the industrial re-
ality is usually plain code. To speed up and improve the quality of our own
transformation development, we developed a model transformation framework
that provides a convenient API to business-process models represented in
IBM WebSphere Business Modeler and a set of elementary transformations
for reuse.

The testing of our transformations still is a tedious task, and creating
in particular the test examples is a huge effort. The efficient generation of
model instances that can be influenced by model transformations is another
problem of interest to us [6]. Previous approaches either rely on exponential
methods [13] or require scripts to be written [10].

Our transformations often contain many lines of code that validate the
source and target models of the transformations, i.e., they check whether the
model is eligible for the transformation and whether the target model that
was produced satisfies a set of given design constraints. The management of
these validation and design constraints at the code level creates a huge software
maintenance problem, which is even aggravated by the fact that models evolve
further with each new version of a software product and that transformations
must consider numerous dependencies between models at the business and IT
level [4].

Quality assurance for models is another fundamental question that is also
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related to the management of design constraints for models. There seems to
be an intuitive feeling of what constitutes a good model in contrast to a bad
model, but so far no really practical and user-friendly solutions to improve
the quality of process models by enforcing design constraints exist. Similarly,
scalable (perhaps incomplete) algorithms to detect typical design errors in
process models that would lead to poor runtime code are not yet part of any
business-process modeling tool.

We are also interested in algorithmic techniques that help to improve the
visualization of large process models and the search capabilities of tools to
find models in large collections [22]. Finally, the semantics, the definition of
normal forms, and the development of algorithms and tools that allow us to
compare process models with each other (be they given in the same or in
different modeling languages) are also on our research agenda.

IBM’s policy of basing its products on the open-source Eclipse platform
makes it much easier for us to prototype our transformations and tools as
plugins that extend these products, to cooperate with other research teams,
and to test out our solutions in customer engagements. Nevertheless, much
work remains to be done. Working with models in a tool is still a heavy-
weight undertaking today. For example, many of our transformations, which
physically produce a new model, can be thought of as views, with a view
being a transformation that is not persisted [9]. However, generating such
views on models, maintaining them and letting the user freely decide whether
the view should be persisted as a new model or update an existing one, leads to
many technical and theoretical challenges such as maintaining the consistency
among several related models.

A possible vision for the future of business-driven development could be
a complete fusion of process model and code, instead of keeping physically
distinct platform-independent and platform-specific models. The model is the
code, in which graphical and textual elements are combined and an initial
(perhaps mostly) graphical model is refined until it becomes executable. Re-
finement and abstraction steps will allow a user to move between different
editions of a model and will be supported by quality-ensuring methods.

4 Summary

The paper presents an overview on the paradigm of business-driven develop-
ment that centers around business processes and aims at a tighter alignment
of the IT infrastructure with business needs and requirements. We review the
main phases in a business-driven development cycle and then focus on chal-
lenges that arise from the need to transform business-process models into exe-
cutable services within a Service-Oriented Architecture. We discuss a method-
ology that distinguishes between the analysis model of a business process and
its corresponding design model and describe bottom-up and top-down model
transformations that we developed to fill gaps in the business-driven devel-
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opment cycle. Several open or only partially solved research problems are
identified and positioned within the business-driven development paradigm.
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1 Introduction

Static conflict detection is a well-known important task for all kinds of rewrit-
ing systems especially also for graph transformation systems. To enable a
static conflict detection the notion of critical pairs was developed at first for
hypergraph rewriting [12] and then for all kinds of transformation systems
fitting into the framework of adhesive high-level replacement categories [6].
Usually a straightforward way (i.e. directly according to the definition) is
used to compute the set of all critical pairs of a graph transformation system.
This is very important for all kinds of applications like for example graph
parsing [2], conflict detection in graph transformation based modeling [8] [1]
and model transformation [3] [4], refactoring [11], etc. Up to now, however,
there is almost no theory which allows an efficient implementation of conflict
detection. Therefore our paper [9] and this paper concentrate on exactly this
subject.

In [9] it was already explained which optimizations lead to a more efficient
conflict detection in a graph transformation system. Unfortunately this effi-
ciency could only be obtained for conflicts induced by a pair of rules with one
of the rules non-deleting. This is quite a strong restriction, since in particular
a lot of conflicts are induced by a pair of deleting rules. Therefore this paper
formulates a characterization of conflicts, covering also these kind of conflicts.
Moreover this conflict characterization leads us to the identification of the
conflict reason of each conflict.

The notion of critical pair introduced in [12], [6] expresses each conflict in
its minimal context. In some cases though two different critical pairs express
the same kind of conflict. Therefore exploiting the uniqueness of each conflict
reason mentioned above, it is possible to further reduce the set of critical
pairs to a subset of essential critical pairs. This subset expresses each kind
of conflict which can occur in a graph transformation system in a minimal
context and moreover in a unique way. This uniqueness property and the
constructive conflict reason definition facilitates the optimization of detecting
all conflicts of a graph transformation system.

The following sections explain how to characterize conflicts and what the
conflict reason is, how we come to the definition of essential critical pairs and
which properties they fullfill. Main new results presented in this paper are a
characterization of conflicts, completeness and uniqueness of essential critical
pairs and a local confluence lemma based on essential critical pairs. More
details concerning well-known definitions and new proofs are given in the long
version of this paper [10] to show the mature status of the theory. The theory
of essential critical pairs is the basis to develop and implement a more efficient
conflict detection algorithm in the near future.

1 Email: leen@cs.tu-berlin.de
2 Email: ehrig@cs.tu-berlin.de
3 Email: orejas@lsi.upc.edu
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Fig. 1. asymmetrical delete-use-conflict

2 Conflict Characterization and Conflict Reason

In this section we formulate a theory which leads us to the identification
of the conflict reason for each occuring conflict in a graph transformation
system where we only consider injective matches. This new notion of conflict
reason will help us consequently in the next sections to detect in a static
way all representative conflicts of a graph transformation system. At first,
we look at an example of two direct transformations H1

p1,m1⇐ G
p2,m2⇒ H2 in

conflict in Fig. 1, generated by two deleting rules p1 : L1 ← K1 → R1 and
p2 : L2 ← K2 → R2. Looking at both direct transformations we can describe
the reason for the conflict between them as follows. The left transformation
deletes edge (1, 4− 2, 5) and that is why rule p2 can not be applied anymore
to the same location on graph H1. The structure (S1, o1, q12), constructed as
pullback of (m1 ◦ g1, m2), captures exactly the conflict reason for this conflict,
because it holds the edge (1, 4− 2, 5) to be deleted by the left transformation,
but used by the other one. The following definitions and theorem explain
how to formalize this new notion of conflict reason. Please note, that for all

subsequent definitions and theorems the following pair of rules pi : Li
li← Ki

ri→
Ri with boundary Bi and context Ci, defining an inital pushout (1) over li
(see [6]) and injective graph morphisms bi, ci, gi, li are given, i.e. bi, ci, gi, li in
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M (i = 1, 2), where M is the set of all injective graph morphisms.

Bi

(1)bi

��

ci
//Ci

gi

��
Ki li

//Li

Definition 2.1 [conflict condition] Given a pair of direct transformations

H1
p1,m1⇐ G

p2,m2⇒ H2

• (S1, o1 : S1 → C1, q12 : S1 → L2) the pullback of (m1 ◦ g1, m2) satisfies the
conflict condition if: 6 ∃s1 : S1 → B1 ∈M such that c1 ◦ s1 = o1

B1

b1
��

c1
//C1

g1

��

S1o1
oo

(1)

q12
  A

AA
AA

AA

R1

(41)

��

K1

(31)

l1 //r1oo

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

(42)

l2oo r2 //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

• (S2, q21 : S2 → L1, o2 : S2 → C2) the pullback of (m1, m2 ◦ g2) satisfies the
conflict condition if: 6 ∃s2 : S2 → B2 ∈M such that c2 ◦ s2 = o2

S2 o2
//

(1)

q21

~~}}
}}

}}
}

C2

g2

��

B2

b2
��

c2
oo

R1

(41)
��

K1

(31)

l1 //r1oo

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

(42)

l2oo r2 //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
//H2

In the example in Fig. 1 (S1, o1 : S1 → C1, q12 : S1 → L2) satisfies, but
(S2, q21 : S2 → L1, o2 : S2 → C2) doesn’t satisfy the conflict condition. The
idea behind this conflict condition is that a conflict occurs if graph parts which
are deleted are overlapped with parts to be used by the other transformation.
This idea is expressed formally by a new characterization of conflicts in the
next theorem.

Theorem 2.2 (Characterization Conflict) Given a pair of direct transfor-

mations H1
p1,m1⇐ G

p2,m2⇒ H2 with (S1, o1 : S1 → C1, q12 : S1 → L2) the
pullback of (m1 ◦ g1, m2) and (S2, q21 : S2 → L1, o2 : S2 → C2) the pullback of
(m2, m1 ◦ g1) then the following equivalence holds:

H1
p1,m1⇐ G

p2,m2⇒ H2 are in conflict

⇔
(S1, o1, q12) ∨ (S2, q21, o2) satisfies the conflict condition

Theorem 2.2 (proof see [10]) teaches us, that a pair of direct transforma-

tions H1
p1,m1⇐ G

p2,m2⇒ H2 is in conflict, because one of the following three
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Fig. 2. symmetrical conflict

reasons:

(i) (S1, o1, q12) satisfies and (S2, q21, o2) doesn’t satisfy the conflict condition
(asymmetrical delete-use-conflict)

(ii) (S1, o1, q12) doesn’t satisfy and (S2, q21, o2) satisfies the conflict condition
(asymmetrical use-delete-conflict)

(iii) both (S1, o1, q12) and (S2, q21, o2) satisfy the conflict condition (symmet-
rical conflict)

In the case of asymmetrical conflicts rule p1 (resp. p2) deletes something,
what is used by rule p2 (resp. p1), but not the other way round. Let us
consider in more detail the case of symmetrical conflicts. In Fig. 2 you can
see an example of two direct transformations, having a symmetrical conflict.
Then (S1, o1, q12) expresses the part which is deleted by p1 and used by rule
p2 and (S2, p1, o2) expresses the part which is deleted by p2 and used by rule
p1. In order to summarize both parts into one graph expressing exactly the
graph parts of L1 and L2 responsible for the conflict, we make the construction
depicted in Fig. 3. In this construction (S ′, a1, a2) is the pullback of (m1 ◦ g1 ◦
o1 : S1 → G1, m2◦g2◦o2 : S2 → G2) and (S, s′

1, s
′
2) is the pushout of (S ′, a1, a2).

This is, we determine the part S ′, which is deleted by both rules and glue S1

and S2 together over this part leading to S. Note, that in the example in Fig.
2 S ′ would be the empty graph. Now we have g1 ◦o1 ◦a1 = q21 ◦a2 and similar
g1◦o2◦a2 = q12◦a1 because m1 is mono and m1◦g1◦o1◦a1 = m2◦g2◦o2◦a2 =
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S ′

a2   A
AA

AA
AA

A

a1~~}}
}}

}}
}}

S1

o1

�� s′
1   A

AA
AA

AA
A S2

s′
2~~}}

}}
}}

}}
o2

��
B1

b1
��

c1
//C1

g1

��

S

s2
  A

AA
AA

AA
A

s1
~~}}

}}
}}

}}
C2

g2

��

B2

b2
��

c2oo

K1

(31)

l1 //

��

L1

m1
  A

AA
AA

AA
A L2

(32)m2
~~}}

}}
}}

}}
K2

l2oo

��
D1 d1

//G D2d2

oo

Fig. 3. construction of the conflict reason for symmetrical conflicts

m1 ◦ q21 ◦a2. Together with the pushout property of S this implies, that there
exists a unique s1 : S → L1 (resp. s2 : S → L2) s.t. g1 ◦ o1 = s1 ◦ s′

1 and
q21 = s1 ◦ s′

2 (resp. g2 ◦ o2 = s2 ◦ s′
2 and q12 = s2 ◦ s′

1). Moreover using
PO-property of S we can conclude m1 ◦ s1 = m2 ◦ s2. Please note, that in
Fig. 3 we left out q21 and q12. Thus in the end (S, s1, s2) summarizes which
parts of L1 and L2 are responsible for the symmetrical conflict. Remark:
S = S1 = S2 if and only if all elements deleted by p1 are also deleted by p2

and the other way round (pure delete-delete-conflict). S ′ = ∅ if and only if
all elements deleted by p1 are not deleted, but used by p2 and the other way
round (pure delete-use-conflict as in the example in Fig. 3).
We can resume these observations into the following definition.

Definition 2.3 [conflict reason span] Given a pair of direct transformations

H1
p1,m1⇐ G

p2,m2⇒ H2 in conflict, the conflict reason span of H1
p1,m1⇐ G

p2,m2⇒ H2

is one of the following spans using the notation of Def.2.1:

• (S1, g1 ◦ o1, q12) if (S1, o1, q12) satisfies and (S2, q21, o2) doesn’t satisfy the
conflict condition

• (S2, q21, g2 ◦ o2) if (S1, o1, q12) doesn’t satisfy and (S2, q21, o2) satisfies the
conflict condition

• (S, s1, s2) if (S1, o1, q12) and (S2, q21, o2) both satisfy the conflict condition
and (S, s1, s2) is constructed as above

3 Definition of Essential Critical Pairs

By means of the new notion of conflict reason it is possible to define the new
notion of essential critical pairs. The idea behind this notion is that for each
conflict reason we have an essential critical pair, expressing the conflict caused
by exactly this conflict reason in a minimal context.

Definition 3.1 [essential critical pair] A pair of direct transformations P1
p1,m1⇐
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K
p2,m2⇒ P2 is an essential critical pair for the pair of rules (p1, p2) if the fol-

lowing holds: P1
p1,m1⇐ K

p2,m2⇒ P2 are in conflict and (K, m1, m2) is a pushout
of the conflict reason span (S1, g1 ◦ o1, q12),(S2, q21, g2 ◦ o2) or (S, s1, s2) of

P1
p1,m1⇐ K

p2,m2⇒ P2 according to Definition 2.3.

Fact 3.2 Each essential critical pair P1
p1,m1⇐ K

p2,m2⇒ P2 of (p1, p2) is a critical
pair of (p1, p2).

Proof. Each essential critical pair is a pair of direct transformations in con-
flict. The overlappings (m1, m2) of an essential critical pair are jointly surjec-
tive, because they are constructed via a pushout. 2

Remark: The main idea shown in the next section is that it is sufficient
to consider essential critical pairs and not every critical pair is an essential
critical pair. This is shown in the example in Fig. 4. The essential critical pair
P1

p1,m1⇐ K
p2,m2⇒ P2 of (p1, p2) only overlaps the edge (1− 2) with (4− 5), since

this is exactly the reason for the delete-use-conflict. However the matches

(m′
1, m

′
2) of the critical pair P ′

1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 (with m′

1 = m1 ◦ m and
m′

2 = m2◦m) overlap in addition node 7 with node 3, which are not responsible
for the conflict at all. The pair of rules, used in the example in Fig. 1,2 and 4
induces, according to the critical pair detection in [13] AGG 14 critical pairs,
but only 3 of them are essential critical pairs.

4 Properties of Essential Critical Pairs

In this section we will prove that it is enough to compute all essential crit-
ical pairs to detect all conflicts, occuring in a graph transformation system.
Therefore we show, that the set of essential critical pairs fullfills the follow-
ing three properties. At first, we demonstrate that each conflict, occuring
in the system can be expressed by an essential critical pair (completeness).
The second property says, that each essential critical pair is induced by a
unique conflict reason. Finally we will prove a local confluence lemma based
on essential critical pairs.

Theorem 4.1 (Completeness and Uniqueness of Essential Critical Pairs)

For each critical pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 of (p1, p2) there exists a unique es-

sential critical pair P1
p1,m1⇐ K

p2,m2⇒ P2 of (p1, p2) with the same conflict reason
span and extension diagrams (1) and (2).

P1

��
(1)

Kks +3

(2)m

��

P2

��
P ′

1 K ′ks +3P ′
2

Remark: m : K → K ′ is an epimorphism, but not necessarily a monomor-
phism.

The proof of this theorem is given in appendix C in [10].
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Fig. 4. essential crit. pair P1
p1,m1⇐ K

p2,m2⇒ P2 into crit. pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2

The set of essential critical pairs is unique in the following sense:

Theorem 4.2 (Uniqueness of Essential Critical Pairs) Each essential crit-
ical pair possesses a unique conflict reason span.

Proof. This follows directly from Theorem 4.1 and Fact 3.2. 2

Note, that the set of critical pairs doesn’t possess this uniqueness property.
The example in Fig. 4 shows two different critical pairs (a normal critical

pair P ′
1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2 and an essential critical pair P ′

1

p1,m′
1⇐ K ′ p2,m′

2⇒ P ′
2)

possessing the same conflict reason span.

The following theorem states that it is enough to check each essential
critical pair for strict confluence as defined in [12][6] to obtain local confluence
of a graph transformation system.

Theorem 4.3 (Local Confluence Lemma based on Essential Critical Pairs)
If all essential critical pairs of a graph transformation system are strictly con-
fluent, then this graph transformation system is locally confluent.

The proof of this theorem is given in appendix D in [10]. It is similar
to the proof of the local confluence lemma in [6], but avoids to assume that
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m : K → K ′ is a monomorphism. Note, that the theory of essential critical
pairs not only simplifies static conflict detection, but in addition confluence
analysis of the conflicts in the system. This is because the number of conflicts
to be analyzed for strictly confluence diminishes, since the essential critical
pairs are a subset of the critical pairs.

5 Summary and Outlook

In this paper we have introduced the new notion of essential critical pairs and
corresponding results which are the basis of a more efficient conflict detection
and local confluence analysis than the standard techniques based on usual
critical pairs. In a forthcoming paper we will give on this basis an efficient
correct construction of all essential critical pairs for each pair of rules and
a corresponding algorithm which will improve the current critical pair algo-
rithm of AGG [13]. In addition we assume and will verify that an extension
of this theory to graph transformation with non-injective matches is possi-
ble, provided that the conflict condition is slightly generalized. Moreover the
following question in the context of conflict detection for graph transforma-
tion systems is subject of future work. What kind of new conflicts occur and
which new critical pair notion is necessary to describe the conflicts in graph
transformation systems with application conditions and constraints [5] and
what about the more general case of typed, attributed graph transformation
systems [7]?
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[1] Baresi, L., R. Heckel, S. Thöne and V. D., Modeling and analysis of architectural
styles based on graph transformation, in: I. Crnkovic, H. Schmidt, J. Stafford
and K. Wallnau, editors, Proc. of the 6th ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and Prediction Portland (2003),
pp. 67–72.
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Abstract

Parametric Synchronized Hyperedge Replacement (PSHR) is a graph transforma-

tion formalism where productions specifying the behavior of single components can
be synchronized to give full transitions. The main feature of PSHR is that the syn-

chronization model is user-definable. To enhance the applicability of the approach
we propose a simplified and more suggestive semantics, preserving however the ex-
pressive power of the original one. We also show how some common synchronization
models can be formalized and exploited inside PSHR. This allows to simplify the
modelling step, and the produced model too. We apply this approach to the airport
case study of FET-GC project AGILE.

Key words: Graph transformation, Synchronized Hyperedge
Replacement, synchronization algebras, mobility.

1 Introduction

Architectural modelling is the step of the design of a system that fixes the
structure of the system, that is its components and the connections among
them, and its evolution over time. Since these aspects have a large impact
on all the following phases of the development process, it is important that
the decisions made are clearly stated in the model. This requires modelling
frameworks with a formal syntax and semantics.

Many approaches to this problem have been presented in the literature,
from UML [RJB99] to different Architecture Description Languages [Arc].
We choose as framework Synchronized Hyperedge Replacement (SHR) [DM87],
which is a graph transformation framework. Thus the system is modelled as
an (hyper)graph, where (hyper)edges are components connected through com-
mon nodes. This provides both sound mathematical foundations and a sug-
gestive visual representation. In SHR the behavior of components is specified
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by productions which can be synchronized to build transitions. In particular,
productions perform actions on nearby nodes, and actions performed on the
same node must be compatible according to some synchronization model. We
also use mobility [HM01,FMT01], allowing actions to carry nodes as param-
eters, and synchronization to merge them thus reconfiguring the system. In
particular, we consider Parametric SHR (PSHR) [LM04], where both action
synchronization and mobility patterns are specified by a user-defined Syn-
chronization Algebra with Mobility (SAM). This allows to choose each time
the most suitable synchronization model for the application at hand.

PSHR is very expressive, as shown in [LM04], but its formal semantics is
quite heavy and difficult to understand. This problem is common to other
SHR variants, and is aggravated in PSHR by the need to manage different
synchronization models. The problem is due to the fact that the standard
semantics of SHR is based on inference rules that exploit a representation of
graphs as terms in an algebra. In this presentation each part of the transition
is obtained as a result of many inference steps, thus it is not easy to guess the
global effect of a set of productions. We propose a more extensional semantics,
where the synchronizations allowed on a node by a specific SAM are directly
characterized, and an algorithm specifies how to build a full transition. Also,
the semantics is based on a set-theoretic representation of graphs instead of
on an algebraic one.

We also show how a synchronization model can be formalized as a SAM,
and how PSHR can be used to model a system using this SAM. We apply this
approach to the airport case study [And02], which has been proposed inside the
FET-GC project AGILE [AGI] on architectures for mobility. We show that
parametric synchronization allows a simpler model than the one presented
in [BCG04], where a synchronized version of Double Pushout [EPS73] based
on a fixed two-parties synchronization is used.

Structure of the paper. § 2 defines graphs and SHR transitions. § 3
presents SAMs, characterizes their effects, and analyzes the modelling of syn-
chronization policies as SAMs. § 4 contains the algorithm to derive transitions
from productions. § 5 details the application of the approach to the airport
case study. Finally, § 6 presents conclusions and plans for future work.

2 Hypergraphs and SHR transitions

SHR [DM87] is an approach to (hyper)graph transformation that defines
global transitions using local productions. Productions define how a single
(hyper)edge can be rewritten and the conditions that this rewriting imposes.
Conditions are specified as compatibility requirements among actions per-
formed by productions on nearby nodes. The exact requirements depend on
the chosen synchronization model. We use the extension of SHR with mobil-
ity [HM01,FMT01], that allows edges to send node references together with
actions, and nodes whose references are matched during synchronization are
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merged. In this work we use Parametric SHR (PSHR) [LM04], where the used
synchronization model and mobility patterns can be freely chosen by speci-
fying them via a Synchronization Algebra with Mobility (SAM). A detailed
description of different SHR frameworks can be found in [Lan06].

The usual presentation of SHR is based on a representation of graphs as
terms in a suitable term algebra and on inference rules to derive transitions
from productions. This presentation allows to easily prove properties of the
framework exploiting techniques from the process calculi field, but it is not so
suggestive, since transitions are built as a result of many inference steps, and
this makes difficult to understand the actual interactions. Also, the general
mechanism is hidden because of heavy technicalities.

We propose here an original and more suggestive semantics, where tran-
sitions are built using an ad-hoc algorithm that highlights the main features
of the synchronization and mobility mechanisms, and we present a direct de-
scription of the interactions allowed by a SAM. Also, our semantics is based
on a set-theoretic presentation of graphs instead of on an algebraic one.

We always assume to have a countable set of nodes N , a countable set
of edges E , and a countable ranked set of edge labels LE. Given L ∈ LE,
rank(L) is its rank.

Definition 2.1 (Hypergraph)
A (hyper)graph is a tuple 〈E, lab, N, conn, Γ〉 where E ⊆ E is the set of edges,
lab : E → LE is the labelling function for edges, N ⊆ N is the set of nodes,
conn : E → N∗ is a function mapping each edge e to a n-tuple of nodes where
n is the rank of the label lab(e), and Γ ⊆ N is the set of nodes in the interface.
Nodes not in the interface are said hidden.

Graphs are considered up to bijective renamings of edges and of hidden
nodes.

In the above description conn specifies to which nodes each edge is at-
tached. We present now the steps of an SHR computation.

Definition 2.2 (SHR transition) Let Act be a set of actions, and given
a ∈ Act let ar(a) be its arity. An SHR transition is of the form:

G
Λ,π
−−→ G′

where G and G′ are graphs. Let ΓG be the interface of G. Then Λ : ΓG →
(Act×N ∗) is a total function and π : ΓG → ΓG is an idempotent substitution.
Function Λ assigns to each node x the action a ∈ Act and the vector y of
node references sent to x by the transition. If Λ(x) = 〈a, y〉 then we define
nΛ(x) = y. We require that ar(a) = |y|. We define the set of communi-
cated names n(Λ) as {z|∃x.z ∈ nΛ(x)}. Substitution π allows to merge nodes.
Since π is idempotent, it maps every node into a standard representative of
its equivalence class. We require that ∀x ∈ n(Λ).xπ = x, i.e., only references
to representatives can be sent.
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SHR transitions are obtained by synchronizing productions using a speci-
fied synchronization model.

Definition 2.3 (SHR production) An SHR production is an SHR transi-

tion G
Λ,id
−−→ G′ such that G is a graph containing exactly one edge e. Also, each

node in G occurs exactly once in conn(e). Furthermore the node substitution
in the label is id and the interface of G′ is ΓG ∪ n(Λ).

For each G of the above form there is an idle production G
Λε,id
−−−→ G where

Λε(x) = 〈ε, 〈〉〉 for each x ∈ ΓG (ε is a special “idle” action with ar(ε) = 0).
Idle productions are included in all sets of productions, which are also closed
under bijective renamings of nodes.

3 Synchronization Algebras with Mobility

We formalize a synchronization model as a Synchronization Algebra with Mo-
bility (SAM). SAMs were first introduced in [LM04], extending Winskel’s syn-
chronization algebras (SAs) [Win84] to deal with mobility of nodes.

As a notation, we use ] to denote disjoint set union. In A ] B we denote
with [1, x] (resp. [2, x]) the element that corresponds to x ∈ A (resp. x ∈ B).

Definition 3.1 (Synchronization algebra with mobility)
A Synchronization Algebra with Mobility < Act, ar, •, ε, mob, F in > consists
of a binary partial operator • on a set of actions Act, a set of mobility patterns
mob and a subset Fin of Act. Function ar : Act → N maps each action
a ∈ Act to its arity ar(a), and ε ∈ Act is an action of arity 0. Here mob is a
set indexed by pairs of actions (a, b) such that a • b is defined, and moba,b is a
partial function from {1, . . . , ar(a)} ] {1, . . . , ar(b)} to N.

We impose the following conditions:

(i) the • operator is associative and commutative;

(ii) ∀a, a′ ∈ Act.a • a′ = ε ⇒ a = a′ = ε;

(iii) ∀a ∈ Act.a • ε is defined ⇒
(a • ε = a ∧ ∀x ∈ {1, . . . , ar(a)}. moba,ε([1, x]) = x);

(iv) ε ∈ Fin;

(v) ∀a, b, c ∈ Act
∀x ∈ {1, . . . , ar(a)}. moba•b,c([1, moba,b([1, x])]) = moba,b•c([1, x]),
∀x ∈ {1, . . . , ar(b)}. moba•b,c([1, moba,b([2, x])]) = moba,b•c([2, mobb,c([1, x])]),
∀x ∈ {1, . . . , ar(c)}. moba•b,c([2, x]) = moba,b•c([2, mobb,c([2, x])]);

(vi) ∀a, b ∈ Act, x ∈ {1, . . . , ar(a)}. moba,b([1, x]) = mobb,a([2, x]);

(vii) ∀a, b ∈ Act. moba,b is surjective on {1, . . . , ar(a • b)}.

As in SAs, we have a set of actions Act and an operator • of action compo-
sition. Here a•b = c means that actions a and b can synchronize giving action
c as a result. If a•b is undefined then a and b are not compatible. For instance
in CCS an action a can synchronize with a coaction a producing τ as a result.
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Action ε stands for “not taking part to the synchronization”, and it allows to
specify in a uniform way action synchronization and asynchronous execution
of actions. In fact, a • ε = a means that a is executed asynchronously. With
respect to SAs, now actions a in Act have a specified arity ar(a), which cor-
responds to the number of node references carried by a. A mobility pattern
moba,b specifies how to build the references attached to a • b starting from
the references attached to a and b. The correspondence is just positional as
in usual procedure calls, but many parameters can be assigned to just one
position. In that case the parameters are merged and the result is assigned to
the chosen position. Using N as codomain instead of {1, . . . , ar(a • b)} allows
to specify merges among parameters even if the chosen representative of the
equivalence class defined in this way does not occur in the final label.

Simple message passing is specified by a set of mobility patterns MP
that merges corresponding references and assigns the result to the corre-
sponding position. Formally, MPa1 ,a2

([n, x]) = x for each n ∈ {1, 2}, x ∈
{1, . . . , ar(an)}.

A mobility pattern moba1,a2
included in a SAM S can be applied to two

actions 〈a1, y1〉 and 〈a2, y2〉 to compute both the substitution σ performing
the merge of parameters and the vector of parameters of the result, given
respectively by the two functions:

σ = sub(S, 〈a1, y1〉, 〈a2, y2〉) =

mgu({yi[j] = yh[k]|moba1,a2
([i, j]) = moba1,a2

([h, k])})

par(S, 〈a1, y1〉, 〈a2, y2〉)[i] = (yh[k])σ

iff ∃h, k. moba1,a2
([h, k]) = i ∧ i ≤ ar(a1 • a2)

For instance, let S be a SAM with actions a, b and c of arity 1, 3 and 2
respectively, such that a • b = c. Then sub(S, 〈a, 〈x1〉〉, 〈b, 〈y1, y2, y3〉〉) =
{x1/y1} (also {y1/x1} is a valid choice) and par(S, 〈a, 〈x1〉〉, 〈b, 〈y1, y2, y3〉〉) =
〈x1, y2〉. If we consider an action a′ of arity 3 with parameters 〈x1, x2, x3〉
instead of a, then σ = {x1/y1, x2/y2, x3/y3}, but x3 is not a parameter of the
resulting action.

Fin is the set of complete synchronizations, that is synchronizations that
are allowed on hidden nodes. For instance, in CCS-style synchronization just
τ is allowed on those nodes.

Conditions (i) and (ii) are from SAs. The former specifies that the result
of an n-ary synchronization does not depend on the order in which actions
are synchronized. The latter specifies that non ε actions can not disappear
giving ε. Condition (iii) specifies that synchronization with ε, if allowed, just
propagates the other action. Condition (iv) assures that all the edges can
stay idle on any node. Conditions (v) and (vi) state that mobility patterns
are associative and commutative, extending condition (i) to the mobility part.
Finally, condition (vii) guarantees that each reference attached to the com-
posed action can be computed, that is it corresponds to a non empty set of
references from component actions.
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We now characterize the effects of the synchronization specified by a SAM
S on a n-uple of actions 〈〈a1, y1〉, . . . , 〈an, yn〉〉. The effects of the synchro-
nization are an action cn with a tuple of parameters wn and a substitution
ρn. We use eqn({t1/x1, . . . , tm/xm}) to denote {t1 = x1, . . . , tm = xm}.

Definition 3.2 (Effects of a synchronization) The effects of a synchro-
nization are computed by induction on the number n of actions.

n = 1) c1 = a1, w1 = y1, ρ1 = id.

Inductive case) Let cn, wn and ρn be the effects of the synchronization
among the first n actions. Then:
cn+1 = cn • an+1,
ρn+1 = mgu(eqn(ρn) ∪ eqn(sub(S, 〈cn, wn〉, 〈an+1, yn+1〉))),
wn+1 = par(S, 〈cn, wn〉, 〈an+1, yn+1〉)ρn+1.

Conditions (i), (v), (vi) in Definition 3.1 ensure that the result is independent
w.r.t. the order of a1, . . . , an.

We present now some simple SAMs which can be used as building blocks for
more complex ones, highlighting the technical aspects of the formalization of
a synchronization model as SAM. We just write the cases where • is defined.
We also skip cases that can be derived by commutativity. Furthermore, in
the examples, unless explicitly stated, we use moba,b = MPa,b. The following
SAMs use the minimal number of actions necessary to model a synchronization
of the chosen type, but sets of actions sharing just ε can be merged in a unique
SAM allowing different policies. In this case the action performed chooses the
protocol to be used, since it can interact only with other actions from the
same group. An example of this kind is presented in § 5.

Example 3.3 (Mutual exclusion SAM)
The mutual exclusion SAM is defined by:

- Fin = Act = {a, ε};

- λ • ε = λ for each λ ∈ Act.

Mutual exclusion ensures that in each transition at most one non ε action
can be performed on each node. Synchronization of a with ε is necessary to
allow transitions when more than one component is attached to the node. The
SAM obtained by removing this synchronization allows to detect if an edge is
the only one attached to a node, and it is attached just one time to it.

Example 3.4 (Milner SAM) The Milner SAM is defined by:

- Act = {a, a, τ, ε} with ar(a) = ar(a) and ar(τ) = 0;

- a • a = τ , λ • ε = λ for each λ ∈ Act;

- Fin = {τ, ε}.

The Milner SAM, so called since it is inspired by π-calculus synchroniza-
tion, models message passing, where actions a and a are input and output
respectively and τ stands for a complete message exchange. During synchro-
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nization corresponding parameters are merged. Technically this is a refinement
of the mutual exclusion SAM, in fact mutual exclusion is imposed between dif-
ferent synchronizations. Having just τ and ε in Fin ensures that on a hidden
node x either nothing happens or a complete message exchange is performed.
Note that a SAM that uses many actions, all interacting using the Milner
protocol can be built, and many variations are possible. For instance, the de-
sired possibilities of input-output interactions can be specified, e.g., allowing
an input to interact with all the outputs in a given set.

We present now an extension of Milner SAM where communication has to
be authorized by a particular action ok, thus allowing a simple form of traffic
control. Thus a τ is here obtained as a result of a synchronization among a, a
and ok. We consider the simpler case of actions and coactions having arity 1.

Example 3.5 (Controlled Milner SAM) The controlled Milner SAM is
defined by:

- Act = {a, a, ok, (a, a), (a, ok), (a, ok), τ, ε} with ar(λ) = 1 for each λ ∈ Act \
{ok, (a, a), τ, ε}, ar((a, a)) = 2 and ar(λ′) = 0 for each λ ∈ {ok, τ, ε};

- a • a = (a, a) with moba,a([1, 1]) = 1, moba,a([2, 1]) = 2,
(a, a) • ok = τ with mob(a,a),ok([1, x]) = 1 for each x ∈ {1, 2},
a • ok = (a, ok), a • ok = (a, ok), (a, ok) • a = τ , (a, ok) • a = τ ,
λ • ε = λ for each λ ∈ Act;

- Fin = {τ, ε}.

We have used here a technical trick: actions (a, a), (a, ok) and (a, ok) are
generally not used in productions, but they are used as intermediate results in
the computation of the full synchronization. Note that here mobility patterns
are not always specified by MP .

Example 3.6 (Broadcast SAM) The broadcast SAM is defined by:

- Act = {a, a, ε} with ar(a) = ar(a);

- a • a = a, a • a = a, ε • ε = ε;

- Fin = {a, ε}.

The broadcast SAM models secure broadcast, where one component per-
forms an output and all the others perform input. Notice that here reaction
with ε is not allowed, and this requires all the components to participate in
a non idle way to the synchronization. The requirement can be weakened by
allowing some components to stay idle, thus obtaining multicast.

Example 3.7 (Multicast SAM) The multicast SAM is defined by:

- Act = {a, a, ε} with ar(a) = ar(a);

- a • a = a, a • a = a, λ • ε = λ for each λ ∈ Act;

- Fin = {a, ε}.

We show here the effects of the synchronization of a tuple of actions
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〈〈a1, y1〉, . . . , 〈an, yn〉〉 according to multicast SAM. The synchronization is
allowed provided that at most one action is a. On a hidden node exactly
one action must be a. Also, ρ is an mgu of {yi1

= yi2
= · · · = yim

} where
{i1, . . . , im} are the indexes of the non ε actions. Finally, w = yi1

ρ.

4 Deriving transitions from productions

In this section we present an algorithm to derive all the transitions starting
from a graph G (without isolated nodes) specified by a set of productions P
using a SAM S. All the actions used in P are required to belong to Act.

The steps of the algorithm are described below.

(i) For each edge e a production Pe = Le

Λe,id
−−−→ Re is chosen, in such a

way that there exists an idempotent substitution σe : ΓLe
→ ΓLe

such
that Leσe is the subgraph of G composed by the edge e and the attached
nodes. Essentially Le is equal to the desired subgraph, but if e is attached
many times to the same node x then all the occurrences of x but one are
renamed in Le using fresh names: σe performs the inverse substitution.
Furthermore nodes created by the productions (i.e., in Λe but not in Le)
must be fresh.

(ii) For each node x, all the actions performed by productions Pe on nodes
y such that yσe = x are instantiated by applying σe to their tuples of
parameters and then composed, producing an action cx with parameters
wx and a substitution ρx.

(iii) If there is at least a node x for which the above action composition is not
defined, or x /∈ ΓG but cx /∈ Fin, then no transition can be derived for
this choice of productions.

(iv) A global substitution ρ is defined as the composition of all the substi-
tutions ρx, that is ρ = mgu{

⋃
x∈N eqn(ρx)}. Among the possible mgus

we choose one where nodes in ΓG are taken as representatives of their
equivalence classes whenever possible.

(v) Λ maps each node x in ΓG to the pair 〈cx, wxρ〉.

(vi) π is the restriction of ρ to the nodes in ΓG.

(vii) The final graph is obtained as follows:
• a graph is obtained by merging the instances Reσe of the RHSs of all

the productions Pe (choosing different representatives for hidden nodes
and edges in different RHSs);

• the substitution ρ is applied to the graph;
• only nodes in ΓG ∪ n(Λ) that occur in the resulting graph are kept in

the interface;
• isolated nodes are deleted.

We will not state here a formal theorem relating our semantics with the
one presented in [LM04], since the present semantics formalizes a more refined
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approach to PSHR w.r.t. the older one available in [LM04]. In fact, the two
approaches allow slightly different classes of SAMs. We will however discuss
informally the differences between the two semantics.

In [LM04] graphs are represented as syntactic judgements Γ ` T where
T is a term and Γ is the set of nodes in the interface (corresponding to ΓG

here). The term T is built using constants for edges and the empty graph, and
operators for composing graphs (merging common nodes) and hiding nodes.
Term T is considered up to a structural congruence that abstracts from the
order of edges and of hidings and allows α-conversion of nodes. Edges are not
explicitly named: just the labels are considered. Judgements up to structural
congruence can be interpreted into graphs, obtaining a bijective correspon-
dence.

From a dynamic point of view the main difference between the semantics
presented here and the standard one is that here isolated nodes are forbidden
in the starting graph and removed from the result, while they are allowed in
the standard one. This is not an important restriction since isolated nodes can
not influence the other parts of the graph. They are actually needed in the
standard semantics for the internal steps of the derivation of some transitions.
In our case it is enough to allow them in productions. This difference allows to
remove the component Init, used in [LM04], from SAM definition. Also, the
standard semantics allows a non identity substitution π also in productions,
but this is superfluous since the same effect can be obtained by synchronizing
two actions on a hidden node. However this feature can be added also to our
semantics. If we restrict our attention to SAMs that can be specified in both
the frameworks (and we find a suitable set Init for [LM04]-style SAMs), and
to productions having just id as node substitution, then the two semantics are
equivalent up to isolated nodes (and actions performed on them).

5 The airport case study

We show here how the approach described above can be applied to the air-
port case study [And02] of FET-GC project AGILE [AGI]. Since we are not
aiming at tackling the whole case study, but just at showing how PSHR can
be applied, we will do some simplifications. For a more complete approach to
this modelling problem see [BCG04].

The airport case study concentrates on modelling planes landing and tack-
ing off at airports, with passengers boarding the planes. We model entities
(which are classes in UML class diagrams [RJB99]) as edges with attributes
modelled as nodes. In particular, we have edges for airports, planes and pas-
sengers. In this example, the first connection of each edge represents the
attribute AtLoc, proposed in an extension of UML diagrams with mobil-
ity [BKKW02]. The value of attribute AtLoc represents the location con-
taining a mobile object. Also, objects that are locations such as airports
and planes have the dual attribute Containing. Furthermore, planes have an
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Pisa AI234

IL UMFG

Pisa

UM−C

FGAI234 IL−C

univ

inPi

chk

inAIinPi

inAI chk

univ:<   ,<>>ε

Fig. 1. A sample transition.
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chk
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chk:
<breq,<in>>

at:<req,<newat>>

<brd,<newat>>
in:<ack,<at>>

at:<  ,<>>ε

in:<  ,<>>ε

at:<  ,<>>ε

Fig. 2. Productions for the example.

attribute CheckedIn, whose value is the set of passengers that have already
checked in for next flight. Passengers that have already checked in have the
dual attribute. A simple graph modelling a system of this kind is the left
graph in Figure 1, featuring one airport (Pisa) located in the universe (univ),
a plane (AI234) in the airport and three passengers, two which have already
checked in (IL-C, UM -C), and one which has not (FG). We represent edges
as rectangles containing the label and connected to bullets representing nodes.
Bullets are solid for nodes in the interface and empty otherwise.

We want to specify a transition that models the boarding of all the passen-
gers who have checked in and the take off of the plane. This transition requires
multiple checks and reconfigurations: essentially all the passengers who have
checked in must move (changing their location), and the airport must allow
the plane to take off. The plane must change its location too.

This is modelled by the productions in Figure 2 (which are schemas drawn
for generic labels AIR, PLA, PAS-C and PAS for airports, planes, checked in
passengers and not checked in passengers respectively), where Λ is represented
by decorating each node with the corresponding action.

We have now to specify the SAM S that we want to use. Actions ack
and req have to synchronize using Milner synchronization, since they model
a message exchange between the airport and the plane allowing the take off,
while actions breq and brd have to synchronize using broadcast synchroniza-
tion with breq as output action, since all the checked in passengers have to
board. Thus we can build the wanted SAM using the Milner SAM and the
broadcast SAM as building blocks. The resulting SAM is defined by:

- Act = {req, ack, breq, brd, τ, ε} with ar(λ) = 1 for each λ ∈ Act \ {τ, ε} and
ar(τ) = 0;

- req • ack = τ , breq • brd = breq, brd • brd = brd,
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λ • ε = λ for each λ ∈ {req, ack, τ, ε};

- Fin = {τ, breq, ε}.

We can thus derive the transition in Figure 1. Let us see how the different
steps of the algorithm are performed.

(i) For each edge but FG the corresponding production in Figure 1 is used,
for edge FG an idle production is used. For nodes in the LHSs the names
in the graph can be used, since no edge is attached two times to the same
node. For new nodes (all called newat in the figure) different names must
be chosen. To this end we add the label of the corresponding edge to the
nodes created by passenger edges.

(ii) Let us consider node inP i as example. The actions performed here are
〈ack, 〈univ〉〉, 〈req, 〈newat〉〉, 〈ε, 〈〉〉, 〈ε, 〈〉〉, 〈ε, 〈〉〉. These can be composed
producing ρinP i = {univ/newat} and action 〈τ, 〈〉〉.

(iii) The transition is allowed since the compositions are all defined and for
nodes different from univ the resulting action is in Fin.

(iv) The substitution ρ is {univ/newat, inP i/newatIL−C , inP i/newatUM−C}.

(v) Λ maps just univ to 〈ε, 〈〉〉.

(vi) π is the identity substitution.

(vii) The final graph is obtained from the union of the RHSs, applying substi-
tution ρ and leaving only univ in the interface.

It is interesting to notice that, when a suitable SAM is chosen for synchro-
nization, the implementation of the communication protocol becomes trivial.
In [BCG04] instead just a simple binary synchronization is used, thus a com-
plex procedure is required to implement broadcast. In particular, this adds
to the model a subgraph used for synchronization purposes which does not
correspond to any entity in the real system. Our choice allows models at a
more abstract level, as suited for modelling complex systems.

6 Conclusion and future work

We have provided a more direct characterization of the behavior of a SAM
and of the transitions allowed by PSHR w.r.t. [LM04]. We think that this
is useful to make PSHR more usable. The result applies also to most of
the SHR frameworks in the literature, which are instances of PSHR with a
suitable SAM. Our approach can be also straightforwardly extended to deal
with nondeterministic synchronizations and the use of many SAMs inside the
same graph as presented in [LT05].

As future work we want to formalize different forms of SAM composition
using categorical tools and analyze the observational semantics of SHR sys-
tems.
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Abstract

We define transactional graph transformation systems (t-gtss), a mild extension of
the ordinary framework for the double-pushout approach to graph transformation,
which allows to model transactional activities. Generalising the work on zero-safe

nets, the new graphical formalism is based on a typing discipline which induces
a distinction between stable and unstable items. A transaction is then a suitably
defined minimal computation which starts and ends in stable states. After providing
the basics of t-gtss, we illustrate the expected results, needed to bring the theory
to full maturity, and some possible future developments.

Key words: Graph transformations, zero-safe nets, transactions.

1 Introduction

Graphs and graph transformations represent the core of most visual lan-
guages [2]. In fact, graphs can be naturally used to provide a structured
representation of the states of a system, which highlights its subcomponents
and their logical or physical interconnections. Then, the events occurring in
the system, which are responsible for the evolution from one state into an-
other, can be modelled as the application of graph transformation rules. Such
a representation is not only precise enough to allow the formal analysis of the
system under scrutiny, but it is also amenable of an intuitive, visual represen-
tation, which can be easily understood also by a non-expert audience.
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A graph transformation system (gts) consists of a set of rewriting rules,
also called graph productions [14]. In their basic formulation, gtss do not
provide mechanisms for synchronising or structuring computations, even if,
since the left-hand side of productions can be arbitrarily large, a kind of
synchronisation among items in the state (graph items) can be expressed.

Along the years several enrichments of the basic framework have been
proposed, extending gtss with mechanisms for expressing synchronisation
between productions as well as for tackling modularity and refinement issues,
which are features deemed necessary for a high-level specification formalism.

Instead, to our knowledge, scarce attention has been devoted to the idea of
extending gtss in order to allow the specification of transactional activities.
Abstractly, a transaction is an activity, involving the execution of a group of
events, which can either bring the system to a successful state or fail. In the
last case the partial execution of the transaction is discarded and has no effect
on the system. In concrete implementations this is achieved with a roll-back
mechanism which restores the starting state when a failure is detected.

In this paper we face, from a foundational perspective, the problem of
equipping graph transformation with mechanisms for modelling transactions.
More precisely, we propose a mild extension to the double-pushout (dpo) ap-
proach to graph transformation, introducing transactional graph transforma-
tion systems (t-gtss), a framework which provides a simple way of expressing
transactional activities. Our formalism is deeply influenced and generalists
the zero-safe nets proposal, introduced in [3] to solve an analogous modelling
problem in the setting of Petri nets.

The basic tool is a typing mechanism for graphs which induces a distinction
between stable and unstable graph items. Given a typed graph, representing
a system state, we can identify a subgraph which represent its “stable” part,
i.e., the fragment of the state which is visible from an external observer. The
“valid” computations of a t-gts may start from a completely stable graph,
evolve through graphs with unstable items and eventually end up in a new
stable state; and the valid computations which are minimal, in a certain sense
to be made precise in the paper, represent transactions.

The paper introduces the t-gtss formalism, provides the basic concepts
and illustrates a simple case study. In a concluding section we outline how
the internal structure of transactions can be abstracted away by consider-
ing the so-called abstract gts associated to the t-gts, where unstable items
disappear and each distinct transaction becomes a single atomic production,
which rewrites the starting stable state to the final stable state. Thus “un-
finished” transactions have no counterpart at the abstract level. Finally, we
outline future venues of research, pointing out the technical issues which need
to be further elaborated upon, such as the precise functorial correspondence
between a t-gts and its abstract counterpart.
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2 Typed Graph Transformation Systems

In this section we introduce the basics of the double-pushout (dpo) algebraic
approach to graph rewriting [9]. We remark that, although our approach will
be developed for dpo rewriting over directed (multi-)graphs, it could have
been easily adapted to other approaches to graph rewriting, e.g., to the single-
pushout approach and to different notions of graph (e.g., to hypergraphs,
which are used indeed in the example in Section 4).

An essential ingredient of our theory is a typing discipline for graphs which
will allow us to distinguish between stable and unstable items in a given graph.
Typing for graphs (e.g., [5]) can be seen as a labelling technique, which allows
to label each graph over a structure that is itself a graph (called the type
graph). The labelling function is required to be a graph morphism.

Formally, a graph is a tuple 〈V, E, s, t〉, where V and E are sets of nodes
and edges, and s, t : E → V are the source and target functions. Given a
graph T , a typed graph G over T is a graph |G|, together with a total graph
morphism tG : |G| → T . A morphism between T -typed graphs f : G1 → G2 is
a graph morphism f : |G1| → |G2| consistent with the typing, i.e., such that
tG1

= tG2
◦ f . The category of T -typed graphs and typed graph morphisms is

denoted by T -Graph.

Rewriting rules, called (T -typed) productions, are of the kind q = Lq

lq
←

Kq

rq

→ Rq, where Lq, Kq and Rq are T -typed graphs (called the left-hand side,
the interface and the right-hand side of the production, respectively), and
lq, rq are injective morphisms. A rule intuitively specifies that an occurrence
of the left-hand side Lq in a larger graph can be rewritten into the right-hand
side graph Rq, preserving the interface Kq. Formally, given a typed graph G,
a production q, and a match g : Lq → G, a direct derivation δ from G to H

using q, g exists, written δ : G
q,g

=⇒ H, if the diagram

Lqq :

g

Kq
lq rq

k

Rq

h

G Db d H

can be constructed, where both squares are pushouts in T -Graph.

A graph transformation system is then defined as a collection of rules, over
a fixed graph of types.

Definition 2.1 [graph transformation system] A T -typed graph transforma-
tion system (gts) is a tuple G = 〈T, P, π〉, where T is a graph, P is a set
of production names and π is a function mapping production names in P to
T -typed dpo productions.

A derivation in a gts G is a sequence of direct derivations using produc-
tions of G

G0
q0,g0

=⇒ G1
q1,g1

=⇒ . . . . . .
qn,gn

=⇒ Gn+1.
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3 Transactional Graph Transformation Systems

In this section we introduce the basics of transactional graph transformation
systems. After discussing the typing discipline which allows to distinguish
between stable and unstable items in a given typed graph, we show how this
can be used to define a notion of transaction.

The distinction between stable and unstable items is induced by specifying
a subgraph of the type graph, which is intended to represent the stable types.

Definition 3.1 [Transactional gts] A transactional gts is a pair 〈G, Ts〉,
where G is a T -typed gts and Ts is a subgraph of the type graph T of G,
called the stable type graph.

Given a graph G typed over T we can single out its stable part S(G), i.e.,
the subgraph consisting of its stably-typed items only. Formally, S(G) can be
defined as the graph typed over Ts obtained by considering the pullback

|S(G)| ι |G|

Ts T

Without loss of generality, we will assume a concrete choice for S(G), by
imposing that the morphism ι in the pullback diagram above is an inclusion.

We say that a graph is stable if it consists only of stable items. This is
formalised in the next definition.

Definition 3.2 [stable graph] A T -typed graph G is called stable if |S(G)| =
|G| (i.e., if the morphism ι in the pullback diagram is the identity). It is called
unstable otherwise.

It can be shown that the above transformation is functorial: given a mor-
phism of T -typed graphs f : G → H, the transformation above uniquely
induces a morphism S(f) : S(G) → S(H) (which is, given the concrete
choice for S(G), the restriction of f to S(G)). The corresponding functor
S : T -Graph→ Ts-Graph is called stabilising functor.

The stabilising functor can be applied point-wise to any production of a
given t-gts, thus producing a gts typed over the stable type graph.

Definition 3.3 [stabilised gts] Given a T -typed t-gts 〈G, Ts〉, the stabilised
gts S(G) is given by 〈Ts, P, π′〉, where π′(q) = S(π(q)) for any q ∈ P .

The functor S, when applied to a derivation in a given t-gts 〈G, Ts〉,
produces a derivation in S(G). An indirect proof of this fact can be obtained
by observing that there exists a typed gts morphism f : G → S(G), in the
sense of [1], which essentially forgets about the non-stable items. Then, using
the fact that gts morphisms are simulations, one can infer the result below.
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L1

g1

K1
l1 r1

k1

R1

u
h1

L2

s
g2

K2
l2 r2

k2

R2

h2

G D1b1 d1
X D2b2 d2

H

Fig. 1. Sequential independent derivations.

Proposition 3.4 Let 〈G, Ts〉 be a t-gts and let d = G0
q1,g1

=⇒ G1
q2,g2

=⇒ . . .
qn,gn

=⇒
Gn be a derivation in G. Then

S(d) = S(G0)
q1,S(g1)
=⇒ S(G1)

q2,S(g2)
=⇒ . . .

qn,S(gn)
=⇒ S(Gn)

is a derivation in S(G).

Let us come to the definition of a transaction in a t-gts 〈G, Ts〉. Inspired
by the approach for Petri nets proposed in [3] and extended to nets with read
arcs in [4], we introduce stable steps, stable transactions and abstract stable
transactions. In the following 〈G, Ts〉 is a fixed t-gts.

A stable step is, intuitively, a computation which starts and ends in stable
states. Moreover, once generated, stable items are “frozen”, in the sense
that they cannot be read or consumed by other productions inside the same
step. Therefore, the dependencies between productions occurring in a step
are induced by unstable items: this implies that at the abstract level, where
unstable items are forgotten, all such productions will be applicable in parallel.

To give a formal definition we need to briefly review some notions. A
derivation G

q1,g1

=⇒ X
q2,g2

=⇒ H as in Figure 1 is called sequential independent [6]
if there are two morphisms s : L2 → D1 and u : R1 → D2 such that d1 ◦s = g2

and b2 ◦ u = h1. Intuitively, the images in X of the left-hand side of q2 and
of the right-hand side of q1 overlap only on items that are preserved by both
derivation steps. In this case we can apply the two productions in the reverse

order, obtaining derivation G
q2,g′

2=⇒ X ′
q1,g′

1=⇒ H and we can also apply them

concurrently, obtaining a parallel direct derivation G
q1+q2,g

H.

Definition 3.5 [stable step] A stable step is a derivation d = G0
q1,g1

=⇒ G1
q2,g2

=⇒

. . .
qn,gn

=⇒ Gn which enjoys the following properties:

(i) G0 and Gn are stable graphs;

(ii) the derivation S(d) is equivalent to a parallel direct derivation

S(G0)
q0+...+qn,S(g)

S(Gn) in S(G).

Definition 3.6 [stable transaction] A stable transaction is a stable step d =

G0
q1,g1

=⇒ G1
q2,g2

=⇒ . . .
qn,gn

=⇒ Gn such that, if S(G0)
q0+...+qn,S(g)

S(Gn) in S(G) is the
induced parallel derivation, then

(i) g is an epimorphism;

(ii) any intermediate graph Gi (i 6= 0, n) is not stable.
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0

+

=

GC

S S 0

=

+

true false

C

+ S

0

= truefalse

Fig. 2. The type graph (left) and its stable component (right).

By condition (i), the start graph contains exactly what the transaction
needs to be brought to a successful end, while by condition (ii) no sub-
derivation of d is a transaction, thus guaranteeing atomicity.

Actually, since we are considering a concurrent model of computation, the
fact that all the intermediate graphs are not stable should not be related to
the specific order in which productions are applied. Rather, this property
should still hold for any derivation which is obtained from the original one by
exchanging independent steps of computation, i.e., any shift-equivalent (see,
e.g., [13,6]) derivation. When combining shift-equivalence with an equivalence
which abstracts also with respect to the concrete identities of items in the
involved graphs, i.e., which considers graphs up to isomorphism, we obtain
the so-called abstract truly-concurrent equivalence [6]. The equivalence class
of a derivation d with respect to such equivalence will be denoted by [d]c and
called abstract trace.

Definition 3.7 [abstract stable transaction] An abstract stable transaction is
an abstract trace [d]c, such that for any d′ ∈ [d]c the derivation d′ is a stable
transaction.

It follows from the definition that if two abstract stable transactions can
be applied in parallel to a stable graph, then all the direct derivations of either
of them are independent of the direct derivations of the other one. Thus, as
desired, the transactions can be interleaved in an arbitrary way.

Clearly, a more manageable characterisation of abstract stable transactions
would be desirable: even if the corresponding theory is not yet completely
developed, we will sketch in the concluding section how such a characterisation
could be obtained by means of suitable graph processes.

4 A simple example on integer equality

We now present a simple gts for testing the equality between integer expres-
sions involving natural numbers represented as sequences S(S(. . .S(0) . . .)) and
a sum operator. Despite its small size we hope that this example will pinpoint
the key features of our approach.
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Fig. 3. Productions for the equality operator and for garbage collection.

The type (hyper-)graph and its stable subgraph are depicted in Figure 2.
Explicitly stated, the dashed items (dashed boxes representing (hyper-)edges
and dashed circles for nodes) are not stable. Notice that, as usual for hy-
pergraphs, each edge is connected to an ordered list of nodes. The order is
implicit in our drawings: the first connection leaves the edge from the top,
and the others follow counter-clockwise.

As a sample expression to be evaluated we consider S(S(0)) + S(0) = S(0),
as represented by the stable graph G0 on the left of Figure 5. For the sake of
simplicity, G0 is a tree, but the system also works for acyclic graphs, where
subexpressions can be shared. In order to ensure that a shared subexpression
is not affected by the evaluation of an outer expression, some rules duplicate
the part of the structure that needs to be accessed in a destructive manner.

Let us consider the production p1 in Figure 3: the graph on the left (center,
right) represents the left-hand side (interface and right-hand side, respectively)
of the production. Note that, according to the shape of the type graph, an
unstable operator can be connected to a stable node only through an additional
unstable node and a C-labelled edge. In order to simplify the presentation,
such node and the C-labelled edge will be omitted in the figures. For instance,
production p1 should be read as

5

p
1

1

2 3

=

1

2 3

=

C C

1

2 3

4
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Fig. 4. Productions for the sum operator.

Intuitively, a computation proceeds as follows. The only production that
can be applied to a stable graph like G0 is p1, which starts a transaction by
replacing the stable edge = with its unstable, dashed counterpart = . Next,
conceptually, the equality operator traverses the expression (see production
p2.1), triggering, whenever it is needed, the evaluation of the sum operators by
generating an unstable copy of them (production p6.1). In turn, the evaluation
of the sum generates as its result a chain of unstable successor operators (see
productions p12.1 and p11.1 in Figure 4), recursively triggering the evaluation
of nested additions (as in production p9.1), and stopping when both arguments
are zero (as in production p10.1). The equality operator can then proceed, con-
suming the chain of unstable successors generated by the sum, till when either
one or two zeros are reached. At this point the boolean result is generated (as
in productions p3.2), and, if needed, the “garbage collection” of the remaining
unstable items is started (productions p4.2, p7 and p8).

The presence of stable and unstable versions of both operators and con-
stants motivates the existence of several variants for each production. For
example, all the productions p2.1, p2.2 and p2.3 (as well as its symmetric ver-
sion p2.4 which is not depicted) basically replace, conceptually, the subexpres-
sion S(x) = S(y) by the equivalent one x = y. Such productions do not have
the same structure, though, because stable S-edges have to be preserved, as
they may belong to a shared subexpression, while unstable S-edges have to
be deleted, as they should not appear in the final state: this can be done
safely, because unstable S-edges are generated by the productions in a way
that guarantees that they are never shared.

The same observation applies to each other group of productions, like p3.

(modelling the rule 0 = 0 ; true), p4. (modelling S(x) = 0 ; false), and so
on. Notice that several rules have a symmetric version (exchanging the left
and right arguments of the main binary operator) which are not depicted. For
example the productions in the missing p5. family model the evaluation of
0 = S(x) to false. They are obtained from the p4. productions by exchanging
the arguments of the equality operator.
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Fig. 5. An expression (left), some unstable states (center), and the result (right).

Some states of the derivation starting from S(S(0)) + S(0) = S(0) and reach-
ing the final state, which represents the result false, are depicted in Figure 5.
From the starting state productions p1, p6.1 and p12.1 are applied, reaching the
second state; next, applying productions p12.1, p11.1, p10.1 and p2.3 the third
state is reached; then, applying p4.3 the fourth state is reached; and finally the
application of p7 and p8 produces the final state. Note that all the interme-
diate states are unstable, due to the presence of at least one unstable item.
Hence, the only visible states in the derivation, which can be shown to be a
stable transaction, are the initial and final ones.

The corresponding abstract stable transaction includes all the derivations
which are obtained by switching sequential independent direct derivations,
such as the one which applies the productions in the order p1, p6.1, p12.1, p2.3,
p12.1, p4.3, p11.1, p10.1, p7 and p8. It can be shown that each abstract stable
transaction in the proposed system performs the evaluation of exactly one
equality operation, building as an unstable intermediate structure the result
of the sum operators, and destroying them at the end.

5 Future perspectives

This paper introduces transactional graph transformation systems, a formalism
which is intended to enrich the classical dpo approach to graph rewriting with
a built-in notion of transaction. Our work so far outlined the basic notions
underlying the framework, and further results are now needed to bring the
theory to full maturity.

Abstract GTS associated to a transactional GTS

A first line of research concerns the definition of the abstract gts associated
to a t-gts. As discussed in the paper, a t-gts can be seen at two different
levels of abstraction. It can be viewed as a standard graph transformation
system, where both stable and unstable states, and thus also the internal
structure of transactions, are visible. But we can also abstract away from the
unstable states and observe only complete transactions. Formally, this gives
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Fig. 6. The abstract production induced by the transaction of Figure 5.

rise to another gts, whose definition requires the notion of the production
induced by a derivation sequence, a known construction in the literature. The
production induced by a derivation d : G0 ⇒

∗ Gn has G0 as left-hand side and
Gn as right-hand side. The interface graph is the subgraph of G0 which, intu-
itively, consists of all the items which are preserved by all the direct derivations
occurring in the sequence.

Definition 5.1 [Abstract gts] Let 〈G, Ts〉 be a t-gts. Given an abstract
stable transactions [d]c, a production induced by d is called abstract production
for the transaction [d]c.

The abstract gts associated to the given t-gts, denoted by A(〈G, Ts〉), is
the gts 〈Ts, P

′, π′〉 where P ′ is the set of abstract stable transactions [d]c and
π′([d]c) is an abstract production for the transaction [d]c.

As an example, the abstract production that corresponds to the transaction
depicted in Figure 5 is shown in Figure 6.

As it should be evident from the proposed example, the abstract gts

associated to a t-gts can have, in general, an infinite number of productions.
Indeed, the notion of transaction allows one to model an abstract system with
infinitely many productions by means of a lower level system, with a finite
number of productions.

From a theoretical point of view the definition of the abstract gts associ-
ated to a t-gts might not be yet fully satisfactory, since it lacks an extensional
presentation, as it is offered by categorical means in terms of adjunctions.

However, note that any gts G can be naturally seen as a t-gts 〈G, T 〉 by
considering the entire type graph T as stable. Hence, turning the classes of
gtss and of t-gtss into categories GTS and TGTS, respectively, there would
be an obvious inclusion functor of GTS into TGTS. Thus, a solid justification
for the construction of the abstract gts associated to a t-gts could come from
a characterisation of the mapping A (Def. 5.1) as a functor from the category
of t-gtss to the category of gtss, and from its characterisation as the right
adjoint to the inclusion functor in the opposite direction. Intuitively, this
would mean that, given a t-gts 〈G, Ts〉, the abstract gts A(〈G, Ts〉), given in
Definition 5.1, is the “best approximation” of 〈G, Ts〉 in the category GTS.
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We foresee two possible ways of proving a result of this kind:

(i) Freely generated category of systems with transactions as productions.
Inspired by the work on zero-safe Petri nets [3], the idea consists of freely
generating complex computations of a given t-gts, starting and ending in
stable states, by suitably composing its original productions. The considered
composition operation should act differently on the stable and unstable items,
composing the former in parallel and the latter sequentially. Moreover, it
should be subject to axioms which identify computations differing only for the
order of independent steps. In this setting transactions would be identified as
computations that cannot be decomposed as the parallel composition of (non
trivial) computations.

(ii) Transactions as special processes. Graph processes [5] are structures
which provide a truly concurrent representation of a deterministic computa-
tion in a given gts, by explicitly representing the start and ending state,
as well as all the intermediate items produced in the computation and their
causal dependencies. A transaction can be characterised as a process which
starts and ends in stable states, where only direct causal dependencies between
stable items exist, and which satisfies suitable atomicity properties.

In both cases, it seems that the appropriate choice of morphisms in the
category of t-gts should be that of implementation or refinement morphisms
[10,11], which allow to map a single production into a computation.

Multi-level transactional GTSs

Another issue to be addressed concerns the “binary” distinction between stable
and unstable items, which can be unsatisfactory in certain situations. In fact,
a system can be viewed at several levels of abstractions, and what appears to
be as an atomic production can be refined to a computation at a lower level
and can be the building block of more complex transactions at a higher-level.
In the proposed framework, the situation could be recast by replacing the
stable/unstable dichotomy by a multi-layered structure, consisting of a set of
graphs T0, T1, . . . , Tn such that Ti+1 is a subgraph of Ti, representing the
stable types for layer i.

The functorial characterisation of abstract gtss that we envision could
also be helpful to provide a modular semantics to the multi-layered t-gtss.

Relations with refinement and modularity for GTSs

We do believe that our semantical analysis of transactional mechanisms in
graph transformation is original. However, the same notion of abstract gts

calls for a comparison with the approaches to refinement and modularisation
proposed in the literature (see [12] and the references therein).

Transactions could be exploited to simulate modules, since the atomicity
of some computations is induced by the fact that some states are classified as
non-observable or unstable at the abstract level. We leave to future work the
further elaboration of these ideas, as well as a comparison with the literature.
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Abstract

It has been claimed by many in the graph transformation community that model trans-
formation, as understood in the context of Model Driven Architecture, can be seen as an
application of graph transformation. In this paper we substantiate this claim by giving a
graph transformation-based semantics to one of the original QVT language proposals; that
is, any model transformation definition in the QVT language is translated to a graph pro-
duction system whose effect is to apply that model transformation. The translation has been
fully implemented.

1 Introduction

In order to better understand and structure the process of software engineering, the
Object Management Group (OMG) has put forward the Model Driven Architec-
ture (MDA) approach (see [22]), with as core conceptsmetamodellingandmodel
transformation. The first of these is based on the insight that, in order to provide
a unified view upon the software engineering process, it is necessary to organise
and relate the different (visual and textual) languages used along the way, i.e., the
languages in which the different design models and artefacts are written. The or-
ganisational structure proposed inMDA is themetamodelling hierarchy: there, the
languages are understood as instances of a single top-levelmeta-metamodel, the
MOF (see [20]). According to the terminology used in this context (to which we
will adhere in this paper), the languages are called metamodels, and the artefacts
written in those languages (including executable programs) are called models.

The second core concept inMDA, model transformation, is based on the insight
that many if not all of the activities in software engineering involve the creation of
new models (in the sense explained above) based on existing models; and that this
“creation based on” can be interpreted as atransformationof the existing models

1 The research described in this paper has been carried out in the context of the Duth NWO projects
GROOVE (612.000.314) and GRASLAND (612.063.408).
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MTL

MOF

Fig. 1. Overview of MDA concepts

into the new. A further observation is that such transformations typically have some
guiding principles that are not specific to the models, but rather can be articulated
on the level of the metamodels involved. Such an “articulation of guiding princi-
ples” is called atransformation rule; a collection of transformation rules is called
a transformation definition. See also [15] for a further discussion. Fig.1 gives an
overview of the resulting set of concepts.

Since the MOF provides a unifying view on the metamodels and (therefore,
indirectly) the models, we have available the ingredients necessary to write down
transformation definitions uniformly and, once that is done, to execute them auto-
matically. This has led the OMG some time ago to request proposals for aQVT lan-
guage, where QVT stands for Query/View/Transformation (see [21]). An overview
of the submissions received on this call is given in [10]. In this paper we take one of
these submissions, namely the one by IBM, DSTC and CBOP [6]; we call this the
Model Transformation Language(MTL) in the remainder of this paper. In terms
of the ontology proposed by Czarnecki and Helsen [4], important characteristics of
MTL (which determine its suitability for the approach of this paper) are that it has
syntactic separationof source and target model elements, that it isunidirectional
anddeclarative. Moreover, it supportstraceabilityof model transformations.

The essence of any language is itssemantics, which captures the effect of “sen-
tences” of the language. So, too, withMTL, where the “sentences” are transfor-
mation definitions. The effect of a transformation definition can be captured by a
binary relation between the set of models residing under the source meta-model to
the set of models under the target meta-model; in other words, a set oftransfor-
mation pairsin the sense of Fig.1. The semantics ofMTL, therefore, is a partial
mapping that assigns such binary relations to transformation definitions written in
MTL. The partiality of the mapping is due to the fact that a syntactically valid
transformation definition may fail to be semantically correct, for instance due to in-
consistencies with the source or target metamodel; in such a case it has no semantic
image. Formally, the semantic mapping is a partial function

[[ ]] : MTL[A|B] ⇀ 2Mod[A]×Mod[B]
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whereMTL[A|B] is the set of transformation definitions inMTL with source meta-
model A and target metamodelB, and Mod[A] (resp.Mod[B]) stands for the
set of models under meta-modelA (resp.B). 2 For any transformation definition
D ∈ MTL[A|B], we write [[D]] for the set of transformation pairs generated byD
(hence[[D]] ⊆ Mod[A] × Mod[B]). In many cases,[[D]] is in fact total and one-
to-one, meaning that it can also be seen as a functionMod[A]→Mod[B]; then we
write [[D]](M) ∈ Mod[B] to denote the target model obtained by applyingD to the
source modelM ∈ Mod[A].

Unfortunately, as is the rule rather than the exception, in [6] the semantics of
MTL is not defined formally but just described in natural language. This means that
the basis for reasoning about, verifying and guaranteeing correctness of the model
transformations, which is also mentioned in [18] as one of the success criteria for
a transformation language or tool. This is the problem we set out to address in
the current paper, which is based on the MSc thesis [19] by the second author. In
the next section we describe the approach we have followed, of which the essence
is that we translate model transformation definitions to graph production systems,
which do have the desired formal basis. In Sect.3 we show the approach on the
basis of an example (actually taken from the QVT submission [6]). In Sect.4 we
evaluate the achievements and discuss some related approaches. Note that within
the scope of this paper it is quite impossible to describe the actual semantics in any
detail. However, see [19] for a full description.

2 Approach

There is already a large body of research that supports the use of graph transforma-
tion techniques as a basis for the formal semantics of model transformation, both
practical (in the sense of tools, e.g. [12,2,26,3]) and theoretical (for instance con-
fluence and termination properties as in [17,8]). In this paper we also follow that
route in order to define semantics ofMTL. We will omit most of the theoretical
background; see, e.g., [24] for an extensive discussion.

2.1 Principles

Graph transformation works on the basis ofgraph production rulesdefined over
a given universe of graphs,Graph. Finite sets of graph production rules, called
graph production systems, are used as transformation specifications. Each ruleR
describes a single-step transformation of certain graphs into others, and so defines a
binary relation→R overGraph such thatG→R H if and only ifR turnsG into H.
For a production systemP, the transitive closure of the union of→R for allR ∈ P
then gives rise to a partial ordering overGraph, which we denote≤P . Finally, we
say thatP eventually transformsG into H, denotedG ⇒P H, if G ≤P H and
H is a≤P-maximal element ofGraph, i.e., it cannot be transformed further. (In

2 As usual,2X denotes thepowersetof a setX, i.e., the set of all subsets ofX.
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other words,G ⇒P H if H is reachable fromG along a path of→R-single-step
transitions withR ∈ P, andH 6→R for allR ∈ P.)

Let us writeRule for the universe of graph production rules. In order to define
the semantics ofMTL using these principles, we define the following ingredients:

• For any meta-modelA, a setGraph[A] ⊆ Graph and an injective mapping
gA: Mod[A]→ Graph[A] to connect the MDA model world to the graph world.
The mapping is in general not surjective, meaning that the inverse may be unde-
fined.

• For any pair of meta-modelsA andB, a set of “linked graphs”Graph[A|B] ⊆
Graph that essentially consist of pairs of graphs fromGraph[A] andGraph[B],
together with two graph production systems,Left[A|B], Right[A|B] ⊆ Rule
that “extract” the constituent graphs, such that for anyG ∈ Graph[A|B], there
are uniqueHA ∈ Graph[A] andHB ∈ Graph[B] with G ⇒Left[A|B] HA and
G⇒Right[A|B] HB.

• A mappingGPS: MTL[A|B]→ 2Rule that yields a graph production system from
an arbitraryMTL transformation definitionD ∈ MTL[A|B], such that for any
G ∈ Graph[A] there is a unique linked graphH ∈ Graph[A|B] that satisfies
G⇒GPS(D) H; and, moreover, for whichH ⇒Left[A|B] G.

We then define, for anyD ∈ MTL[A|B] andM ∈ Mod[A],

[[D]](M) = g−1
B (H) wheregA(M)⇒GPS(D) G⇒Right[A|B] H .

In words, the semantics ofD is defined, for an arbitrary modelM ∈ Mod[A], by
first mappingM to the graphgA(M) ∈ Graph[A], then transforming that to a linked
graphG ∈ Graph[A|B] using the dedicated graph production systemGPS(D), then
extractingH ∈ Graph[B] from this combined graph, and finally convertingH to
a modelg−1

B (H) ∈ Mod[B]. Due to the fact (noted above) thatgB may fail to be
surjective, in general it is possible thatg−1

B (H) is not defined, in which case neither
is [[D]](M). We currently have no way to detect or ensure statically whichD give
rise to a total function[[D]].

2.2 Implementation

The steps described above have all been implemented, resulting in the tool chain
depicted in Fig.2, where boxes are products and ovals represent processes steps.
The fat boxes are the inputs and output products of the chain; the thin ones are
auxiliary products that are both produced and consumed in the course of the trans-
formation. The grey ovals were implemented in the course of this research; the
white ovals, labelled “apply”, stand for the application of a graph production sys-
tem using a pre-existing tool. We will now discuss the individual steps and some
relevant design decisions.

(1) In general the metamodels are, as shown in Fig.1, instances of the MOF.
However, the MOF is itself still quite extensive; for the purpose of this paper
we concentrated on a subset, depicted in Fig.3. For the purpose of this work
the metamodels were created as class diagrams and stored in (a version of)
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Fig. 2. Transformation tool chain

XMI using Borland Together.
(2) The models, likewise, were created (as object diagrams) and stored in XMI

using Together. Note that we need to have the modelsas instances of their
metamodels, i.e., the instantiation relation depicted in Fig.1 needs to be clear.

(3) The concrete and abstract syntax of the languageMTL are defined in [6] by
an EBNF grammar, resp. an abstract syntax meta-model. An example is given
there also, which we use as well in the next section. Unfortunately, here a
problem exists, in that the example cannot be parsed according to the grammar
and cannot be matched to the abstract syntax; nor do the concrete and abstract
syntax seem to be consistent. In [19] we report a host of problems and propose
solutions; in the remainder of this paper we follow [19] in actually working
from the proposed solutions.

For the purpose of this paper we just show the main rule of the grammar,
which defines a transformation rule:

trule ::= "RULE" rname formals ( relatedRules )*
"FORALL" ranges ( "WHERE" conjunct )?
"MAKE" targets ( "LINKING" trackingUses )?
SEMI

Fig. 3. Fragment of the MOF used in this paper
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The lowercase identifiers are further nonterminals; the quoted strings and up-
percase identifier are terminals of the concrete syntax; the rest is EBNF syntax.
• The rname is the rule name;formals are formal names used in the

FORALLandMAKEparts; and therelatedRules provide a reuse (i.e.,
inheritance) mechanism between rules.

• The FORALLpart specifies where the rule applies, i.e., what needs to be
matched in the source model. In theranges more formal names are in-
troduced, referring either to the elements in the source model that are to
be matched, or to elements of the target model that were already created.
TheWHEREclause essentially contains equations based on these names and
connected model elements; these serve to constrain the local structure of the
model where the rule is to be applied.

• theMAKEpart specifies what needs to be created in the target model when-
ever a match for theFORALLpart is provided: thetargets part lists new
model elements and their relation to the existing elements matched in the
FORALL. TheLINKING clause can be used to specify traceability informa-
tion, in the form of links between elements of the source model and the
newly created target elements.

(4) In this step we translate models to graphs and back. For the purpose of the
current paper, we have chosen a very “poor” graph formalism: the graphs in
Graph just consist of unlabelled nodes and labelled directed binary edges; par-
allel edges, attributes, hierarchy and typing are not included. This is the type
of graphs supported by the GROOVE tool [23]; the choice was determined
pragmatically by the local availability of the tool. It should be noted that we
do not consider the choice of graph formalism to be a relevant part of the
research reported in this paper; in Sect.4 we discuss alternatives.

In the representation of models as graphs, embodied by the functionsgA

discussed above, we have had to make some representation choices. In partic-
ular, we chose to represent MOFClass instances as nodes inscribed with the
names of their direct types, bidirectionalAssociations as pairs of labelled
edges in opposite directions, andAttributes as single edges. Supertypes
are not represented in the models; instead, any rule dealing with a metamodel
type has to be duplicated for all (combinations of) subtypes.

(5) Essentially, everytrule of the transformation definition is turned into a
graph production ruleR. Its left hand side is generated from theFORALL
clause: each formal name intrule gives rise to a graph node, and theWHERE
clause is translated to edges between those nodes.R’s right hand side is a su-
pergraph of the left hand side (so nothing is deleted), and contains the follow-
ing further elements (which will therefore be created upon rule application):
(a) A node labelledLINK , with edges to those nodes that match source and

target model elements involved in the rule, as well to another new node
labelled with the rule name. This “rule node” indicates that the rule has
been applied here. A correspondignegative application conditionis also
added to the rule, to prevent it from being applied more than once.
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Fig. 4. Simplified UML metamodel

(b) Nodes and edges corresponding to the target model elements named in
theMAKEpart.

(c) Nodes for each of the elements named intrackingUses , to model the
LINKING clause, as well as edges connecting to the relevant source and
target model nodes. These nodes and edges eventually make up the link-
ing structure inGraph[A|B].

By using this setup, the rules inGPS(D) only add elements to the graphs,
rather than doing in-place model transformation. This makes it quite easy
to mimic eachMTL rule. As a consequence, the resulting graph will be
a combination of the source and target graphs linked together byLINK and
trackingUse nodes and their corresponding edges.

(6) The Left[A|B]- and Right[A|B]-production systems extract theA- and B-
instance graphs from the linked graph produced by the rules discussed above.
This is done by stripping away the nodes and edges introduced by the (a) and
(c)-parts of the rules, as described in (5) above, as well as the elements of the
target (forLeft) resp. source model (forRight) that they link to.

3 Example

To illustrate the steps described in the previous section, we take an example from
[6] of UML-to-Javamodel transformation. Another example is presented in [19].
Fig. 4 shows the (hugely simplified) UML metamodel used in this example.

Transforming UML to Java is not very challenging, since the models are already
very close: mainly it is a matter of changing the metamodel names, for instance
from UMLClass to JavaClass . The most interesting part of the transformation
is the required addition of a constructor, which is mandatory according to the Java
metamodel used. This transformation is specified by the following couple of rules
in theMTL transformation definition:

RULE UmlClassifierToJavaClass(uc,jc)
FORALL UMLClassifier uc
MAKE JavaClass jc,

jc.name = uc.name
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Fig. 5. Transformation rule (in GROOVE) for aUMLClass , introducing a constructor

LINKING JavaClassFromUMLClassifier jcuc
WITH jcuc.javaClass = jc, jcuc.umlClassifier = uc;

RULE UmlClassToJavaClass(uc,jc)
EXTENDSUmlClassifierToJavaClass(uc,jc)
FORALL UmlClass uc
MAKE JavaMethod m,

m.name = uc.name,
jc.constructor = m

LINKING JavaConsFromUMLClass consFromClass
WITH consFromClass.constructor = m,

consFromClass.umlClass = uc;

The second of these rules give rise to the graph production rule displayed in Fig.5
(in the GROOVE format). The fat grey nodes and edges (green, in a coloured
representation) are to be added, the even fatter dashed part (red) is the negative
condition that prevents the rule from being applied twice. The rule is layed out so
that source model nodes are on the left, auxiliary nodes (parts (a) and (c) in step (5)
described above) are in the middle and target nodes are on the right of the figure.

Other rules, such as the one for transforming the attributes, actually use the
trackingUse information introduced by the above rule to link the new elements
to the correct nodes. Finally, Fig.6 shows an example source and target graph. We
omit the corresponding models and the linked graph for lack of space.

4 Conclusion

We briefly evaluate the work presented in this paper, suggest some possible exten-
sions and discuss related work.

Evaluation. The contribution of the research reported in this paper is not theoret-
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Fig. 6. Example source and target graphs

ical but rather in the nature of a proof-of-concept: none of the steps implemented
is new, rather the novelty lies in having actually carried through all of them con-
sistently, which among other things involves taking many small design decisions.
Based on this exercise we can confirm some widespread beliefs.

• Even using a very “poor” graph model, it is possible to give a semantics to a
sizeable fragment of a full-blown model transformation language;

• Defining a semantics in this way is a useful step, because it helps to uncover
flaws and ambiguities in the language definition;

The language studied in this paper, as described in the official submission [6] to the
QVT request for proposals, indeed contained many flaws and ambiguities: the full
thesis [19] reports 11 issues in the grammar that either prevent the example in the
submission itself from being parsed or give rise to parsable texts that are clearly
unintended, and 7 issues in the abstract syntax metamodel that are either poorly
documented or inconsistent with the grammar and the example.

Possible extensions and future work.There are several directions in which this
work should be extended and improved before we can claim to have a fullMTL
semantics.

• The work reported in this paper is pragmatic rather than theoretic. In particular,
the mappingGPS discussed in Sect.2, which mapsMTL transformation defini-
tions to graph production systems, has not been worked out in full formal detail;
instead it has been “defined” in the form of a tool implementation.

• The fragment of the MOF that we have treated (see Fig.3) should be extended.
For instance, one of the more prominent features currently missing is associa-
tion ordering. However, we believe that this requires no fundamental change to
the framework: one just has to extend the model-to-graph and graph-to-model
conversions with a suitable graph representation of the order, and take this into
account in the transformation rules.

• MTL rule paramaterisation and generalisation are not supported. Although this
can be mimicked through syntactically copying and substituting the rules, that
is a very poor solution which, for one thing, blows up the number of rules. To
cope with this in a more fundamental way, one can use for instance node type
inheritance in the graph transformation formalism, as proposed in [1,27].
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• Attributes are supported only poorly in the graph transformation formalism we
have used (however, see [14] for initial ideas on improving this). Choosing a
category of graphs (Graph) that is closer to the category of models (Mod), such
as attributed graphs and the transformation tool AGG [9,5], would improve the
simplicity of both the functiongA that maps the model space into the graph space,
and the functionGPS that defines the actual graph production systems.

• The QVT proposal on which this research was based has now been subsumed
by the actual QVT standard. A future iteration of this work should therefore be
aimed at the actual standard.

Related work. Although there has been a lot of research on using graph transfor-
mation for model transformation, some of which we have reported in Sect.2, we
have not seen the question studied in this paper, namely to give a graph transfor-
mation semantics to a pre-existing model transformation language, addressed else-
where. Instead, precisely the inverse trajectory has been followed in [11], where
model transformations specified originally in a graph transformation formalism
(viz., FuJaBA) are translated to the languageMTL that we have also studied in
this paper, after which they are interpreted by the tool Tefkat [7].

Another source of related work is the Triple Graph Grammar approach (see
[25,16,11]), which is an alternative basis for defining model transformation seman-
tics compared to the “simple” graph transformations we have used. Triple graph
grammars have the advantage of offering a more fundamental solution to the prob-
lem of linking source and target graph, which we have had to solve by introducing
an ad hoc graph encoding.

Acknowledgement.We wish to thank Klaas van den Berg, who co-supervised this
work and without whose contribution it would never have attained its current form.
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Abstract

In the context of Model Driven Architecture (MDA), most model transformation
mechanisms aim for rigorously and unambiguously defined, fully automatic trans-
formations. We argue that such techniques, even when fully mature, are not appli-
cable in all cases of software development. These difficult cases would benefit from
flexible and semi-automatic open transformations. We present a mechanism, so
called transformational pattern system, and show how it can combine human made
decisions and intentionally vague and incomplete rules to perform a transformation.

Key words: graph transformation, open model transformation,
pattern, mda, pattern system

1 Introduction

Model Driven Architecture [7] (MDA) is the most recent and most prominent
attempt to raise the level of abstraction used in defining software. The level
has previously been successfully raised from machine code, symbolic assem-
bler, and primitive programming languages to modern high level programming
languages and in some cases even generating code from models. Now the goal
is to use models from earlier and earlier design and perhaps even requirements
capture phases and derive implementation from them.

The benefits of achieving the MDA vision would of course be significant.
Production efficiency would rise due to higher abstraction level. Maintain-
ability would be improved when design models would always be up-to-date.
Because rising the abstraction level has been so successful previously, some be-
lieve this next step will be just as successful, as soon as good enough methods
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and tools have been developed. We argue that such expectations are reason-
able only when certain restrictions apply. When the level of abstraction gets
higher, automatic transformations get more complicated, their cost goes up,
and they have to make decisions with greater consequences all leading to fewer
cases where the transformation is usable.

Models from early design phases have less details than ones from later
phases. They do not just show less details, they actually have less details.
After all, an important reason for using high abstract level is to avoid com-
mitting to details too early. Details are added later, refining the model. Some
of them are inconsequential, but some are important design decisions. The
more abstract the model is, the bigger impact the decisions have on the end
result. A guess can be made at source code level, knowing that at worst it
will be off an opcode or two. A guess at the architecture level can go wrong
a subsystem or two.

An automatic transformation can only succeed, if it knows what the design
decisions should be. This is more likely in the context of, e.g. a single problem
domain, company or product line or versions of a product, where the situation
is well understood and rather stable. For example, C++ has standard fixed
semantics, so a C++ compiler does not need to (must not!) make behaviour
affecting decisions. If the context is not limited in any way, there are infinitely
many possibilities, too many to take into account beforehand.

Automatic transformations do not get rid of complexity. Instead of relying
on the expertise and wisdom of a designer to create a target model, we rely on
the transformation engineer to create a transformation. The transformation
must solve a more generic problem and apply to more cases than one, and is
therefore more difficult to build. The relative development cost is reduced, if
the transformation is applied to several products. For a one-of-a-kind product
or for a small organization, it might not be cost-efficient to develop (and
maintain!) another piece of software, i.e. the transformation itself.

We argue that in some cases where an automatic transformation is not
feasible or even possible, some of the MDA benefits can still be achieved.
Dropping the requirement for full automation and instead incorporating a
human in the transformation process, by interacting with him and allowing
manual changes, enables more flexible transformation mechanisms. In order
for the human to be able to make a difficult design decision, he needs to
understand its context. There is need for open transformation mechanisms,
i.e. ones that are transparent, accessible, interactive, and flexible.

We present an experiemental semi-automatic transformation mechanism
based on so called transformational patterns. This paper extends our previ-
ous work [10], where transformational patterns were used alone, by adding a
method for joining several patterns together. The mechanism is fully trans-
parent and allows the user to choose the order of tasks and make manual
changes to the models. At this time, we do not attempt to tackle problems
caused by incremental changes to the source model. We illustrate the use of
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Fig. 1. Generating and applying a transformational pattern system

Fig. 2. A pattern with six roles and six constraints

the mechanism with an example.

2 Transformation Mechanism

In this paper, a transformation specification consists of so called (transforma-
tional) patterns and assembly rules. A transformational pattern describes how
a transformation rule, e.g. Transform a UML Class into a Java class, is
implemented. The assembly rules describe how the individual patterns relate
and which patterns are applied to which source model elements. We call such
a collection of inter-related patterns a (transformational) pattern system. It is
an implementation of an interactive transformation for a specific source model.
These different components of a transformation are presented in Figure 1.

A transformational pattern describes a configuration of model elements,
which must exist after the corresponding transformation rule has been applied.
A pattern is given as a set of roles and constraints. Each role of a pattern
instance is attached, i.e. bound, to a model element. The constraints restrict
to which elements a role can be bound. A small pattern is depicted in Figure
2. The constraints state, for example, that (the attributes bound to) roles
attributeB and attributeC belong to (the class bound to) role classA. They
also require columnE to have the same name as attributeC. If the constraints
permit, multiple roles can be bound to the same element.

Applying a pattern can also be viewed as a set of tasks; “bind classA”,
“bind tableB”, etc. When all the tasks have been performed either by selecting
an existing model element or by generating a new one (while observing the
constraints), the pattern has been applied. To make performing tasks easier,
each constraint concerning two or more roles is directed. That is, one role
(binding) is considered to be “correct” and the other(s) must be bound to
conforming element(s). This implies a partial ordering of tasks, which can
be presented as a directed acyclic graph. Figure 3(a) depicts a task graph
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(a) A task graph (b) A task hierarchy

Fig. 3. A task graph and the corresponding task hierarchy

for the pattern in Figure 2. A task graph resembles a function or a program
that derives new bindings based on existing ones. For every task, a new role
is bound to a model element. If there is only one option the task can be
performed automatically, otherwise human interaction is required.

We use MADE [5] to apply patterns. For easier task selection, MADE
presents a task graph as a hierarchy of roles/tasks. Figure 3(b) shows the task
hierarchy for the task graph in Figure 3(a). The hierarchy criteria is currently
fixed and is based on containment. For example, the task for attributeC is
under classA because the constraints demand that the class bound to classA

contains the attribute bound to attributeC. The user can browse this hier-
archy by selecting a task. The tool will then show the list of tasks directly
underneath the selected task. Tasks with unbound dependencies will be hid-
den. For example, the task for columnE will not appear before tasks for
tableB and attributeC have been performed. MADE also offers some short-
hand commands, for example to perform all automatic tasks in a task list.

Task graphs can be connected together in sequence and in parallel by
merging some of their nodes. This is equivalent to merging the roles, where
the new role has all the dependencies and constraints of the merged roles.
Such a pattern system is a more complicated function, assembled from simpler
ones, and fulfills a more complicated purpose. Since a pattern system is itself
a pattern, MADE can be used to apply pattern systems, too.

The example in Figure 4 contains five task graphs (1.). A pattern system
is assembled from the two top patterns by merging one node from each task
graph. Likewise, the three patterns on the bottom are assembled into a second
pattern system (2.). Two new pattern instances are created and joined with
the old ones (3.) creating the task graph for the complete pattern system (4.).

The pattern assembly mechanism parses the source model and as a side-
effect forms a pattern system by creating and joining pattern instances. The
mechanism is essentially a graph rewrite system (GRS). However, each graph
production pi is associated with an action ai. A production-action pair 〈pi, ai〉
is called an assembly rule. The productions are applied to a directed labeled
graph representing the source model, where each node has a type and can have
named values attached. Whenever a production is used, the associated action
is triggered. The productions reduce the input graph step by step, while the
actions construct the resulting pattern system. In other words, the GRS is
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Fig. 4. An example of joining task graphs (patterns) together

Fig. 5. An example of an assembly rule; a graph production and an action

used to recognize or parse the source graph.

The assembly rules are ordered and the first with an applicable produc-
tion is always used. When no more productions apply, the mechanism stops
regardless of how many nodes or edges remain in the graph.

In the beginning each node corresponds to one source model element and
the node’s name-values come from the element, e.g. the name and id of a UML
class. Later on the values are usually roles or pattern instances created by
actions. When a production triggers an action, it has access to the values of
the nodes matching to the production’s left hand side (LHS) and right hand
side (RHS). A typical action fetches the patterns attached to two nodes in
the LHS and joins them together. The concept is analoguous to the grammar
rules (productions) and actions in the common textual parser generator yacc.

For a simple example, consider a graph consisting of directed trees, i.e. a
directed forest, and that we want to know the amount of nodes in each of the
trees. Let us assume that in the beginning the leaf nodes are of type leaf and
the other nodes are parent. Let us also assume that each node starts with a
single named value; size = 1. The assembly rule in Figure 5 could be used as
part of the solution. It is applicable whenever there are two nodes, x and y,
such that x is of type parent, and y is of type leaf , and y is a child node of x.
When the production is applied its action increments the value of size in x by
the value of size in y. The leaf y is then removed from the graph. A few more
assembly rules are needed to complete the example. One changes a parent

with no children into a leaf . Another collects the size from a one-node tree
into some global stack and removes the tree.

It is important to note that the assembly rules do not perform the actual
model transformation. They only assemble the pattern system, which is then
used to transform the model, guided by the user.

In the implementation, the productions are given using Object Constraint
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Language [8] (OCL) expressions and Python code. For this reason, a graphical
notation (Figure 5, 7) is used in this paper for presenting productions. The
notation is used solely for visualization, and is not formally defined. The
production rule implementation is currently not automatically derived from
the description. Actions are expressed in Python.

3 Example of Constructing a Transformation

As an example, consider the seemingly simple transformation from a structure
model (a UML Class Diagram) into a relational database schema. It seems
quite straight forward, but there are details, options and exceptions that add
complexity. For example, there are different ways to interpret and transform
composition, inheritance and other relations between classes, and there is not
always enough information in the source model to make the decision. It is
in managing these details and variations where the real challenge for a trans-
formation mechanism lies. With transformational patterns, their inherent
flexibility and interactive nature helps overcome some of these difficulties.

A rough natural language description of the transformation might be:

(i) Each class inheritance hierarchy is transformed into a single table. The
table is named after the root class.

(ii) At least one column in each table belongs to its primary key.

(iii) Foreign key should reflect the primary key selected for the target table.

(iv) Each attribute is transformed into a column in the table corresponding
to the attribute’s class. The column is named after the attribute.

(v) Each association is transformed into a table reference. The designer de-
cides which table holds the foreign keys. The foreign keys are named
after the primary keys and the association role chosen.

The (task graphs for) transformational patterns in Figure 6, one for each
informal rule, describe how the rules are implemented. The constraints have
been omitted for clarity. The patterns could be read as "a table is created

based on some class" (pattern i), "some columns are chosen from some

table" (pattern ii), and so on. When an instance of such pattern is partially
bound, it gets a more precise meaning, e.g. "a table is created based on

class Show". The flexibility in patterns and the choices the user will make
eventually decide how exactly the rule is applied.

The + in pattern (ii) and the XOR in pattern (v) are details of the notation
for MADE, the tool used for applying patterns. The markings mean that the
user decides at runtime how many pk roles pattern (ii) has and which of the
alternative structures is used for pattern (v).

There are five assembly rules and their productions are in Figure 7. It is
a coincidence, that there are as many rules as there are patterns. The first
rule is used for initializing a Class node. Production (1) marks an initialized
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Fig. 6. Transformational patterns corresponding to the informal rules

Fig. 7. GRS productions for the pattern assembly rules

node by changing its type to Class′. The rest of the productions parse the
source graph. Productions (2) and (3) remove attributes and associations.
Production (4) removes a leaf Class′ in an inheritance hierarchy. When the
hierarchy has been reduced to a single node, production (5) removes that node.
The actions for productions (1) and (2) (in pseudo-code) are:

1 patt = new Pattern ii #For the patterns, see Figure 6

c1.val = {class: new ClassRole, table: patt.tbl, pk: patt.pk}
bind role(c1.val.class, c1.id)

2 patt = new Pattern iv

merge role(c1.val.class, patt.cls)

merge role(c1.val.table, patt.tbl)

bind role(patt.a, att1.id)

When the pattern assembly rules are used on, e.g. the diagram in Figure
9, the first production applies and is used. The action (1) is triggered and
variable c1 points to one of the graph nodes representing a class. The action
attaches three roles as named values to the node; class, table, and pk. In
addition, it binds the role class to the source model class the node corresponds
to. The production changes the type of the node from Class to Class′, so
that the first production will not be used on the node again. This is repeated
on each node of type Class. So, the first assembly rule does not change the
structure of the graph, it merely initializes the class nodes’ values.

The second production is used when the first no longer applies. It finds
attribute nodes and removes them. The action (2) creates a new instance
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Fig. 8. Rule (iv) pattern joined once (left) and twice (right)

Fig. 9. Structure model used in the example

of pattern (iv), binds the attribute role to the source model attribute the
attribute node corresponds to, and finally merges the pattern’s cls and tbl

roles with the roles class and table associated with the class node. The left
side of Figure 8 shows the pattern associated with a class node after one of its
attributes has been removed. The right side shows the pattern after another
attribute has been removed. The stacked tasks represent merged tasks. In
reality, it is not possible to tell after the fact, whether a task has been merged.

After the second production rule no longer applies, the third one is used,
then the fourth, and so on, until no production rules apply. At that point,
there is a complete transformational pattern system created by the actions.

4 Example of Applying a Transformation

To demonstrate applying a transformational pattern system, a possible user
session is presented step by step. The transformation itself is the structure
model to database schema presented in Section 3 and it will be applied to
a ticket service structure model (Figure 9). Bob is assigned with the task
of creating the database schema. A CASE-tool is used for visualizing the
structure model and the schema (both as UML Class Diagrams) and MADE
is used for applying the pattern system.

Bob starts the CASE-tool and loads the source model. He executes the
assembly rules from the command line, starts MADE and imports the pattern
system. A list of tasks appears, one Provide table for class hierarchy

<name> task for each class hierarchy (Figure 10(a) 3 ). Bob selects the task for
Performance and tells MADE to generate a new table. A new class represent-
ing the table is generated and appears in the CASE-tool. New tasks become

3 For better image scaling, bitmap screen captures in Figure 10(a)–10(d) have been man-
ually redrawn in a vector format.
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(a) Initial task list (b) Tasks for table T icket

(c) Choosing reference directions (d) Deriving foreing keys

Fig. 10. Binding a pattern and the representation as a task graph

available and are listed under the old, now inactive, task; one for selecting
primary keys and one for transforming attributes to columns. Bob ignores
them for now, and instead instructs MADE to create tables Show, Event, and
Ticket.

Bob looks at the tasks (Figure 10(b)) listed under the Ticket table; creat-
ing columns and selecting primary keys. He selects Perform all automatic

tasks and a column (represented by an attribute) is created and appears in
the CASE-tool for each attribute in the classes Ticket, EventPass, and Sin-
gleTicket. Primary keys are not selected, because that task is not automatic.
Bob performs the task manually by selecting the column serial no which he
knows uniquely identifies a ticket. The selection is visualized by stereotyping
the column as �PrimaryKey�. There are no more mandatory tasks for this
class, but he could select more primary keys if he wanted.

There is nothing special about the attributes of Event and Performance, so
Bob tells MADE to generate columns for those, too. When looking for primary
key candidates, he realizes none of the columns will work. He switches to the
CASE-tool and manually adds a column id in both tables. Then, in MADE,
he selects them as primary keys for their tables.

When primary keys have been selected for some tables, choosing the direc-
tions for table references between those tables is enabled. The task list now
includes tasks for the associations from Ticket to Event and Performance
(Figure 10(c)). Bob is able to reason that there will be many SingleTickets
for each performance, and that one ticket can be used for one show only. He
therefore selects the task for the association between SingleTicket and Per-
formance and chooses SingleTicket to hold the foreign keys. When the choice
is made, tasks for deriving the actual foreign key columns from the primary
key of Performance appear (Figure 10(d)). Bob tells MADE to generate the
foreign keys, and the column performance id stereotyped �ForeignKey� ap-
pears in Ticket. Bob applies the same reasoning for the other table reference
and generates the column event id under Ticket, too.

The user can always choose the next tasks freely, as long as the tasks it
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depends on have been performed first. Bob utilizes this freedom fully, when
he, in this order, generates the tables for Show and Order, manually adds a
column in Show, generates the derived columns for Order, selects one primary
key column for Show, one for Order, then another for show, generates the table
Location, and chooses a direction for the reference between Show and Event.
This order may seem random from the outside, but Bob is working according
to some personal internal logic, probably inexplicable even to himself. When
he, not the tool, chooses what to do an in what order, he keeps better track of
the context and is therefore more capable of making the right design decisions
when the tool needs the human plug-in.

When looking at the relationship between Location and Performance, Bob
concludes it is more complex than the previous ones. He decides there needs
to be a third table to map the other two. There is no task for it, because such
a possibility was not taken into account when designing the transformation.
Still, Bob can manually create the mapping table and all required columns
in the three tables. There is currently no way of marking a task obsolete,
so he has to remember to ignore the task for choosing the direction for the
Location - Performance reference. Although the purpose of the new table is
not “understood” by the transformation, that does not affect the rest of the
model and the rest of the transformation.

Bob started working on the transformation so late in the day, that he is not
able to finish it before leaving work. So, he saves his work in the CASE-tool
and MADE, knowing he can load the structure model, database schema and
the transformation the next day and continue right where he left off.

5 Related work

There are many model transformation approaches, but few attempt interaction
or manual editing of models beyond pre-determined choices or parameters.

Triple graph grammars [9] are grammars spanning three related graphs;
one for the source model, one for the target model, and one for the relation-
ships between the models. Each production alters all the graphs (models) at
the same time, keeping them always synchronized and confirmant with their
schemas (metamodels). A transformational pattern system contains elements
for the source and target models and their relations. In that sense, a pat-
tern system is an abstract triple graph. Due to the flexibility in binding, it
represents a group of triple graphs.

With triple graph grammars, additions to the source or target models
can be dealt with simply by applying further productions. We have not yet
addressed the problem of incrementality for pattern systems. Triple graph
grammars are also bidirectional. Although a transformational pattern itself is
not directed, a derived task graph always is. The assembly rules, too, create
a bias towards a direction.

Some graph transformation tools provide interaction, e.g. AGG [11], and
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AToM3 [4]. The user can perform stepwise transformations and to choose
the next production to apply. In AGG the user can even choose on which
graph elements the production is applied, which resembles binding a pattern.
Allowing the user to choose productions is powerful and enables ambiguous
rules. But in order to make a decision, the user has to thoroughly understand
the grammar in addition to understanding the transformation semantics, e.g.
classes to tables, attributes to columns. We try to put the decisions more
in terms of the semantics by placing the interaction in the pattern system.
The user still has to work with a tool’s process, but we believe it to be more
similar to the user’s view of the transformation process. Perhaps the power
of interactive grammars can somehow be combined with the intuitiveness of
pattern systems.

GREaT [2] is a graph transformation tool, which produces a Java program
that can be run to perform the model transformation. We use assembly rules
to produce a pattern system, which is then applied with MADE. However, the
motivation with GREaT seems to be integration into Java applications and
possibly efficiency. User interaction does not seem to be considered.

A transformational pattern system, once all the roles are bound, is also a
mapping between the source and target models. So, model mapping techniques
[6] are in some way similar. However, they are typically bidirectional, whereas
transformational patterns are not.

ATL [1], among others, approaches the problem of too strict transformation
definitions by enabling specialization of transformations. This, in effect, allows
vague or general rules, which are then refined for a more specific situation.

6 Conclusions and future work

Transformational patterns (and thus also pattern systems) are rather flexible
in describing structures. They can be viewed as task graphs, which are ex-
ecutable and give an implementation for applying the patterns. Tasks also
have a natural interpretation as user choices, making task graphs interactive.
Adding assembly rules gives the approach some of the benefits of the fully
automatic approaches without removing the built-in user interaction.

Although incrementality was not considered in this work, it is very im-
portant for open transformations. As it is now, any significant change to the
source model demands a reassembly of the pattern system, effectively for-
getting the previous user decisions. Supporting incremental transformations
needs to be researched. The pattern assembly mechanism also has to be bet-
ter integrated with the pattern tool, to improve the user experience. For the
same reason, the production rules need a well-defined and intuitive notation.

We also intend to strengthen the theoretical foundation of our approach
with, e.g. graph grammars. For example, it has been pointed out to us that
transformation pattern systems might bear resemblance to graph processes
[3]. This is an interesting connection we intend to explore further.
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Abstract

We present a method for testing the implementation of graph transformation spec-
ifications focusing on test case generation for graph pattern matching. We pro-
pose an extensible fault model for the implementation of transformations based on
common programmer faults and the technicalities of graph transformations. We
integrate traditional hardware testing (combinational circuits) and software testing
techniques (mutant generation) for generating test cases.
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1 Introduction

Due to the growing importance of transformations, a standardized Model
Driven Architecture (MDA) based model transformation method has been re-
quested in the OMG Request for Proposal MOF 2.0 Query / View / Transfor-
mations [17]. Graph transformation, which provides a rule and pattern-based
manipulation of graphs, is a promising technology for model transformations
as evaluated by a taxonomy presented in [15].

The separation of the design and execution time of model transformations
is a recent tendency today (see GreaT, Fujaba, Viatra), by providing both an
interpreted engine and compiled transformation plug-ins as platform specific
implementations (Figure 1). In case of graph transformations, the implemen-
tation can be derived by hand or generated automatically as described in [3].
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However, even if these plug-ins are generated automatically, these implemen-
tations can be erroneous.

Fig. 1. The meaning of model transformation (MT) implementation

In order to detect conceptual flaws in transformations, typically, either ver-
ification (termination, confluence, semantic correctness, etc.) and/or testing
techniques are applied. In general, verification is mainly used in the design
phase of transformations, while testing is appropriate in the implementation
phase, when a stand-alone transformation plug-in has been created for the
corresponding specification. Testing has typically two main advantages: (i)
it can be used for large models without combinatorial explosion, (ii) tests
are executed directly on the implementation, which in case of model checking
often cannot be guaranteed.

Our aim is to test stand-alone graph transformation implementations by
generating test cases from graph transformation specifications. In this paper,
we focus on the graph pattern matching phase, which is considered to be the
most problematic phase of graph transformations.

We propose a fault model to incorporate potential flaws in the implemen-
tation. Test generation is performed by using a combinational circuit rep-
resentation derived from the preconditions of graph transformation (further:
GT) rules. Possible faults are mapped to stuck-at-faults (a signal lines is as-
sumed to be stuck at a fixed logic value, regardless of the inputs), as there are
various hardware testing methods for the combinational circuit and this fault
model. With the help of systematic fault injection, single binary (stuck-at-
faults) faults are inserted into the circuit and test vectors are calculated. The
exact test cases are generated by mutation rules in the form of test graphs.
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2 Graph transformations in Modeling Languages

2.1 Metamodels and models

The abstract syntax of a modeling language is defined by a metamodel (MM).
It can be represented formally as a type graph. The instance model or instance
graph (M) is a well-formed instance of the metamodel and describes concrete
systems defined in the modeling language. The finite automaton will serve
as a running example throughout the paper. To demonstrate our steps, the
very simple domain of the finite automaton and belonging instance models are
depicted in Figure 2.

Example 2.1 According to the metamodel, a well-formed instance of a fi-
nite automaton is composed of states and transitions. A transition is leading
between its from state and to state. The initial states of the automaton are
marked with init, the active states are marked with current edges. Special,
e.g. colored states, are definable by inheritance.

A sample automaton a1 consisting of three states (s1, s2, s3) and three
transitions between them t1 (leading between s1 and s2), t2 and t3 is depicted
as an instance model. We can notice that the initial state of a1 is s1.

Fig. 2. Metamodel and instance model of finite automata

2.2 Graph transformations

Graph transformation [20] is a pattern and rule based formalism for the ma-
nipulation of graph models. On rule application, a graph is transformed by
replacing a part of it by another graph. With the definition of a metamodel
and a set of rules over that metamodel the dynamic changes of an initial model
can be described. On rule application, a graph is transformed by replacing a
part of it by another graph.

A graph transformation rule R contains a left-hand side graph LHS, a
right-hand side graph RHS, and negative application condition graphs NACs.
The LHS and the NAC graphs are together called as the precondition of the
rule R.
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The application of a rule to a instance model M (which is instance model
of the metamodel) replaces a matching of the LHS in M by an image of the
RHS (formally there is a graph morphism between the LHS and the instance
model M). This is performed by (i) finding a matching of LHS in M, (ii) check-
ing the negative application conditions NACs (which prohibit the presence of
certain objects and links) (iii) removing a part of the instance model (that
can be mapped to LHS but not to RHS) yielding the context model, and (iv)
gluing the context model with an image of the RHS together by adding new
objects and links (that can be mapped to the RHS but not to the LHS) and
obtaining the derived model M’. A graph transformation is a sequence of rule
applications from an initial model Mi.

Typically, the most critical phase of a graph transformation step is graph
pattern matching, i.e. to find a single (or all) occurrence(s) of a given graph
in a instance model M.

Example 2.2 The dynamic semantics of finite automatons can be described
with the help of graph transformation rules. The example rule depicted in
Figure 3 shows the firing of a transition. If the S1 state of the A1 automaton
is active (there exists a C1 edge between them), and there exists a transition,
which leads from S1 to S2, then the rule is applicable, and the current state
of the automaton will be S2.

The process of pattern matching can also be illustrated. If we regard the
instance model in Figure 2 as an instance model, and we assume, that there is
an additional current edge from a1 to s1 in it, then the example GT rule can
be applied onto this instance graph: with variable instantiation A1-a1, S1-s1,
T1-t1, S1-s2, C1-c1, St1-st1, St2-st2, etc. The rule can be applied here, and
as a result, the current edge will be leading from a1 to s2 in the instance
graph.

Fig. 3. The fire GT rule of a finite automaton

3 Fault Model

For the testing of graph transformation implementations, (in fact, for any
kind of testing), a formal fault model has to be defined for the possible fault
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types in the implementations. This was inspired by object-oriented testing and
hardware-based testing techniques, assuming similarities between traditional
software developers and transformation developers and these were adopted for
graph transformations. Thus the following fault types were declared for the
pattern matching phase (the fault model is extensible, additional faults can
be defined via the same method):

General implementation faults (based on programmer’s experience):

• Omission fault. In a graph transformation implementation, the omission
fault means, that some elements are missing from the implementation of
the pattern matching criteria, described originally in the specification. This
can lead to situations, when graph transformation rules can be matched to
a smaller subset of graph elements than it was specified (e.g. node s1 or
states edge is missing from the implementation of pattern matching).

• Interchange fault. An interchange fault means, that the criteria was imple-
mented with incorrect type definitions (e.g. too specific type used,
AcceptingState instead of State). Most commonly, the programmer makes
such a fault in the generalization hierarchy.

• Side effect fault. This fault means unnecessary, redundant elements in the
implementation, having more criteria defined for pattern matching than
those specified (e.g. additional nodes or edges were implemented in the
criteria).

GT specific faults of the pattern matching phase:

• Dangling edge production fault. The production of dangling edges is not
allowed in the DPO Double-Pushout approach [5], therefore this criterion
must be investigated.

• Violation of injectivity fault. If only injective matchings are allowed, the
non-injective matching of elements (different nodes in a GT rule have the
same image in the match) is a violation of injectivity fault.

In the future we also plan to consider non-injective matchings, where the
violation of identification condition needs to be investigated.

The pattern matching criteria for each rule are defined by the LHS of
rules in the specification. It is assumed, that the graph pattern is well-typed
(syntactically correct), therefore only implementation (semantic) errors are
aimed to be detected.

4 Test Case Generation for Graph Pattern Matching

4.1 High level Overview

Figure 4 provides a brief overview of our test case generation approach. There
are three primary components of the envisaged framework: test case construc-
tor, testing engine and test analyzer. For the current paper, we only focus
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Fig. 4. Testing workflow

on pattern matching, but the conceptual elements of the framework are more
general, like the test case constructor and the testing engine. The input of the
test case constructor is a set of GT rules as specification, and the output is a
set of test cases in the form of test graphs for the testing of the implementation
of the transformation.

The main steps of the test case generation are the following:

• Pattern Matching Criteria The logical criteria for the successful matching
of each rule is extracted from the transformation specification in the form of
a Boolean expression. The formula is satisfied, when a successful matching
is found for the belonging GT rule. The idea is to reuse existing techniques
for hardware testing, therefore the Boolean formula is depicted in form of a
combinational circuit, for which traditional test generation algorithms can
be applied.

• Test Generation With systematic fault injection, single faults are injected
into the inputs of the circuit. For its simplicity, the method of Boolean
differences [16,21] is applied here which generates binary test vectors for
stuck-at-faults in the combinational circuit representing the pattern match-
ing. The method of Boolean differences guarantees that with the generated
test vectors the fault is observable on the output of the circuit. If a vari-
able in the generated test vector is one, then the corresponding condition is
satisfied, else it is not satisfied. For further details see Section 4.2.

• Test Graph Generation After the test vectors are calculated with binary
values, the corresponding test graphs have to be produced. The LHS copy
of the tested GT rule is created, and with mutation rules the specified faults
are injected into the LHS copy graph. The calculated test vectors control
the process of mutation rule application. The resulting test graphs are the
possible realizations of the calculated logical test vectors, created according
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to the fault model introduced in Section 3. For instance, a binary test vector
expressing that some node has a wrong type can have multiple realizations,
e.g. a more general type can be one case (e.g. AutomatonElement instead of
State), or a more specific type (AcceptingState instead of State) in the
generalization hierarchy can be implemented. Thus, for each test vector,
multiple test graphs can be created. For further details see Section 4.3.

• Test Set Optimization The set of produced test graphs should be examined
for test optimization, in order to create a more compact set of test cases,
it should be optimized. Naturally, it has to be decided, whether the aim is
only fault detection or diagnosis as well. In the latter case, test compaction
can only be carefully applied, not to loose information for diagnosis.

After the test set is created, it is passed to the Testing Engine. The
testing engine is responsible for executing the transformation specification on
the given test graph both in the reference system (a GT Interpreter tool) and
the transformation implementation. The comparator compares the results
of pattern matching of both components, and collects the results for each
test graph. Here an important restriction has to be made: only those GT
rules are suitable for testing, for which the difference of RHS and LHS is
nonzero. It means, that in order to being able to compare the results of pattern
matching, rule application must make visible changes on the test graph. The
test analyzer collects and visualizes the results of the test engine.

Due to space restrictions, we discuss in further details only the test gener-
ation and test graph generation phases. The interested reader can find more
about this topic in [6].

4.2 Details of representation and test generation

The general, formal criteria for a match are presented in [23]. The idea is to
describe these criteria for each GT rule in the rule set of the specification,
and to create a combinational circuit representation of this Boolean formula,
which will supply us with the usability of traditional testing methods. The
formula evaluates to 1, if a match fulfills the defined criteria meaning that the
pattern matching was successful.

The construction of the formula follows the upcoming scheme:

Existence of images of the LHS elements in the instance graph ∧
∧ Correct type of elements in the match ∧
∧ Attribute conditions satisfied by the matched attributes ∧
∧ Isomorphism/homomorphism condition ∧
∧ Fulfillment of dangling edge conditions ∧
∧ No violation of NACs

For the example rule showed in Figure 3, the criteria is the following:

Automaton(a1) ∧ State(s1) ∧ Transition(t1) ∧ State(s2) ∧
∧ current(c1, a1, s1) ∧ states(st1, a1, s1) ∧ states(st2, a1, s2) ∧
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∧ transitions(tr1, a1, t1) ∧ from(f1, t1, s1) ∧ to(to1, t1, s2) ∧
∧ s1 6= s2

For the presented example, no dangling edge or NAC condition was present,
therefore we briefly summarize the construction of these criteria.

• The dangling edge condition: All nodes and edges in LHS of a GT rule R
but not in RHS are deleted when the rule is applied. When applying this
rule R on a instance graph, all the edges to and from these nodes which are
not part of the match are the dangling edges. The dangling edge condition
is fulfilled, if no dangling edges will be produced on rule application.

• The NAC condition: If only single, non-hierarchical NAC graphs are used,
the NAC condition is satisfied, if its elements cannot be found in the match.
The Boolean formula can be written for the NAC graph as above, and it
is inverted before connecting it to the pattern matching criteria. In case
of hierarchical NAC conditions, the Boolean formula of a lower level NAC
is inverted before connecting it to the higher level condition. More on this
topic can be found in [19].

• The injectivity condition is formalized as follows: ∀ X, Y nodes ∈ LHS, and
p, q images of X and Y in the instance graph: X 6= Y ⇒ p 6= q which
means, that two different elements of the LHS of a given GT rule cannot
be mapped to the same element in the match. In our example, this was the
s1 6= s2 condition for states S1 and S2.

The combinational circuit generated from the criteria is depicted in Figure 5.

Fig. 5. Combinational circuit representation with details of the example

The test vector generation is performed on the combinational circuit with
systematic fault injection, with the help of the method of Boole differences
resulting in binary test vectors for each GT rule. In our example, a test vector
for the omission fault of the Automaton(a1) element from the criteria is the
following: (0,1,1,1,1,1,1,1,1,1,1) for (a1,s1,t1,s2,c1,st1,st2,tr1,f1,to1,s16=s2).
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Some details of the processing of these test vectors and the test graph
generation are discussed in the next section.

4.3 Details of test graph generation

The generation of test graphs is based on a set of mutation GT rules, all of
which define the injection of faults of fault types defined in the fault model
(Section 3). These rules describe the possible realizations of a given fault
type: e.g. in case of the interchange fault type (where we supposed faults
inside the generalization hierarchy), the fault can originate from a too specific
or a too general type realized by the implementation. The mutation rules are
metatransformation rules, which are applied on the LHS copy of a GT rule
from the specification as instance graph.

Fig. 6. Mutation rule for one realization of the interchange fault and the generated
test graph from the LHS copy of the example

Returning to our example of the finite automaton, after applying the mu-
tation rule depicted in Figure 6 on the State entity of the GT rule LHS copy
(Fig. 3), we would gain an AcceptingState entity, which is of a more specific
type. A test graph including this fault would test, whether the implementa-
tion regards the correct type of element when pattern matching or not. The
original GT rule (Fig. 3) is applied onto this test graph, and the success or
failure of pattern matching indicates the correctness of the implementation.

The test vectors calculated on the combinational circuit can be regarded as
a control structure for the mutation rules; they define, which test graphs have
to be produced with the help of mutation rules. The instance graph is the
LHS copy of the GT rule under test, and the result graph is the test graph.
For each test vector, a new LHS copy is created, and the according to the
possible mutation GT rules, as many test graphs are created as the number
of different possible mutation rules were defined for this fault type. Thus, a
test graph set is generated for each test vector.
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5 Related Work

The formal correctness analysis of model transformations has been already
investigated in the literature.

Syntactic correctness and completeness was examined in [9] and sufficient
conditions guaranteeing the termination and uniqueness of transformations
were set up in [12] based on the critical pair analysis [10] technique.

An automated formal verification technique is presented in [18,7,24] based
on various model-checking techniques to prove semantic correctness criteria
in graph transformation systems starting from a concrete initial graph. A
static analysis technique is proposed in [1] to investigate the correctness of
graph transformation systems by using a Petri net abstraction. A tool for
checking inductive invariants has been presented recently in [4]. To guarantee
the preservation of constraints during model transformations, aspect-oriented
techniques are proposed in [13].

However, much less results are available for the testing of graph transfor-
mations. Jeff Gray underlined the importance of testing model transforma-
tions and presented a model transformation testing framework in [14]. This
framework focuses on automating test execution, i.e. to automatically com-
pare test results with the expected behavior, while we focus on automatic test
generation.

The testing of code generators specified by graph transformation rules has
been addressed in the literature by adapting well-known test strategies such
as test case generation by model checking [2] or the classification tree method
[22]. In [11] tests are generated for black-box implementations of web services
based upon domain partitioning. While the overall goal i.e. to derive test
cases directly from GT rules is similar, we assume that implementation is
strongly linked to the GT specification, furthermore we use systematic fault
injection and combinational circuit testing techniques in the background.

On the tool level, one pioneer is FUJABA which generates JUnit test
cases [8] from graph transformations specified by graphical story diagrams.
This approach focuses on the correctness of model manipulation steps (based
on the right-hand side), which nicely complements the results of our current
paper.

6 Conclusion and Future Work

In this paper we presented a method for the test generation for the pat-
tern matching of graph transformation implementations, and a test execution
method as well. Our primary goal was to use well-known hardware/software
testing techniques and the extendibility of the fault model, therefore we elab-
orated a method which can be used for any graph transformation implementa-
tion and extended on demand with e.g. more fault types or with the injection
of multiple faults.
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The complexity issues of this problem will be part of measurements of the
implementation, but it can be said that the pattern matching criteria - from
which the test generation is performed - is comparable, proportional with the
LHS size of the GT rules of the specification. Therefore, as the size of GT
rules is generally much smaller than the size of instance models, it seems to be
surmountable. Another important question is the size of test graphs, which,
in the presented version is equal to the size of GT rule LHS graphs, as test
graphs are generated with the slight modification of corresponding GT rule
LHS graphs.

Our aim is to extend our testing method with the consideration of rule
application, the RHS or postcondition of GT rules as well. Secondly, we plan
to improve the fault model with control flow faults and design methods for
testing the control structure of graph transformations as well. Furthermore,
more work has to be done in the area of test set optimization. It is a future
goal to examine the usability of our method for not only fault detection, but
also for diagnosis as well, and to try out our method on graph transformation
implementations.
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Abstract

Integrated Development Environments supporting software and model evolution
have to deal with the problem of maintaining coherence between code and model
despite changes which may occur on both sides. Rather than going through model
reingeneering or code regeneration, it would be better to build a full correspondence
between the starting models and keep it updated in an incremental way after each
evolutionary step. In a series of previous papers, it was shown how distributed
graph rewriting could support such updates. Here, we show how to construct a
distributed graph from individual models, through the use of synchronized rules.
In particular, we discuss the case of Java code and UML models, and propose an
Eclipse implementation of the approach.

Key words: Distributed graphs, model morphism, software
evolution.

1 Introduction

Integrated Development Environments (IDEs) are increasingly devoted to en-
able their users to move through the different processes of design and im-
plementation, providing tools to keep some form of coherence between the
design models and the produced code. In particular, several tools support
refactoring, usually providing the possibility of combining simple refactorings
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into complex ones, managing aspects such as assessment of preconditions and
modifications of model components, typically class diagrams.

In previous papers we have made the case for keeping into account other
views of the design model, such as sequence and state diagrams, and have
proposed the use of distributed graph rewriting [3,4] for an integrated man-
agement of modifications in the code and in the global UML model underlying
a software artifact. The approach is based on identifying mappings between
software elements, represented by an Abstract Syntax Tree (AST) derivable
from the code, and model elements, expressed in UML terms. Both AST and
UML models are seen as instances of their respective metamodels, interpreted
as graph types. In this context, the construction of the correspondence be-
tween them amounts to that of their (typed) interface graph. In such a graph,
each node corresponds to some abstract concept common to the two models.
At the instance level, morphisms between nodes in the interface graph and
the corresponding nodes are constructed.

In this paper, we show how to construct the interface graph and the as-
sociated morphisms, based on the assumption that the two models (AST and
UML) already exist and are coherent in the sense that elements with the same
(qualified) name refer to the same concept. The approach can be easily ex-
tended to the case of two incoherent models, so that reasons for failure can be
identified. On the other hand, by assuming one of the two models as correct,
repair actions can performed on the other one.

In particular, we express the sequences of actions performing the mor-
phism construction as transformation units [11,2], which are specializations of
a general transformation pattern and illustrate how such specializations can
be generated. We also present guidelines for implementing the rules using the
Eclipse API system [6]. The discussion is illustrated by presenting transfor-
mation units for the construction of mappings between some particular types.

The rest of the paper develops as follows. After a brief recall of Theory in
Section 2, we present the general pattern of transformation some of its specific
instantiations in Section 3. Section 4 presents the Eclipse implementation and
conclusions are given in Section 5.

2 Theory and models overview

For correspondence construction, we rely on the DPO approach [5], and in
particular, to the theory of distributed graphs and graph transformation [13],
allowing the concurrent construction of the interface graph, of the morphisms
between it and individual graphs, and of morphisms between corresponding
nodes in the different graphs, so that diagrams such as the one of Figure 1
commute. Figure 1 also illustrates the convention adopted in the rest of the
paper: corresponding nodes are identified by the same name, primed in the
code graph and doubly primed in the UML graph. This allows us to deal with
the existence of morphisms and of a node with corresponding name in the
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interface graph implicitly.
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Fig. 1. The general form of morphisms.

In the examples of the paper, we show pairs of local rules working in a
synchronized manner. Rules are defined on the metamodels specifying the
type graphs for the two models.

A rule p : L
l
← I

r
→ R is given by two morphisms l and r. Given an

object G and a rule p : L
l
← I

r
→ R, a match of p to G is a morphism

m : L→ G. A direct derivation d from G to H by p and match m, d : G⇒p,m

H, is given by a double pushout (see Figure 2). Rules may have application
conditions, both positive and negative (NACs), as well as attribute evaluation
actions associated. In Figure 2, the NAC is an object N and an injective
total morphism n; a rule is applicable only if match m cannot be extended to
m′ such that n ◦m′ = m. Several objects Ni, and the associated morphisms
ni, can be associated with one L, indicating that no extension of m should
exist for any i. The derived rule from a direct derivation d : G ⇒p,m H is

pd : G
g
← D

h
→ H.
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Fig. 2. Double Pushout rule with a negative application condition.

A transformation unit controls rule application through control conditions
specified by expressions over a set Names of rule names. The class C of control
expressions is recursively defined by

(i) Names ⊆ C,

(ii) forall n end ∈ C, if n ∈ Names,

(iii) C1; C2 ∈ C, if C1, C2 ∈ C,

(iv) asLongAsPossible C end ∈ C, if C ∈ C,

(v) if B then C end ∈ C, if C ∈ C,

where B is a logical expression constructed using the logical operators OR
and AND on atoms of the form applicable(r), with r a named rule and
applicable a predicate which evaluates to true only if r is applicable in the
current graph. If an expression consists of a name r ∈ Names only, the rule
with name r is applied to the current host graph. The operator in (ii) applies
the rule with name n at all different matches in parallel to the same host graph.
The operator ; is left associative and applies first the expression C1 and then
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the expression C2. The operator in (iv) sequentially applies expression C as
long as its application is possible. The operator in (v) prescribes the execution
of the expression C conditioned on the success of B (typically this will contain
names of rules to be applied first). Transformation units have a transactional
interpretation, i.e. they either succeed or fail completely.

In this paper we exploit the metamodels resulting from the definition of
the abstract syntax of the Java language, as per the JavaML DTD [1], and
the UML Metamodel [9].

3 Correspondence Construction

In this section, we illustrate the approach to the construction of the corre-
spondence, by showing a general template for the used transformation units
and illustrating it by an example. The complete construction is described in
[12]. While the identification of corresponding elements is based on type and
name identities, the main problem lies in the identification of the context, i.e.
the namespace, in which to check identities. A general search template has
therefore been specifically devised to address this problem.

In general, we consider the Java AST as the basis for the construction
process, so as to exploit the facilities for tree visit provided by Eclipse. For the
sake of simplicity, a slightly abstract form of Java and UML model elements
are used in the rules. Where necessary, adaptations of the rules to the real
metamodels are discussed.

Templates for Correspondence Construction

In several situations, establishing a correspondence between elements requires
recognizing the correspondence of the embedding contexts. In particular, we
rely on the notion of parenthood as provided by the tree model. As the number
of sibling elements is arbitrary, we adopt transformation units to force an
exhaustive search of such elements.

In particular, we observe that a common structure exists for transformation
units to build correspondences between elements in a well defined pattern. A
correspondence can be established between elements so that the element p′ in
the AST is the root of some subtree, and children of p′ correspond to elements
which are linked according to some suitable association with p′′.

We can therefore define a template for transformation units to be properly
instantiated with a suitable set of rules to resolve the correspondence for a
specific pattern. The transformation unit is constructed from 4 basic steps.

Step 1 : Identify the corresponding parent elements to ensure the presence
of a context for the rest of the transformation unit.

Step 2 : The construction of the correspondence for children of a mapped
element requires a mapping for each corresponding pair of children. Hence,
the rule establishing the correspondence has to be applied in the context of
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the parent and to each different pair of corresponding children.

The template for transformation units is expressed as

CorrespondenceConstruction()

forall mapParent();

forall mapChild() end

This template can be compared to amalgamated graph transformation as
presented in [13].

Sample Correspondence Construction

Now we illustrate the specialization of the template presented above to study
the case in which the context is a Java class declaration; as stated in JavaML
DTD, together with zero or more field declarations in its scope. The con-
struction of the mapping between a Java class and a UML Class is real-
ized by the rule mapClass() in Figure 3, an example of instantiation of
mapParent(), while the construction of mappings between Java fields and
UML Attributes requires the instantiations of mapChild() in the form of
mapField2Attribute(), as shown in Figures 4.

1,c’ : class 2,c’’ : Class

1 : class 1,c’ : class

2 : Class 2,c’’ : Class

isLeaf = y4

x3 ∈ {true, false} ∪ {nil}

x2 ∈ {true, false} ∪ {nil}

x1 ∈ {public, protected, private} ∪ {nil}

y4 = x4 /∈ {nil, false}?true : false

y3 = x3 /∈ {nil, false}?true : false

y1 = x1 /∈ {nil}?x1 : package

NACNAC

name = c name = c

name = c

visibility = x1

static = x2

final = x3

abstract = x4

name = c

visibility = x1

static = x2

final = x3

abstract = x4

isLeaf = y4

isAbstract = y3

visibility = y1

name = c name = c

visibility = y1

isAbstract = y3

x4 ∈ {true, false} ∪ {nil}

Fig. 3. Rule mapClass().

The rules in Figure 3 show several application conditions on the class
properties:
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• If visibility in the AST is undefined, then the UML side assumes default,
package, visibility. Otherwise, visibility is the same for both elements;

• The UML counterparts of the abstract and final JavaML attributes are
isAbstract and isLeaf respectively;

• No counterpart for the JavaML static attribute is available from the UML
metamodel for outer classes.

In the rules of Figure 4 specific issues of concern are 1 :

• targetScope is specified with the instance value according to the meta-
model semantic. By doing so, Attribute is not used to store meta-information
but behaves as a normal model attribute;

• changeability represents the UML 1.5 way to specify a Java final at-
tribute modifier.

The transformation unit which establishes the correspondence between
classes, fields, and attributes results from the specialization of the template
given above and is expressed as follows:

Field2Attribute()

forall mapClass());

forall mapField2Attribute() end

4 Correspondence Construction between Java and UML

in Eclipse

This section discusses the implementation of template instances in an Eclipse
plugin, com.spulci.C2MCM (Code to Model Consistency Maintainer).
C2MCM is based on the Eclipse AST framework, residing in the org.eclipse.jdt.core.dom
package tree, and on the UML2 Eclipse tool project in package org.eclipse.uml2
[9]. C2MCM manipulates structures generated by these APIs to search for se-
mantic equivalent nodes inside them. C2MCM also creates a representation
of the interface graph within an XML file. A brief introduction to the Eclipse
platform, AST framework and the UML2 plugin is given as needed.

4.1 The Eclipse Platform

Eclipse is a platform centric IDE which offers tools to develop and maintain
software taking into account various project aspects. The whole Eclipse ar-
chitecture is extensible and open. Indeed, tools belonging to the platform
are structured as plug-ins. Each plug-in can define one or more extension-
points, places where another plug-in can attach itself to provide new capa-
bilities and offer an interface to the existing ones.

1 The field mapping rules shown in this article are a simplified version; some attributes are
omitted and a more complex pattern on the UML side is not shown in order to keep the
presentation of the Eclipse implementation simpler.
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featurefeature

x2 /∈ {false, nil}?y2 = frozen : y2 = changeable

x2 ∈ {true, false} ∪ {nil}

x1 ∈ {public, protected, private} ∪ {nil}

targetScope = instance

changeability = y2

visibility = y1

name = d

3 : Attribute

targetScope = instance

changeability = y2

visibility = y1

name = d

3, f” : Attribute

name = c

4,c” : Class 4,c” : Class

name = c

name = c

1,c’ : class

NACNAC

name = c

1,c’ : class

2 : field

visibility = x1

final = x2

static = x3

2,f’ : field

visibility = x1

static = x3

final = x2

2,f’ : field 3,f” : Attribute

name = d name = d

name = d name = d

x1 ∈ {nil}?y1 = package : y1 = x1

Fig. 4. Rule mapField2Attribute().

4.2 Java Abstract Syntax and UML2 in Eclipse

We rely here on the definitions of the Java Abstract Syntax and of UML2 as
provided by the Eclipse core, in which the instances of these metamodels are
stored as separate files without reference between them. The basic assumption
is that matching names refer to corresponding elements.

Classes from org.eclipse.jdt.core.dom and org.eclipse.uml2 are im-
ported to manage the Java AST and UML2 models. The AST of some Java
file is taken as input, allowing the search for semantically equivalent nodes in
the UML2 model during the AST visit.

Correspondence construction in C2MCM is started by a call to the method
startEngine(ICompilationUnit icu), where the actual value for icu is an in-
stance implementing the ICompilationUnit interface, specified by the user
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through the plug-in GUI. This is the root of an AST built from a .java file.
Besides loading the AST, this method evaluates the URI of the UML2 model
on which to construct the mapping and passes it to the loadModel(URI uri)
method which actually loads it.

The realization of the approach takes advantage of the implementation of
the Visitor pattern supported by Eclipse which can be advantageously used
to implement the template as developed in the previous section.

Actually, visiting the tree according to the node types allows the inter-
leaving of rules from different transformation units. However, this does not
alter the final result with respect to the normal execution of these transitions.
Indeed, each transformation unit resulting from the instantiation of the tem-
plate produces, as its net effect, the construction of a node in the interface
graph and of the mappings to UML2 and AST models, without eliminating
any existing node or edge. As a result, no derived rule for each such instanti-
ation may disrupt the positive context for the application of another (i.e. to
consume something in the left-hand side of a rule ). Hence, building a cor-
respondence between some elements cannot prevent the construction of other
correspondences between elements in their context. We can thus conclude
that any interleaving of rules from different transformation units produces
the same result, provided that any partial order between rules in the same
transformation unit is respected.

loadModel() returns a Package model class instance with the same name
as the Package Java class. To avoid namespace conflicts, we adopt the con-
vention of always using the fully qualified name org.eclipse.uml2.Package.
The model is loaded through a call to an EMF method, as the UML2 plug-in
is an extension of the Eclipse Modelling Framework.

4.3 Code Skeleton

The first step to the Eclipse implementation of a transformation unit is to
identify the nodes that should be visited in the AST. The visit is started on the
nodes for which a transformation unit is defined. This results in the mappings
prescribed by instantiations of mapChild, and possibly in those prescribed in
the instantiations of mapParent, which are optionally applied. According to
the AST Eclipse API, it is necessary to override the appropriate visit() method
for each node type that has to be visited by the framework 2 The steps below
analyze the template core notions and show the skeleton followed to build the
Eclipse implementation:

Context Identification and Applicability: The identification of the con-
text (schematised in the template as parent) for the node under examination
is done by navigating the tree starting from the current node and looking for

2 The abstract syntax node type is passed as parameter to visit() Hence, a visit(A x)
method codes a visit for a node x of Java type A. To grant children visit for the current
node, the value true must be returned by each implementation.
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the pattern described in the mapParent() rule, also checking the applica-
bility conditions. In most cases, this is simply done by navigating upwards
until a node of a specific type is found. As node visits proceed from the root
downwards, a mapping for the found parent may have been constructed in
the visit of some other type with the same context (e.g. fields and methods
in a class).

Node Mapping: The visiting policy adopted in the Java AST Framework
provides an implementation of the forall mapChild() end construct, in-
voking a visit each time it finds a node of a certain type. This assures that
a node of a certain type is visited at most once for each visit. Actually, it
proceeds in a sequence in which the leftmost child of a node is always the
first to be visited, and the subsequent siblings are visited in the order of
declaration.

Name checking: As the mapping relies on name identification, the method
getFullyQualifiedName() is used on AST nodes. On the UML side, the
obtained name is used to construct an argument for findNamedElements(),
which returns a Collection of nodes (typically at most two elements, if a
variable and a method in the same class have the same name). The node
of the correct kind is then extracted from the collection.

Application Conditions: An application condition in a rule is directly coded
as a Boolean clause which performs checks on the attribute values specified
in the rule.

Mapping construction: If the check is passed, the mapping is represented
by adding an XML node to three different documents, one representing the
Interface Graph, one for the Java to UML correspondences, the last for the
reverse UML to Java mappings.

4.4 AstDecorator class: AST visit to find equivalent nodes

The bulk of the work is realized within the AstDecorator class in Listing 1, by
which AST nodes are visited to find semantic equivalences. The constructor
initializes a reference to the UML2 model passed as argument and stores the
UML2 model name, to be used to construct fully qualified UML2 names. For
each AST node type a version of the visit() method is defined. The actual
node parameter is passed at runtime by the framework while the returned
boolean value is set to true to allow visits to children nodes. In particular,
for each node of the AST, a reference to the corresponding element in the
UML model is set, and vice versa. Moreover, a node of the interface graph
is constructed with references to the nodes put in correspondence. This also
provides the correct context for the visit to the children.

In particular, we show the code for a TypeDeclaration node in the Java
Language Specification 3 in Figure 3, and for a VariableDeclarationFragment,

3 We follow here JLS3, i.e. the version described in the third edition of [10]
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a JLS grammar element containing JavaML Field node items, together with
their parent FieldDeclaration(see Figure 4).

A TypeDeclaration can be specialized as either an Interface or a Class
Declaration; we consider here only the latter. The corresponding Class el-
ement in the UML2 model is found using the Eclipse findNamedElement()
method. Inside the if clause body, the concrete coding of the mapping is
performed. (See Listing 2.)

Field declarations require some additional work; a field identifier can be
found inside a VariableDeclarationFragment, child of a FieldDeclara-
tion. As our matching technique is based on name searching, it is better to
define a visit on the former instead of the later. As explained before, a check
is needed to find the context of that node. This time the context will be a
class declaration and is searched by the method in Listing 3.

The visit implementation is shown in listing 4. Its structure is quite similar
to the TypeDeclaration visit, exploiting the Java context to find an UML
Class that contains a semantic equivalent field.

4.5 XML Document for the Interface Graph

Correspondences built by C2MCM are maintained both as new elements of
the XML files for AST and UML2 and in a specific XML Document represent-
ing the Interface Graph. Nodes in this document have the following structure:

• The name of the node is the name of the rule which built it.

• The attribute JAVANAME contains the fully qualified name of the Java
Ast element mapped by the rule.

• The attribute UMLNAME contains the fully qualified name of the corre-
sponding element in the loaded UML2 model

As an example, the following code snippet constructs the node for the
mapClass() rule mapping, using the DOM4J open source API [7]:

Element igChild = igRoot.addElement("Class2Class"); //Node name

igChild.addAttribute("JAVANAME", packageName+"."+

className.getFullyQualifiedName()); //Java name

igChild.addAttribute("UMLNAME",md.getQualifiedName()+"::"+

className.getIdentifier()) //UML name

5 Conclusion

In conclusion, we have shown how synchronized rules defined on the meta levels
of Java abstract syntax and UML2 can be used to establish correspondences
between instance models. This can be used for several purposes, including
navigation from code to model and viceversa, and is particularly suited to
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allow consistency management between refactored code and model, without
having to recur to reverse engineering or recompilation.
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A Listings

public class AstDecorator extends ASTVisitor {
public Model md; public St r ing modelName ; ; //UML2 Model and Model name
public AstDecorator (Model md){ super ( ) ; this .md = md; this . modelName = md. getName ( ) ; }
. . .
public boolean v i s i t ( TypeDeclarat ion node ){ // see L i s t i n g 2
return true ;

}
public boolean v i s i t ( Var iableDeclarat ionFragment node ){ // see L i s t i n g 4
return true ;

}
}

Listing 1: AstDecorator class

public boolean v i s i t ( TypeDeclarat ion node ){
// check f o r c l a s s d e c l a r a t i o n
i f ( ! node . i s I n t e r f a c e ( ) ){ SimpleName className = node . getName ( ) ; // g e t node s imp l e name
Co l l e c t i o n c = UML2Util . findNamedElements ( ( Resource ) md. eResource ( ) ,

modelName+” : : ”+packageName+” : : ”+className . getFul lyQual i f i edName ( ) ) ;
I t e r a t o r i t = c . i t e r a t o r ( ) ; // i t e r a t e on found model e l emen t s i f any
while ( i t . hasNext ( ) ){

i f ( i t instanceof org . e c l i p s e . uml2 . Class ){
org . e c l i p s e . uml2 . Class c l = ( org . e c l i p s e . uml2 . Class ) i t . next ( ) ; // c a s t t o C la s s
Vis i b i l i t yK ind v i s i b i l i t yK i nd = c l . g e tV i s i b i l i t y ( ) ; // g e t UML v i s i b i l i t y
int modi f i e r s = node . g e tMod i f i e r s ( ) ; // g e t AST node mod i f i e r s b i t mask
Modi f i e r . ModifierKeyword keyword = Modi f i e r . ModifierKeyword . fromFlagValue ( mod i f i e r s ) ;

// boo l ean c l a u s e f o r a p p l i c a t i o n c on d i t i o n s
boolean t e s t = ( c l . i sAbs t rac t ( ) & Modi f i e r . i sAbs t rac t ( mod i f i e r s ) ) |

( c l . i s L e a f ( ) & Modi f i e r . i sF i n a l ( mod i f i e r s ) ) |
( keyword . toSt r ing ( ) . conta in s ( v i s i b i l i t yK in d . getName ( ) ) ) ;

i f ( t e s t ){ // code f o r mapping c on s t r u c t i o n }
}

}
}

}

Listing 2: visit(TypeDeclaration node) body

private TypeDeclarat ion ge tC la s sDec la ra t i on (ASTNode node ){
ASTNode tempNode = node . getParent ( ) ;
while ( ! ( tempNode instanceof TypeDeclaration ) ){ tempNode = tempNode . getParent ( ) ; }
return ( TypeDeclarat ion ) tempNode ;

}

Listing 3: getClassDeclaration(ASTNode node) body

public boolean v i s i t ( Var iableDeclarat ionFragment node ){
TypeDeclaration parent = getC la s sDec la ra t i on ( node ) ; // g e t t h e C l a s sDe c l a ra t i o n c on t e x t
i f ( ! parent . i s I n t e r f a c e ( ) ) { // check f o r paren t node to be a c l a s s

St r ing parentName = parent . getName ( ) . getFul lyQual i f i edName ( ) ;
// search f o r t he c l a s s i n s i d e t he UML model

org . e c l i p s e . uml2 . C l a s s i f i e r c l a s s i f i e r ;
Co l l e c t i o n c = UML2Util . findNamedElements(md. eResource ( ) ,

md. getName()+” : : ”+packageName+” : : ”+parentName ) ;
I t e r a t o r i t = c . i t e r a t o r ( ) ;
while ( i t . hasNext ( ) ){

c l a s s i f i e r = ( org . e c l i p s e . uml2 . C l a s s i f i e r ) i t . next ( ) ;
// f i n d UML A t t r i b u t e w i t h same Java F i e l d name

Property a t t r ibu t e = c l a s s i f i e r . g e tAtt r ibute ( node . getName ( ) . getFul lyQual i f i edName ( ) ) ;
// f i n d fragment mod i f i e r s

Fie ldDe c la ra t i o n parentNode = ( F ie ldDec la ra t io n ) node . getParent ( ) ;
int modi f i e r s = parentNode . g e tMod i f i e r s ( ) ;
Mod i f i e r . ModifierKeyword keyword = Modi f i e r . ModifierKeyword . fromFlagValue ( mod i f i e r s ) ;
i f ( a t t r ibu t e != null ){

Vis i b i l i t yK ind a t t r i b u t eV i s i b i l i t y = a t t r i but e . g e t V i s i b i l i t y ( ) ;
// boo l ean c l a u s e f o r t he a p p l i c a t i o n c o nd i t i o n s

boolean t e s t = ( keyword . toSt r ing ( ) . conta in s ( a t t r i b u t e V i s i b i l i t y . getName ( ) ) |
( a t t r i but e . isReadOnly ( ) & Modi f i e r . i s F i n a l ( mod i f i e r s ) ) |
( a t t r i but e . i sLe a f ( ) & Modi f i e r . i s S t a t i c ( mod i f i e r s ) ) ) ;

i f ( t e s t ){ // code f o r mapping c on s t r uc t i o n }
}

}
}
return true ;

}

Listing 4: visit(VariableDeclarationFragment node) body
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Abstract

We present a Domain Specific Visual Language (DSVL) for the definition of metrics
for other DSVLs. The metrics language has been defined using meta-modelling,
and includes some of the more used types of product metrics. The goal is to make
the definition of metrics for a DSVL easy, reducing or eliminating the necessity of
coding. For this purpose, we rely on the use of visual patterns for the specification
of the properties that should be measured in each metric type.

These ideas have been implemented in the AToM3 tool, which allows the definition
of DSVLs by means of meta-modelling. In this way, with the new extension, the
DSVL designer is able to define a metrics suite for a DSVL. Then, an environment
is generated where a number of widgets allow taking actual measures of the defined
metrics on the models. We present some illustrative examples using the hypermedia
design language Labyrinth.

Key words: Domain Specific Visual Languages, Metrics,
Meta-Modelling, Graph Patterns, Code Generation.

1 Introduction

Diagramatic notations are pervasive in many software development activities.
They are used in the planning, analysis and design phases as a means to
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specify, understand and reason about the system to be built. DSVLs are con-
strained diagramatic notations, oriented to a particular application domain.
They provide high-level, powerful primitives, having the potential to increase
the user productivity for the specific modelling task.

Measurement plays a central role in many engineering disciplines, such
as electrical, mechanical and civil engineering [6]. However, traditionally, it
has received little attention in the area of Software Engineering. The kind
of entities that can be measured in this area include processes, resources and
products [6]. In this paper we concentrate in the latter. Product metrics
measure features of software systems (e.g. complexity, cohesion, coupling or
maintainability) in order to control and improve their quality. One of the
factors that may improve the use of metrics in industrial practice is their
support by tools. Moreover, integrating a metrics tool in the early phases of
the development can help to detect defects prior to implementation, saving
time and budget. However, there is a proliferation of notations and tools
that the software engineers use, and adapting and implementing metrics for
them is a costly and time-consuming activity. Our goal is to provide a means
to reduce such cost, by making the customization of metrics for any kind of
DSVL easy (not only in the Software Engineering domain).

In this work, we propose using a DSVL (called Metrics) for the specifica-
tion of a metrics suite for other DSVLs. Metrics has been defined through
a meta-model which contains the main types of metrics we have identified.
These include metrics for global model properties (such as number of cycles
and size), single element features (e.g. methods of a class in object oriented
languages), features of groups of elements (e.g. their similarity or coupling)
and paths (e.g. hierarchies in object oriented languages, navigation paths in
web design languages). The DSVL designer is able to customize these met-
rics by providing a visual pattern with the property to be measured. Visual
patterns are graphical, declarative, user-friendly and intuitive. They have the
advantage of saving the user the necessity of coding the metrics procedure and
learning neither the API of the used tool nor the programming language in
which the tool was coded. In addition, since no coding is required, it can help
to minimize errors and reduce the development time, mainly when dealing
with complex metrics. Nonetheless, the Metrics language also allows creat-
ing new metrics (different from the ones we provide) in a procedural way by
coding in Python. In addition, it is possible to specify threshold values for
the metrics. Thresholds may have an associated action, described either in
Python or using a graph transformation system [13]. In this way, when a
metric reaches one of its threshold values, the user is asked whether he wants
to execute the action. This is useful if the action executes known design pat-
terns or redesigns that improve the quality of the final product. For space
constraints we concentrate only in the metrics aspect of the DSVL and leave
out the discussion on actions.

These ideas have been newly implemented in the AToM3 tool, and are
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illustrated with examples using the Labyrinth DSVL for hypermedia design [4].
The tool also gives support for the execution of metrics and report generation,
without the necessity of coding.

2 A Taxonomy of Product Metrics

In this section we present a classification of the main types of product metrics.
We have defined such a taxonomy by generalising metrics that are devoted
to a specific language, notation or domain (like [2][6][11][15][16]) so that we
provide an abstract metric language that is domain independent. We have
distinguished four types of metrics:

• Model-Oriented metrics allow taking measures of the whole model. These
include for example Mc Cabe’s cyclomatic number (number of cycles), which
is used in software engineering to measure the code complexity of a mod-
ule [11].

• Element-Oriented metrics measure properties of individual elements in the
model. In object oriented systems, these include the number of methods of
a class.

• Group-Oriented metrics measure features of groups of elements in a system.
For example, in object oriented notations they can provide an idea of the
modularity (cohesion) of a system, by measuring the similarity between the
different attributes and methods of classes [15].

• Path-Oriented metrics gather measurements involving paths between ele-
ments of the same type (or any of their subtypes). Thus, a path is made
of instances of a certain type connected through some relation (which in
fact can be a “complex” relation, made of several connected elements). For
example, in web applications, a navigation path joins different pages by
means of hyperlinks. Inheritance-related metrics can also be included here.
In this group we find metrics for measuring the length of the path between
two elements, or to detect start points of paths.

3 The Metrics Domain Specific Visual Language

We have created a DSVL for metrics specification using meta-modelling. The
goal of the language is to be able to adapt to particular DSVLs some general
predefined metrics (or create new ones) in an easy way. Fig. 1 shows its
meta-model.

Abstract class Metric is the base class for all the metrics that the DSVL
designer may create. It has a name, which must be unique. Attribute vari-

ableTypes indicates the domain of the metric (i.e. the types for which the
metric is going to be calculated). For example, if the attribute contains the
name of two types, the metric is calculated for each combination of one in-
stance of the first type and another one of the second, resulting in a matrix.
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If no type is specified, the domain of the metric is the whole model, and a
scalar is obtained as a result. Attribute subtypeMatching specifies whether the
objects in the domain must have exactly the type specified in the previous list
(value false) or also its subtypes are allowed (value true). In addition, relation
dependency allows a metric to use results calculated by others. A constraint
in the meta-model forbids cycles of dependency relations.

+ name: String {keyword}

+ subtypeMatching: Boolean
+ variableTypes: List of String

Metric

+ name: String {kw}

Action

+ order: integer

firing

+ name: String {keyword}
+ description: String
+ condition: Text

Threshold

+ action: GraphGrammar

ActionGG

+ action: Text

ActionText

Pattern

Cyclomatic
Number

NumberOf
Elements

+ variableTypes: None

ModelOriented

cy
cl

e

el
em

en
t

+ calculation: Text

User Defined

Inherited
Elements StartPoints

Distance
Matrix

Path
DepthOf

Connections
Direct

+ variableTypes: String

PathOriented

el
em

en
t

st
ep

1

Related
Elements

+ variableTypes: String

ElementOriented
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la

te
dE

le
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en
t

+ orderType: integer
+ comparison: Enum

{reference,value}

property

Distance

Matrix
Based−Similarity

GroupOriented

0..*

1

1

1

1..* 0..*0..*

0..*

dependency

Fig. 1. Meta-Model for Metrics.

Thresholds can be associated to metrics, and contain a name, a description

and a condition. The latter is a logical expression over metric values. Thresh-
olds may have a number of associated actions that can be fired whenever the
metric makes the threshold condition true. Actions can be described by means
of procedural code (in Phyton), or by means of a graph transformation system.
For space limitations, we leave out the discussion on actions and concentrate
on metrics.

The four categories in our taxonomy of metrics are considered in the meta-
model, all of them inherit from class Metric. Class ModelOriented and its
children implement metrics of the first kind. The domain for the metric is
not a single type of element, but the model itself. That is the reason why
attribute variableTypes is empty. Our language contains two metrics of this
kind. Metric CyclomaticNumber gives the number of cycles in a model. The
user can customize what is considered a cycle by means of a pattern. This
is made of a graph that should be found in the model, and additional graphs
constraining the application of the pattern. We have used a similar approach
to [5] for graph constraints. The structure of patterns is shown in Figure 2 and
discussed in subsection 3.1. Metric NumberOfElements measures the number
of elements of certain type in a model. The elements to measure are given as
a pattern. In this way, we can constraint them (e.g. elements of some type
that are not related to elements of some other type).

96



Guerra

Class ElementOriented corresponds to the second subclassification in our
taxonomy, that is, metrics for properties of single model elements. Therefore,
only one type has to be specified in the domain. Subclass RelatedElements

measures the number of elements of certain kind related to a given one. The
way in which both are related is given as a pattern.

Class GroupOriented corresponds to the third subclassification in our tax-
onomy. We have included just one subclass, DistanceBased-SimilarityMatrix,
which uses the formula for distance presented in [15]. In this way, if two ob-
jects x and y are to be compared, and assume that function b(·) returns the

set of relevant properties for the comparison, function: sim(x, y) = |b(x)∩b(y)|
|b(x)∪b(y)|

gives the similarity between the two elements. The function returns a value
in the [0, 1] range. The lower the value, the less similar the two elements are.
Then, dist(x, y) = 1− sim(x, y) gives the distance between the two elements.
We have generalized this metric to an arbitrary number of elements of dif-
ferent or the same type. For each type, the set of properties to be measured
(function b(·) in the previous formula) has to be specified. This is done with
a pattern for each property and is modelled as a qualified relation between
the subclass and the pattern. Attribute orderType in the relation specifies the
type for which the pattern is given. In addition, the comparison can be made
by reference (i.e. two objects are considered equal if they are the same), or
by value (i.e. two objects are considered equal if all their fields have the same
value).

Class PathOriented represents metrics of the fourth type in the taxonomy.
Our DSVL allows customizing the type of the “node” in the path (attribute
variableTypes), as well as the fundamental step (by means of a pattern). The
result of metric DistanceMatrix is a matrix where each position (i, j) denotes
the distance between element i and j (i.e. the number of steps to reach j

starting from i). Metric StartPoints informs about the elements where a path
begins (these are called base classes for the case of inheritance). Metric Direct-

Connections measures the number of elements than can be directly reached
in one step (e.g. the number of direct children for the case of inheritance).
Metric DepthOfPath obtains the minimum number of steps that are necessary
in order to reach an element starting from a start point (for inheritance this is
the depth of inheritance tree). Finally, metric InheritedElements is applicable
only for inheritance. It measures the number of elements of certain type that
are inherited through an inheritance hierarchy. For example, the number of
methods that a class inherits from its parent classes. In this metric the re-
lation between the element in the path (e.g. class) and the element that is
propagated (e.g. method) has to be given as a pattern.

A fifth metric called UserDefined has been added, so that DSVL designers
can also define other domain specific metrics, different from the previous ones.
The class has a field named calculation that allows the designer to include
Python code to calculate the metric for a value in the domain. This code
is encapsulated in a method that receives as parameters an instance of each
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of the types defined in the inherited field variableTypes and also the hosting
model. The code should return a scalar value as a result of the calculation.
In execution time, the method is consecutively invoked once for each value in
the domain. Note that this is the only metric where the user has to code the
metrics computing procedure, since in the previous ones, the use of patterns
is enough for the customization (and subsequent execution) of the metrics.

3.1 Graph Patterns

premise

+ arguments: List of integer
+ output: List of integer

Pattern

0..*

10..1 positivePattern

applicationConditions
1

+ name: String {keyword}
+ graph: Model

BasicPattern

+ attributeCondition: Text

ApplicationCondition

0..1

0..*

0..1

0..1

consequences

(a)

=
p: P Xi

i
Yi, j

G

x i, j

m
p

x

i q
i, j

=

(b)

Fig. 2. (a) Meta-Model for Patterns and (b) Satisfaction of pattern p by Graph G.

Fig. 2 (a) shows the structure of a pattern. It is made of a positive graph
condition, and a number of extra graph application conditions composed of
a premise graph and a set of consequence graphs. In this way, in order for
a pattern to be satisfied by a graph, an occurrence of the positive graph
condition has to be found. Then, for each application condition, if the premise
graph is found, some of the consequence graphs have to be found as well.
The pattern can also be initialized with a partial match (whose elements are
given by arguments) and produce some output (the elements in the positive
graph condition identified by output). Note how a BasicPattern is made of a
graph condition and an attribute condition, which is expressed in some textual
language (Python in our case).

Formally, a pattern p is defined using a similar approach to [5] for ap-
plication conditions, as p = (P,

∧
i∈I(xi ⇒ ∨j∈Ji

xi,j)), where P is the main
positive pattern (positivePattern in the meta-model) and xi : P → Xi and
xi,j : Xi → Yi,j are injective morphisms (Xi is the premise and Yi,j are the
consequences in the meta-model). In this way, a graph G satisfies p (written
G |= p), if a morphism m : P → G is found. In addition, if an xi is specified
and a morphism pi : Xi → G is found, then some morphism qi,j : Yi,j → G

must also be found, such that both triangles in Fig. 2 (b) commute. Techni-
cally, morphisms m, pi and qi,j are clan-morphisms [1], as instances of abstract
classes may appear in P , Xi and Yi,j, which are mapped into instances of some
class in their inheritance clan. We also require the typing of Yi,j be more con-
crete than the type of Xi, and this one more concrete than the type of P .

There are two special cases in the application conditions. If for some i

no consequence graph is specified, then Xi is a negative application condition
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(NAC). On the other hand, if for some i, P ∼= Xi and xi = id, then Yi,j (for
j ∈ Ji) are positive application conditions.

4 Implementation in AToM3 and Example

AToM3 [9] is a meta-modelling tool for the specification of multi-view DSVLs [7].
It has a generative approach, because starting from a meta-model, it generates
an environment for the defined language. We have recently improved AToM3

by adding a tool for the specification of metrics. In this way, the Metrics

tool enrichs the generated environments for the DSVLs with the possibility
to apply customized metrics to the models. This tool was created in AToM3

itself, using the meta-model in Fig. 1. We completed the meta-model with
some elements for the customization of the DSVL environments where the
metrics are to be executed. In particular, we added an abstract class UIBut-

ton (with a single boolean attribute button) as the parent of classes Metrics

and Actions. Attribute button is set to true if we want to generate a button
to execute the metric or action in the DSVL environment. In addition, class
Metric was provided with two additional attributes. The first one (genReport)
is of type boolean and is selected in order to obtain a report in pdf format
with the metric result. Finally, report is an enumerate type to select whether
the report should show all the obtained values, or only the ones making some
threshold condition true. From the Metrics meta-model, we used AToM3’s
code-generating capabilities to obtain a tool for metrics specification. How-
ever, code had to be added by hand for metrics execution control and pattern
matching.

Labyrinth [4] is a DSVL for the design of hypermedia and web applica-
tions. Hypermedia systems are described as a set of nodes where contents
(text, images, etc.) are placed. Links establish the way in which users can
navigate in the system. Besides, users can assume roles and belong to different
teams from which they receive a set of permissions. Roles and teams can ex-
ecute certain functions if a relation permission exists between them. Besides,
roles and teams can be nested in hierarchical structures by means of relation
composition.

The Ariadne Development Method [3] is based on Labyrinth to build hy-
permedia and web applications. It proposes a set of artefacts or diagrams
that are views of the Labyrinth meta-model. We have used AToM3 to develop
an environment supporting the different Ariadne artefacts. The first step was
defining the meta-model for Labyrinth, as it is shown in the background win-
dow in Fig. 3. More details regarding the definition of this multi-view DSVL
can be found in [7]. Once the meta-model was created, nine different met-
rics were defined using the Metrics tool. This tool can be opened using the
button labelled as “Metrics&Redesign” to the left of the window at the back-
ground. The Metrics tool is shown in the window labelled “2”, and contains
the specification of the metrics.
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Fig. 3. Metrics Definition for the DSVL Labyrinth.

One of the defined metrics is called Subject Similarity, and is of type
DistanceBased-SimilarityMatrix. The dialog box to the right (window 3) cor-
responds to the customization of the attributes for this metric. Attribute
variableTypes contains type lb Subject twice, as we want to compare subjects
to subjects. As it is shown in the meta-model of the main window, a subject
is an abstract class that has two concrete subclasses: lb Role and lb Team.
In fact, we really want to compare subclasses lb Role and lb Team, because
subject is abstract and never appears in any diagram. Therefore, the attribute
subtypeMatching is checked. The list of properties for evaluating the similarity
has also to be customized. In this case we take into account permissions and
attributes for the comparison. This is the reason why the list “properties”

in window 3 contains items Permission and Attribute twice (once for each
subject). Window 4 shows the specification of the property Permission. The
visual pattern that describes such property is shown in windows 5 and 6. In
particular, window 6 shows the positive graph condition of the pattern. It col-
lects the permissions of a certain subject for function execution. In this way,
the access policy can be validated at design time. The argument of this pat-
tern is the element labelled “1” (the subject to be compared) and the output
is element “3” (the function). That is, the subject to be compared is passed
as a partial match to the pattern, and all connected functions are returned as
the result. Nonetheless, these details are hidden to the DSVL designer, who
only has to specify the properties as patterns.

Metrics Number Of Nodes and Number Of Contents in window “2” are cus-
tomizations of the model-oriented metric NumberOfElements. They count the
number of nodes and contents in our system, providing a measure of its size.
In both cases the pattern element simply contains an element of the type to
be counted.

Metric Navigation Paths is used to calculate the length of navigation paths.
It is a customization of metric DistanceMatrix. This metric gives a measure
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of the minimum number of hyperlinks that a user has to navigate from a
page to another one. It is very useful to detect isolated pages or pages of
hard access. For this metric, variableTypes contains a node of information.
Hyperlinks in Labyrinth are expressed with a class named Link connected to
source and target classes Anchor, which in their turn are connected to the
source and target Nodes. This navigation step has been easily expressed with
a pattern, as it is shown in Fig. 4. The argument of the pattern is the element
labelled “1”, as well as the output. That is, the target node of a navigation
step (output) will be the source of the following step (argument). As before,
the implementation details are hidden to the DSVL designer, who only has to
specify the navigation step as a visual pattern, without coding.

Fig. 4. Pattern for the Specificacion of a Step in Metric Navigation Paths.

User defined metrics Stratum and Compactness [2] are oriented to the hy-
permedia domain. The first one is a measure of the linearity of the navigation
path and may take values between 0 and 1. The lower the value, the less lin-
ear is the path. Compactness is a measure of the degree of connectivity of the
navigation graph and also takes values between 0 and 1. The lower the value
the less connected is the graph. Both metrics are based on the calculation
of a distance matrix using the length of the paths between two nodes. This
is the reason of the dependency relations between these two metrics and the
distance matrix Navigation Paths.

Finally, we have defined three metrics that are generalizations of existing
metrics in the object oriented domain. Metric Permission Inh Factor (PIF)
calculates the inherited permission ratio, being an indicator of the reuse. It is
a particularization of metrics Method and Attribute Inheritance Factor (MIF
and AIF respectively) in the object oriented domain [16]. It is the sum of all
the permissions inherited by subjets (roles and teams) divided by the total
number of defined permissions (locals and inherited). We have defined auxil-
iary metrics Subject Inh Permissions and Subject Permissions to calculate the
factors of this division. The first one is a customization of the path-oriented
metric InheritedElements, and the second one of the element-oriented metric
RelatedElements. Then, the PIF metric can be calculated from them using
a couple of dependency relations. For the two auxiliary metrics no button is
generated in the final environment (attribute button is set to false).

Fig. 5 (a) shows the environment generated for Labyrinth from the previous
definition. In the window at the background, the buttons in white allow
the creation of new instances of the Ariadne artefacts. A new artefact is
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(a) Generated Environment (b) Generated Report

Fig. 5. Calculation of Metric Subject Similarity on a Model.

represented as a box in the window canvas, which later can be edited to
include the model. The buttons in grey allow executing the previously defined
metrics on the current models. The execution of a metric on a model generates
a pdf document where the result is shown as a table. For example, Fig. 5 (b)
shows the document obtained after executing metric Subject Similarity on the
model shown in the foreground window to the left. It can be observed that
roles Coordinator and Teacher are quite similar (distance of 0.167) because
they share four functions and one attribute. On the other hand, these two
roles are quite different from role Student. The application designer could use
these results to improve the design by adding a parent role common to both
Coordinator and Teacher, and pulling up the common properties. This could
be done using the actions in our Metrics DSVL. Note also how sometimes (as
in the present case), metrics are not taken on isolated diagrams (which may
only contain partial information), but on a repository model (see [7]), which
contains the union of all the diagrams created by the user.

Fig. 6 shows another sample of metrics execution. To the right it is partially
shown the report generated by the execution of metric Navigation Paths on
the model to the left. The report shows the minimum number of steps to
reach a node from another one. A number of steps equals to -1 indicates that
the second node is not reachable from the first one. Node Services is isolated
since it has a distance -1 from and to any other node.
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(a) A Model (b) Generated Report

Fig. 6. Calculation of Metric Navigation Path on a Model.

5 Conclusions and Future work

In this work, we have presented a taxonomy of product metrics, together
with a DSVL (called Metrics) for specifying metrics for other DSVLs. Our
language makes easy the customization of metrics by means of graph patterns.
We have implemented these concepts in the meta-modelling tool AToM3 and
shown some examples in the hypermedia domain. The example showed how
the use of metrics is especially interesting in the early phases of development in
order to improve the design or detect quality defects prior to implementation.

There are a variety of tools which incorporate functionalities for obtain-
ing metrics. Some of them are for the implementation phase [8], and some
others for the analysis and design phases [14]. Nonetheless, the set of metrics
they provide is usually hard-coded and the possibilities of extension are very
limited. One exception is the SDMetric tool [14], which allows the definition
of metrics for UML using a relational-like language based on XML. Our ap-
proach is more general, as we are not restricted to UML, but we can define
metrics for any DSVL. In addition, our Metrics language is visual, allowing
the customization of metrics in a graphical and declarative way. In the area
of meta-CASE tools, our work is also original. There is a plethora of this kind
of tools (such as GME [10] or MetaEdit+ [12]), but to our knowledge none of
them support the definition of metrics.

The presented meta-model is complete in the sense that it is possible to
define any metric different from the already generalized ones by using the
UserDefined metric. Nonetheless, we are currently working in generalizing
additional metrics, and on their application to the hypermedia domain. We
are also working in general analysis techniques for multi-view DSVLs.
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Abstract

Most recent languages used in the field of computer science (programming lan-
guages, modelling languages, . . . ) are defined by using a grammar-based notation.
Although the definition of a language by metamodels is more convenient in terms
of understandibility, precision and the ability to reuse abstract concepts from other
language definitions, most current textual languages are still missing a complete
metamodel. Unfortunately this implies that modern model-based software develop-
ment tools are not able to process programs written in those languages.

We propose a framework which generates a metamodel for each programming
language defined by a grammar. Moreover the framework is able to create a compiler
which reads programs of the given grammar and produces models which conform
to the generated metamodel. The generation of the metamodel can be adjusted by
a predefined set of annotations which can be written directly into the grammar, so
the generated model is more appropriate for whichever application.

Key words: metamodels, grammars, programming languages,
model transformation

1 Introduction

Model transformations are a key point in the ongoing research on model driven
software engineering. Especially the ability to transform models from different
modelling languages into each other is a crucial technology especially for the
development and use of domain specific languages.

However the majority of today’s programs was not created in a model-
driven context but (more or less) directly written in a textual programming
language. Since those legacy programming languages lack a proper meta-
model, programs written in such programming languages can not be processed
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by model-driven software tools. This gap could be filled by automatically gen-
erated metamodels from grammars since most textual languages are defined
by grammars. Once a metamodel for a textual language is defined, all pro-
grams written in this language can be treated as models (which are instances
of the language’s metamodel). The concrete transformation from programs
to models is more complicated, but the main difficulty of the whole approach
lies in the generation of a proper metamodel.

Various applications in the field of model-driven software development
would benefit from the ability to treat grammar-based languages as metamod-
els and programs as models. For instance software reengineering and recon-
struction would become significantly easier if the affected programs could be
processed by visual modelling tools. The OMG (Object Management Group)
defined the term architecture driven modernization (ADM [7]) for exactly this
task. A similar but different application is the development and use of textual
domain-specific languages, which would be the opposite approach to the one
described in [6].

In this paper, we will present a framework which is able (i) to gener-
ate metamodels from grammars and (ii) to transform programs into models.
Moreover, we present a qualitative characterization of the generated meta-
models in order to facilitate further model transformation/refinement steps.

The rest of the paper is structured as follows. After this introduction we
present some related works. In section 3, we define a measurement of quality
which is needed to understand the proposed framework described in section 4.
Section 5 describes our current implementation, while section 6 summarizes
the paper.

2 Related Work

There are a couple of papers dealing with the connection between grammars
and metamodels. A rather formal approach was taken in [1]. In this paper the
authors define a relation between grammars and metamodels and describe a
mechanism to convert instances from both concepts into each other. Unfortu-
nately, the paper is restricted to the metamodel (M2) level. This implies that
the transformation between concrete programs and models (instances of gram-
mars and metamodels) is not handled. Moreover the generated metamodels
are rather “flat” due to the fact that they are just different representations of
the grammar rules (we will discuss this kind of “quality” of a metamodel in
details in section 3).

The solution first described in [10] (and later in [2]) goes further. In this
paper the author describes the generation of a metamodel for the ITU-T
language SDL [3]. His approach was to generate the metamodel in two steps.
A very simple metamodel was generated fully automatically from the grammar
and then transformed in a number of manual steps until the metamodel had
become a metamodel that was considered sufficient. However, this approach
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has two drawbacks: (i) these model transformations are not generic as they
are only able to generate the metamodel of SDL and (ii) the model level (M1)
is still not handled.

A relation between grammars and metamodels on metamodel and model
level (M2 and M1) is discussed in [12]. The authors of the paper propose a
framework which also works in two steps: model generation and model refine-
ment. Moreover they propose the automatic generation of a model generator
which produces models from programs. The proposed framework looks very
similar to the one proposed by us but there are differences in the details. They
also propose the automatic generation of simple metamodels which will be
improved in later model transformations. However we have different opinions
about when to solve which specific task and where to annotate the additional
information needed to improve the metamodel. While they rely only on model
transformation we start to improve our first metamodel before it is even gen-
erated. Moreover they propose to add the additional information into the
metamodel created in the first step while we do not want to change interme-
diate models since they will be overwritten if we start the whole generation
process again (e. g. if there is a slightly change in the underlying grammar).
We propose to add all additional information into the grammar instead.

3 A characterization of metamodel quality

3.1 A measurement of quality

Before we start describing our proposed framework we want to introduce a
measurement of quality of metamodels. This is necessary to understand vari-
ous decisions made in the development of our framework.

As presented in [1], [2] and [12] it is easy to define generation rules, which
produce a valid metamodel for a given grammar. Most of those ad hoc algo-
rithms:

(i) generate classes for each grammar symbol (metasymbol and terminal)

(ii) introduce additional classes for occuring sequences, alternatives, optional
parts and recurrences

(iii) connect all generated classes according to the grammar rules (by using
aggregations, associations and/or generalizations)

In figure 1 a sample grammar for a simple language is shown. Figure 2
shows a metamodel which is created by an ad hoc algorithm.

Metamodels generated by such simple algorithms are not in principle bad
or useless. It mainly depends on what the metamodels shall be used for.

Whenever you can define an application for your metamodel, you instantly
get a measurement of quality. This measurement is defined rather pragmati-
cally: the more appropriately the metamodel satisfies your needs, the higher
quality it has. This implies that there is no global measurement of quality but
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program: (vardefinition | assignment)∗
vardefinition: type IDENT !SEMICOLON
type: (INT | FLOAT)
assignment: IDENT !BECOMES expression !SEMICOLON
expression: (IDENT | NUMBER) (PLUS expression)?

Fig. 1. A sample grammar describing a very simple programming language (the ex-
clamation marks will be explained in section 4.1 as they are used by our framework)

Programm

type

variabledefinition assignment

expression

SEMICOLON

FLOAT

BECOMES

NUMBER

PLUS

REP1

ALT1

SEQ1

ALT2

SEQ2

SEQ3

ALT3 OPT1

SEQ4

IDENT

INT

0..*

0..1

Fig. 2. Metamodel for the example grammar generated by an ad hoc algorithm

many local ones.

When we talk about higher or lower quality metamodels in this paper we
consider the application mentioned in the introduction. We are especially
interested in metamodels whose instances (i. e., models) can be easily trans-
formed into other models which are instances of other metamodels.

3.2 A high quality metamodel

A metamodel suitable for our needs has to fulfill different requirements. First
of all it has to be as abstract as possible (without losing any semantic detail
of course).

This implies that it has to represent the semantics of the language and
not the syntax. Therefore it is a good idea to start with an abstract grammar
and not with a concrete one (as done in [10]). When no abstract grammar
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program

variable assignment

type

float int

expression

addexpression

number

variableaccess

2

+target
0..*

0..*

Fig. 3. A higher quality metamodel

is given (as in most textual languages) it is useful to create one by stripping
all terminals from the concrete grammar that are only needed for the con-
crete syntax (e. g. semicolons as statement separators are only needed in the
concrete syntax and can therefore be deleted when generating the abstract
grammar).

Moreover all constructs which only appear in the metamodel because of the
concrete syntax of the grammar as defined by EBNF should be deleted. This
means all helper classes for options, repetitions, sequences and alternatives.

Another concept from grammars no longer needed in metamodels are iden-
tifiers. Identifiers are only used in programs to reference other parts of the
program, but in metamodelling we do not need this helper construct. As-
sociations between referring and referred objects should be used instead. A
by-product of this approach is that the models become independent from a
concrete identifier notation meaning that if we transform between models of
different programming languages, the compatibility of identifiers in the con-
crete syntax does not have to be checked.

The last and most complicated requirement on a good metamodel for the
applications mentioned in the introduction is the efficient use of abstract con-
cepts. Abstract concepts are concepts which appear in different languages
(e. g. the concept namespace appears as namespace in C++, as implication
of package in Java and so on). It is very convenient to use abstract concepts
since subsequent model transformations between different languages become a
lot easier if you can simply rely on the mapping between the related abstract
concepts of each language.

Figure 3 shows a metamodel which has a much higher quality according
to the mentioned requirements than the metamodel of figure 2.

4 Description of the proposed framework

We propose a framework which generates metamodels and models from given
grammars and programs, respectively. This generation is performed in two
steps. The first step consists of the production of rather simple metamodels
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EBNF

grammar

program

parent
compiler

child
compiler

MOF

simple
metamodel

model

metamodel
transformator

model
transformator

good
metamodel

model

model generation part model transformation part

Fig. 4. Overview of the proposed framework

and conforming models using traditional compilers with a connection to a
MOF repository. Since the generated models are low quality ones (as described
in the previous section) there is a second step which transforms the low quality
metamodel into a more appropriate one. Figure 4 gives an overview of the
proposed toolchain.

4.1 The model generation part

The compiler part itself consists of two compilers called the parent compiler
and the child compiler . The parent compiler reads a grammar written in
EBNF and produces a metamodel by using a MOF repository. The EBNF
grammar can contain some annotations influencing the metamodel generation.
For instance you can mark all terminals which only belong to the concrete
syntax but not to the abstract syntax (in our current implementation the
exclamation mark is used as shown in figure 1), so they will not become an
object in the generated metamodel.

The algorithm for the metamodel generation is a modified and corrected
variant of [2]. It consists of three functions shown in figure 5 and 6 (written in
pseudocode). The algorithm is a kind of improved ad hoc algorithm: classes
are created for every symbol which is not marked for deletion. Then the
classes are connected as defined by the grammar, but obviously unnecessary
grammar-related constructs are not even created.

Figure 7 shows the metamodel which has been generated by the algorithm
presented in figure 5. The difference between our algorithm and the ad hoc
algorithms can be seen if figure 2 is used for comparison.

The parent compiler also generates the source code of the child compiler
which is able to parse programs written in the language described by the
given grammar. As a consequence a separate child compiler is generated for
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function createMetamodel()

for each grammar symbol X
if X is not marked for deletion

create a class named X
for each grammar rule A → B

if B consists of only one symbol

connect(A, B, "association")

else if B is an alternative (B = B1|B2| . . . |Bn)

for each Bi

connect(A, subexpression(Bi), "generalization")

else if B is a sequence (B = B1B2 . . . Bn)

for each Bi

if Bi is a repetition (Bi = (B′
i)

+)

connect(A, subexpression(B′
i), "associationMult")

else if Bi is an option (Bi = (B′
i)?)

connect(A, subexpression(B′
i), "associationOpt")

else if Bi is an optional repetition (Bi = (B′
i)∗)

connect(A, subexpression(B′
i), "associationOptMult")

else

connect(A, subexpression(Bi), "association")

else if B is a repetition (B = (B′)∗)
connect(A, subexpression(B′), "associationMult")

end function

function subexpression(expression B)

if B consists of only one symbol

return B
else if B is an alternative (B = B1|B2| . . . |Bn)

create a class with a unique name C
for each Bi

connect(C, subexpression(Bi), "generalization")

return C
else if B is a sequence (B = B1B2 . . . Bn)

create a class with a unique name C
for each Bi

if Bi is a repetition (Bi = (B′
i)

+)

connect(C, subexpression(B′
i), "associationMult")

else if Bi is an option (Bi = (B′
i)?)

connect(C, subexpression(B′
i), "associationOpt")

else if Bi is an optional repetition (Bi = (B′
i)∗)

connect(C, subexpression(B′
i), "associationOptMult")

else

connect(C, subexpression(Bi), "association")

return C
else if B is a repetition (B = (B′)+)

create a class with a unique name C
connect(C, subexpression(B′), "associationMult")

return C
else if B is an option (B = (B′)?)

create a class with a unique name C
connect(C, subexpression(B′), "associationOpt")

return C
else if B is a optional repetition (B = (B′)∗)

create a class with a unique name C
connect(C, subexpression(B′), "associationOptMult")

return C
end function

Fig. 5. Our algorithm for the generation of the first (low quality) metamodel (Part 1)

each programming language. Moreover the child compiler produces models
conforming to the metamodel produced by the parent compiler .
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function connect(expression A, expression B, connectionType T)

if T is "association"

create an association between A and B
else if T is "generalization"

create a generalization between A and B
else if T is "associationMult"

create a association between A and B with the multiplicity 1...n

else if T is "associationOpt"

create a association between A and B with the multiplicity 0...1

else if T is "associationOptMult"

create a association between A and B with the multiplicity 0...n

end function

Fig. 6. Our algorithm for the generation of the first (low quality) metamodel (Part 2)

program

vardefinition assignment

type

IDENTINTFLOAT

expression

NUMBER PLUS

ALT1 SEQ1

ALT2

0..*

2

0..1

Fig. 7. Metamodel for the example grammar generated by our algorithm

4.2 The model transformation part

Once we have derived a simple metamodel by using the algorithm defined in
the previous section, we can start improving it (to gain a metamodel with
a higher quality for our purpose). Therefore we propose the introduction of
additional annotations written in the grammar read by the parent compiler .

For instance identifiers in the metamodel can be deleted if we mark every
definition and every use of an identifier with special annotations. Additional
annotations can be used for the purpose of renaming classes in the metamodel.

We are still investigating how the introduction of abstract concepts can be
expressed by grammar annotations which is by far the most complicate model
transformation in our work.

The inclusion of annotations into the grammar file is convenient for the
user since he has only to cope with one source file to control the whole model
generation process. Moreover later changes in the grammar can be done quite
easily.
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5 Implementation

We are currently working on a prototype of the proposed toolchain. We al-
ready implemented a working parent compiler producing simple metamodels
and corresponding child compilers .

One of our implementation goals was to rely as much on standards and
standardized tools as possible, so that our project results can be easily adapted
by others.

The parent compiler is written with the help of the widely-used compiler
generator ANTLR [8], but the source code is easily portable to any other
LL(1)-parser generator (e. g. JavaCC [4]). The child compiler is also defined
by ANTLR grammar specifications generated by the parent compiler .

The repository used by the parent and child compilers for model generation
and later for model transformation is a MOF 2 repository called A MOF 2.0 for
Java [11,9]. Since the only interface used to communicate with the repository
is JMI [5], the repository can be exchanged with any other JMI-conforming
MOF 2 repository without any further changes needed in our implementation.

6 Conclusion

The proposed framework is able to generate metamodels for every given gram-
mar. The generated metamodels are not just other representations of the
grammar, but metamodels which only contain the semantic information of
the programming language and are therefore a good starting point for further
model transformations.

Moreover our framework is able to automatically produce compilers which
read programs written in the given languages and produce models according
to the generated metamodels.

Once our implementation is finished we have a good base to migrate pro-
grams written in many textual languages into the field of (meta-)modelling.
This implies that we can use all available model-based tools for software de-
velopment, reengineering, modernization, etc. on programs written in legacy
languages, which will make the mentioned applications much more under-
standable, easier and less error-prone.
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Abstract

The current paper presents a novel approach to implement a graph transformation engine as
an EJB3-specific plugin by using EJB QL queries for pattern matching. The essence of the
approach is to create an EJB QL query for the precondition of each graph transformation
rule. Pattern matching and updating phases of a rule application are implemented in a
public method of a stateless session bean by executing the prepared EJB QL query and by
manipulating persistent objects, respectively.

Key words: graph transformation, EJB 3.0, EJB QL queries.

1 Introduction

Nowadays, the immense role of model transformation concepts and tools is un-
questionable for the success of model-driven systems development. Model trans-
formation approaches should support cost and time efficient specification, design,
execution, validation and maintenance of manipulations within and between mod-
eling languages. As different phases of transformation design have conflicting re-
quirements, their optimal solution also necessitates different approaches.

In a recent paper [3], we proposed to separate the design of model transfor-
mations from theirexecutionby generating stand-alone plugins for the EJB 3.0
platform from platform-independent specifications of transformations given by a
combination of graph transformation and abstract state machine rules.

Based on the observations of several studies [10,3,14], it may be stated that
(i) graph pattern matching is the critical part in graph transformation, and (ii)

1 This work was partially supported by the SENSORIA European project (IST-3-016004).
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very large models can only be handled by EJB3-based plugins with an underly-
ing database as pure Java solutions run out of memory. In the paper, we examine
the generation of EJB3-based graph transformation plugins.

In addition to handle very large models, EJB3-based graph transformation plu-
gins have further advantages including (i) the transparent access to system models
via a traditional Java interface by hiding the underlying relational database where
these models are physically stored, (ii) the atomic execution of graph transforma-
tion rules by using the transaction handling mechanism of the application server,
(iii) the integration of graph transformation into existing business applications via
a standard business logic interface defined by EJB3.

The current implementation of EJB3-based graph transformation plugins (also
reported in [3]) performs the computation intensive graph pattern matching on
business-level objects. This solution suffers from unnecessary memory handling
operations as all objects being traversed must be loaded into the application server
at least once, even if the pattern has only a couple of successful matchings.

Our current aim is to improve the performance of pattern matching in graph
transformation plugins by using the query support of EJB3. In this case, queries
are executed in the underlying relational database, and only those business-level
objects are loaded into the application server, which effectively participate in at
least one successful matching.

EJB3 provides two declarative languages (the Standard Query Language (SQL)
[12] and the EJB Query Language (EJB QL) [11]) for specifying queries. Since the
underlying relational databases typically use different dialects of SQL, an approach
that uses database dependent SQL queries for describing graph transformation like
the one presented in [13] would not be portable.

In order to provide a portable solution, the current paper proposes a novel ap-
proach to implement an EJB3-specific graph transformation plugin by using EJB
QL queries for pattern matching. The essence of the approach is to create an EJB
QL query for the precondition of each graph transformation rule by usingsearch
plans[17], which have been calculated by some sophisticated algorithms [17,6,16]
for theLHS andNAC patterns of the rule in a preprocessing phase. Pattern match-
ing and updating phases of a rule application are implemented in a public method
of a stateless session bean by executing the prepared query and by manipulating
persistent objects, respectively.

In contrast to [3], the main novelty of this paper isthe usage of database inde-
pendent EJB QL queries for pattern matching. Consequently, in the current paper,
we only focus on graph pattern matching techniques (as in Sec.4.2) and completely
omit the handling of the updating phase.

The main advantages of the proposed approach include (i) the ability to handle
large models in contrast to pure in-memory solutions; (ii) portability and database
independence contrary to pure SQL-based approaches; and (iii) reduced memory
consumption in the application server compared to other EJB3-based solutions.

The rest of the paper is structured as follows. Section2 provides a brief intro-
duction to models and metamodels, graph transformation and the main concepts of

116



Varró

search plans. Sec.3 gives an overview on the EJB3 platform and on the syntax of
its query language. In Sec.4, which is the main part of the paper, we sketch how to
encode preconditions of graph transformation rules into EJB QL queries. Finally,
some related work is reviewed in Sec.5, while Sec.6 concludes our paper.

2 Model manipulation by graph transformation

We first briefly introduce the main notions of metamodels and models, and then
show how these models can be manipulated by using graph transformation.

2.1 Metamodels and models

In order to present the concepts of models, metamodels and transformations, a
standard object-relational mapping (see e.g. [12]) will be used throughout this paper
as a running example, which generates a relational database schema from a UML
class diagram.

Fig. 1. An extended metamodel for the object-relational mapping

Themetamodeldescribes the abstract syntax of a modeling language, which can
be formally represented by a type graph. The metamodels of UML class diagrams
and relational database schemas (following the CWM standard [9]) are depicted in
Fig. 1. Nodes (e.g.Schema, Table) of the type graph are calledclasses. Associ-
ations like EO, CF, SFT, KRF andUF define connections between classes. Both
ends of an association may have amultiplicity constraint attached to them, which
declares the number of objects that, at run-time, may participate in an association.
We consider the most typical multiplicity constraints, which are (i) the at most
one (denoted by arrows or diamonds), and (ii) the arbitrary (denoted by line ends
without arrows and diamonds). Furthermore, we use one-to-one reference edges
(denoted by bidirectional dashed lines in instance models) connecting source and
target model nodes.Inheritancemay be defined between classes, which means that
the inherited class has all the properties its parent has, but it may specify further
associations. Note that the CWM standard derives database notions like tables,
columns, etc. from UML notions by inheritance (see Fig.1). Finally, we assume
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without the loss of generality that multiple inheritance is not allowed and both ends
of associations are navigable.

Theinstance model(or, formally, an instance graph) describes concrete systems
defined in a modeling language and it is a well-formed instance of the metamodel.
Nodes and edges are calledobjectsand links, respectively. Objects and links are
the instances of metamodel level classes and associations, respectively. Inheritance
in the instance model imposes that instances of the subclass can be used in every
situation, where instances of the superclass are required.

Example 2.1 A well-formed instance model of this domain (going to be shown in
Fig. 2(a)) has a single packagep that contains two classes (c1 andc2) and the asso-
ciationa. Associationa connects classc1 to c2 via association endsae1 andae2,
respectively. Packagep is mapped to a corresponding schemas in the database.
Additionally, a table with a single primary key column has already been added to
schemas for each content (i.e.,c1, c2, anda) of packagep.

2.2 Graph transformation

Graph transformation [4] provides a pattern and rule based manipulation of graph
models. Each rule application transforms a graph by replacing a part of it by an-
other graph.

A graph transformation ruler = (LHS, RHS, NAC) contains a left–hand side
graph patternLHS, a right–hand side graph patternRHS, and negative application
condition graph patternNAC [7]. TheLHS and theNAC patterns are together called
the preconditionPRE.

In the paper, we use the graphical representation initially introduced in [5]
where the union of these graphs is presented. Elements to be deleted are marked
by thedel keyword, elements to be created are labelled by thenew, while elements
in theNAC graph are denoted by theneg keyword.

Theapplicationof r to aninstance modelM replaces a matching of theLHS in
M by an image of theRHS. This is performed by (i) finding a matching ofLHS
in M (by graph pattern matching), (ii) checking the negative application conditions
NAC (which prohibit the presence of certain objects and links) (iii) removing a part
of the modelM that can be mapped toLHS but not toRHS yielding the context
model, and (iv) gluing the context model with an image of theRHS by adding new
objects and links (that can be mapped to theRHS but not to theLHS) obtaining the
derived modelM′. A graph transformationis a sequence of rule applications from
an initial modelMI .

Example 2.2 A single graph transformation rule (AssocEndRule in Fig. 2(b)) is
selected as an example for the paper, which handles association ends.

The rule is applicable, if a tableTc with a primary key columnCc already
exists for the classC representing the type of the association endAE, and moreover,
there is a database tableTrel that corresponds to the associationRel whose end
is currently processed. The application of the rule creates a new column, which
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(a) A sample instance model (b) A sample graph transformation rule

Fig. 2. A sample instance model and graph transformation rule

will refer to the already matched columnCc as a foreign key constraint. Graph
transformation rules of the entire object relational mapping are presented in [15].

2.3 Search plans

Informally, a search plan defines a sequence of pattern nodes, which can be used
at run-time during pattern matching to control the order of traversal for the objects
of the instance model. At first, a search graph is constructed by using theLHS and
NAC patterns of the rule. This step is followed by the execution of a sophisticated
algorithm (e.g. [17,16]) that generates an optimal search plan on the search graph.

A search graphis a directed graph with the following structure. (i) Each node
of the pattern is mapped to apattern node(denoted by a solid circle) in the search
graph. (ii) A center node(denoted by a hollow circle) is also added to the graph.
(iii) Iteration edgesare directed edges connecting the center node to every pattern
nodes. The selection of one such edge means an iteration over all objects having
the same type as the pattern node being located at the target end of the edge. (iv)
Each navigable direction of each pattern edge is mapped to anavigation edgein
the search graph.3 The selection of one such edge corresponds to a navigation
along the pattern edge in the given direction. If the navigation target of the pattern
edge has an at-most-one (arbitrary) multiplicity constraint, then the corresponding
navigation edge is referred to ato-one (to-many) navigation edge, and it is denoted
by an arrow with single (double) arrowhead(s).

Starting nodes(denoted by dashed boxes) mark the center node and the set
of pattern nodes that are already matched when the pattern matching starts. The
remaining (initially unmatched) pattern nodes are calledtraversed nodesas they
are processed during pattern matching, when appropriate objects are to be matched.

A search planis a traversal of such spanning trees of the search graph that are
rooted at some starting nodes. A traversal defines a sequence in which edges are

3 Note that for each pattern edge, a pair of navigation edges having their end nodes connected in
both directions is created as the pattern edge is navigable in both directions.
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traversed. The position of a given edge in this sequence is marked by increasing
integers writtenon the thick edges of spanning trees as in the left part of Fig.3. In
the following, we suppose that a search plan is available for eachLHS andNAC.

Example 2.3 Search plans forLHS andNAC patterns of theAssocEndRule are
shown in the upper and lower left part of Fig.3, respectively. As matchings for
NAC are searched after pattern matching forLHS is completed, shared nodes (i.e.,
AE) of LHS andNAC can be considered starting nodes in the search graph ofNAC.

3 Enterprise Java Beans 3.0

The Java 2 Enterprise Edition (J2EE) platform defines a layered architecture for
scalable, distributed application development including several Java standards and
APIs. An enterprise application being developed on the J2EE platform consists of
Enterprise Java Beans (EJBs) as its most fundamental building blocks representing
business data and functionality. An enterprise application is deployed to and exe-
cuted by an application server, which provides many high-level services (such as
transactions, security, persistence, etc.) beyond the execution of applications.

The two types of EJBs used in the current paper are the following.

• Entity beansare persistent objects representing business data, which are kept
synchronized with an underlying relational database by means of an object-
relational mapping. Entity beans are uniquely identified by their primary key
and they can be in relationship with other entity beans referring to each other by
direct references (many-to-one or one-to-one relationships) or typed collections
(many-to-many or one-to-many relationships).

• Session beansimplement the business functionality of the application. They can
be considered as simple collections of business methods. As our approach does
not require any transformation related information to be stored, we use stateless
session beans.

EJB Query Language.
An application server has an entity manager unit, which provides operations

(i) for creating and removing persistent entity instances, (ii) for finding entities by
their primary key, and (iii) for querying over entities.

Queries can be specified in the declarative, object-oriented EJB Query Lan-
guage (EJB QL) [11]. Due to space limitations, only the structure of theSELECT

statement is presented in the current paper, which has the following structure.
SELECT select clause
FROMfrom clause
WHEREwhere clause

The SELECT clausedenotes the result of the query by a comma separated list
of identification variables. Anidentification variableis a variable that can refer to
a single instance of a particular entity bean class.
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The FROM clausedesignates the domain of the wholeSELECT statement by a
comma separated list ofidentification variable declarationsof the formtype AS
new var. Thetype of an identification variablenew var can be defined explicitly
by using the name of an entity bean class, or implicitly by navigating along links
of type assoc from an already declared variableold var. In the latter case, the
target class ofassoc defines the type of identification variablenew var. Navigation
is defined by path expressionsold var.assoc andIN( old var.assoc) , if the
navigation returns a single value and a collection, respectively.

The optionalWHERE clauseis a Boolean expression, and it filters out those
results of the query that do not satisfy this expression. ABoolean expressionis the
conjunction (logicalAND) of Boolean valued factors, which may test (i) the non-
existence of results for a well-formed subquery (NOT EXISTS (subquery) ), (ii)
the equality of simple factors (sf1=sf2), and the (iii) inequality of simple factors
(sf1<>sf2). A simple factorcan be a constant, or a navigation operation (denoted
by var.id ) to access the identifierid of an identification variablevar.

4 Graph transformation on EJB3 platform

Now we discuss how to generate an EJB3-specific graph transformation plugin,
which follows the single pushout [10] approach with injective matchings.

4.1 Mapping metamodels and models to EJB3 entity bean classes and instances

Based on the metamodel, we generate entity bean classes by using the standard
object-relational mapping of [11], which can be summarized as follows. (i) A class
of the metamodel is mapped to an entity bean class. (ii) The inheritance relations
between classes are maintained accordingly. (iii) Each association end with an at
most one (arbitrary) multiplicity constraint is mapped to a Java attribute (collection)
and two corresponding property accessor (i.e., a getter and a setter) methods in the
entity bean class that represents the metamodel class being located at the opposite
end of the association. (iv) A Java attributeid representing the unique identifier
and its two corresponding property accessor methods are added to each entity bean
class that does not have a superclass.

Example 4.1 The skeleton of the entity bean class representing aStructuralFeature
is as follows.
@Entity
public class StructuralFeature extends Feature {

private Classifier sft;
private Collection<UniqueKey> uf = new ArrayList<UniqueKey>();
private Collection<KeyRelationship> krf = new ArrayList<KeyRelationship>();

@ManyToOne
public Classifier getSFT() { return sft; }
public void setSFT(Classifier sft) { this.sft = sft; }

@ManyToMany(mappedBy="uf")
public Collection<UniqueKey> getUF() { return uf; }
public void setUF(Collection<UniqueKey> uf) { this.uf = uf; }
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@ManyToMany(mappedBy="krf")
public Collection<KeyRelationship> getKRF() { return krf; }
public void setKRF(Collection<KeyRelationship> krf) { this.krf = krf; }

}

As StructuralFeature is a subclass ofFeature, the identifier attributeid has not
been created. According to the metamodel of Fig.1, the StructuralFeature class
has three incident edges. Consequently, the generated code has three attributes and
six accessor methods.

Instance models representing the system under design are stored in an underly-
ing database of the application server. By using entity beans, objects of the instance
model can be created, accessed and manipulated exactly the same way as traditional
(plain old) Java objects with the single exception that these objects have to be ex-
plicitly persisted by calling thepersist() method of the entity manager.

4.2 Graph pattern matching on EJB platform

By using search plans ofLHS and embeddedNAC patterns, we construct and exe-
cute a singleSELECTEJB QL query that calculates and retrieves all the successful
matchings of the precondition of a rule.

The general form of the query is as follows:

SELECT node1, ..., nodeN

FROMtraversed nodes
WHEREtype checking constraints AND check edge constraints

AND injectivity constraints AND NAC constraints

A traversed nodeis an identification variable being declared in theFROM clause
of the EJB QL query, which represents a pattern node being processed during the
traversal of the search plan.

If a traversed node is reached by navigation in theFROM clause of an EJB QL
query, then the type of this traversed node may be an ancestor of the type prescribed
by the pattern node itself. This yields a situation where the traversed node possibly
has a larger set of matching objects than it is allowed by the type restriction set up
by the pattern node. In order to resolve this situation, an additional traversed node
is declared for representing the same pattern node and atype checking constraintis
defined to narrow the set of matching objects for this pattern node.

Traversed nodes declarations and type checking constraints are generated dur-
ing search plan traversal, which processes search plan edges in increasing order.

Processing iteration edges.If an iteration edge with a target nodetrg is being
processed, then an expressiontypetrg AS trg is added to the end of theFROM
clause wheretypetrg is the type of the pattern nodetrg.

Processing to-one navigation edges.If a to-one navigation edge of typeassoc
connecting nodesrc to trg is being processed, then expressionssrc.assoc AS
trg sup andtypetrg AS trg are appended to the end of theFROMclause, and a
subformulatrg sup.id = trg.id is also added as a type checking constraint.
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Processing to-many navigation edges.If a to-many navigation edge of typeas-
soc connecting nodesrc to trg is being processed, then termsIN( src.assoc)
AS trg sup , andtypetrg AS trg are appended to theFROMclause, and a sub-
formulatrg sup.id = trg.id is also added as a type checking constraint.

An edge checking constraintexpresses a restriction, which is caused by a pat-
tern edge that has not been processed at all during the traversal of the search
plan. For each pair of unnumbered navigation edges connecting nodessrc and
trg in both directions, we append a subformulasrc.assoc.id= trg.id or trg
MEMBER OFsrc.assoc to theWHEREcondition by using a logicalAND oper-
ator for affixing, if src.assoc represents a to-one or a to-many navigation edge,
respectively.

Injectivity constraintsare defined for such pairs of pattern nodes where one
member has a type that conforms to a supertype of the other. For each such pair
nodei andnodej, we add a subformula of the formnodei.id <> nodej.id .

NAC constraintsexpress restrictions formulated byNAC patterns that are em-
bedded into the pattern being processed. For each embeddedNAC pattern, we add
a constraint of the formNOT EXISTS (subquery) , wheresubquery is the EJB
QL query that is going to be generated for the embeddedNAC pattern. Note that
theNOT EXISTSconstraint will be evaluated to true if and only if the subquery,
which would list the successful matchings of theNAC pattern has no rows.

Example 4.2 To continue our running example, we present theSELECTstatement
(right part of Fig.3) that is generated for the search plans of theLHS andNAC
pattern of theAssocEndRule (as depicted in the upper and lower left corner of
Fig. 3, respectively).

AE

C Rel

TC TRel

PC

CC

1

ae.sft

4

c.sft ae.cf
2

rel.cf

c.ref

5tc.ref rel.ref
3

trel.ref

tc.cf

7

cc.cf

tc.eo6

pc.eo
cc.uf

pc.uf

AE

F

ae.ref

1

f.ref

LHS

NAC

1 SELECT ae,rel,trel,c,tc,pc,cc
2 FROM AssocEnd AS ae, -- 1 (iter)
3 ae.cf AS rel_sup, Association AS rel,-- 2 (one)
4 rel.ref AS trel_sup, Table AS trel, -- 3 (one)
5 ae.sft AS c_sup, Class AS c, -- 4 (one)
6 c.ref AS tc_sup, Table AS tc, -- 5 (one)
7 IN(tc.eo) AS pc_sup, PKey AS pc, -- 6 (many)
8 IN(tc.cf) AS cc_sup, Column AS cc -- 7 (many)
9 WHERE -- type checking constraints
10 rel_sup.id=rel.id AND trel_sup.id=trel.id
11 AND c_sup.id=c.id AND tc_sup.id=tc.id
12 AND pc_sup.id=pc.id AND cc_sup.id=cc.id
13 -- edge checking constraint
14 -- (unprocessed edges between cc and pc)
15 AND cc MEMBER OF pc.uf
16 -- injectivity constraints
17 AND c.id<>rel.id AND c.id<>tc.id
18 AND c.id<>trel.id AND tc.id<>trel.id
19 -- NAC constraint
20 AND NOT EXISTS (
21 SELECT ae,f
22 FROM ae.ref AS f_sup, FKey AS f -- 1 (one)
23 WHERE f_sup.id=f.id
24 )

Fig. 3. Search plans generated for theLHS and theNAC of AssocEndRule and the cor-
responding EJB QL query
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Lines 1–12 of the query are generated during the traversal of the search plan of
LHS, when its edges are processed in increasing order as shown by the comments
at the ends of lines. (Expressions in parentheses denote the search plan edge pro-
cessing method being used.) As neither edges betweenCc andPc are processed by
the traversal, a corresponding edge checking constraint (lines 13–15) is added to the
query. Metamodel classesAssociation andTable are subclasses of classClass, so
C cannot be mapped to the same object as associationRel and tablesTc andTRel,
and moreover, matchings for tablesTc andTRel must also differ as expressed by
lines 16–18. The query for theNAC pattern (lines 19–24) is processed similarly
with the single exception thatAE now counts as a starting node as a matching for
nodeAE has already been found.

On the implementation level, we map each graph transformation rule to a public
method of the stateless session bean representing the whole graph transformation
system. One such method first executes the prepared EJB QL query, then retrieves
objects and links needed in the updating phase from the result list, and finally, it
manipulates persistent objects. The handling of the updating phase is not mentioned
in the current paper as we use the technique presented in [3].

Due to the similarity of the syntax and semantics of SQL and EJB QL queries,
the proof for the correctness of the code generation algorithm would be similar to
the one presented in [13]. The termination of the algorithm is guaranteed by the
finiteness of nodes and edges in the precondition of graph transformation rules.

5 Related Work

Search plans are a widely used technique tocontrol the order of traversal for the ob-
jects of instance modelsin algorithms that perform local search for pattern matching
meaning that a partial matching is extended step-by-step by neighbouring objects
and links. Here we shortly review the four most advanced approaches usinglocal
search with search plans.

• Fujaba [8] has a token graph based search plan definition [6], which uses a static
model for defining the costs of basic operations (i.e., tokens). The optimization
of search plans is guided by several well-established rules of thumb.

• PROGRES [17] uses a very sophisticated cost model for defining costs of basic
operations of operation graphs, which are similar to search graphs in the current
paper. The compiled version of PROGRES generates search plan by a greedy
algorithm performed on the operation graph.

• The pattern matching engine of GReAT [1] employs a breadth-first traversal
strategy starting from a set of nodes that are initially matched. GReAT also
uses simple rules of thumb like Fujaba for search plan generation.

• The compiled version of VIATRA2 [2] employs model-sensitive search plans
[16], which are calculated by greedy algorithms performed on search graphs
containing statistical data collected from typical instance models.
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In contrast to the above-mentioned methods, our approach uses search plans on
a syntactic level for the generation of EJB QL queries. As search plans have been
optimized in a preprocessing phase, the generated queries give optimal solution for
pattern matching on a database independent level. Depending on the features and
configuration possibilities of the underlying database, the user may either enforce
the same execution order on the database level, or allow its alteration to exploit
further database-specific optimization techniques.

6 Conclusion and Future Work

In the current paper, we proposed an EJB3-based graph transformation plugin,
which uses queries specified in the declarative EJB QL language for pattern match-
ing. This approach additionally provides a promising, object-oriented and database
independent alternative of pure SQL based pattern matching solutions [13].

The essence of the technique is to formulate an EJB QL query and also to
generate explicit Java code from search plans for the precondition of each graph
transformation rule. The execution of the prepared query and the manipulation of
persistent objects implement the pattern matching and the updating phases of graph
transformation rule application on the EJB3 platform, respectively.

Our previous experiments [3,13] show that due to the same technology and the
underlying relational database, this approach (just like previous EJB3-based graph
transformation plugins) is able to handle models having more than 1 million el-
ements for a performance penalty of an order of magnitude (compared to a pure
Java solution) in case of smaller models. Based on these experiments, our ex-
pectation for the current approach is a slightly better run-time performance, and
noticeably reduced memory consumption in the application server compared to so-
lutions, which use pure SQL for specifying queries. As a natural limitation of the
approach, it is worth to emphasize the trade-off between portability and run-time
performance when database-specific query optimizations are switched on and off.
In the future, we plan to carry out experiments to confirm our expectations on both
the run-time performance and memory consumption aspects of our approach.
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Abstract

The set of operations in state-of-the-art graph transformation tools allows one to condi-
tionally create and remove nodes and edges from input graphs. Node attributes can be ini-
tialized or updated with information from other attributes, parameters or constants. These
operations appear to be too restricted for expressing model refinements in a concise manner.
More specifically, graph transformation lacks an operation for copying subgraphs (multi-
ple connected nodes, including their attributes) to a new location in the host graph. This
paper presents a case study that illustrates the need, a syntax and an informal semantics
for such an operation. It also discusses how the operation was integrated in an existing
graph transformation language. Finally, it indicates how our ongoing effort towards the
implementation of a model transformation language based on graph transformation makes
optimal reuse of evaluation code for existing language constructs.

Introduction

A modelcan be defined as a simplified representation of a part of the world, named
the system [17]. Model repositoriesare databases with specialized support for stor-
ing and retrieving models. Their main functionality consists of serializing their data
into standard model exchange formats (like XMI [14]), and exposing a query and
transformation API (like OCL [12] and JMI [5]). Any program with the purpose of
creating or changing models can be called amodel transformation. The purpose of
this paper is to extend graph transformation such that model transformations can be
programmed at a high level of abstraction while the low-level APIs of mainstream
model repositories are interfaced by means of compilers.

The data definition languages (like MOF [11] and ECORE [9]) for modern
model repositories (like MDR [7] and EMF [9]) are object-oriented. Consequently,
model repositories can be perceived as object-oriented databases. The data in-
stances in a repository can be perceived as graphs with objects taking the role of
attributed nodes. Association, containment, inheritance and other relationships take
the role of edges. Transforming data in repositories can thus be perceived as a graph
transformation activity.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
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Figure 1. Conceptual Model of a Meeting Scheduler application.

This paper is structured as follows: Section1 presents two models of a meeting
scheduler system. These models are expressed in two different UML profiles and
a part of one model should begeneratedfrom the other one. When using graph
transformation to formalize the model transformation that defines this generation
process in Section2, the need for a copy operator becomes obvious. Section3
presents the syntax and semantics of the proposed copy operator as an extension to
Story Diagrams [6]. Additionally, the section briefly compares two approaches for
extending an existing Story Diagram engine. The next section refers the reader to
related work while the paper concludes with a summary of the contributions and
lessons learnt.

1 Motivating Example Models

Figure1 shows a conceptual model (CM) of a Meeting Scheduler application, spec-
ified in UML syntax [13]. At the conceptual level, analysts are free to use constructs
such as association classes, views, and other language features. Such features may
not be supported directly by the implementation language but they allow one to
represent the problem domain as one perceives it in reality as good as possible.

A complete conceptual model contains all relevant nouns and verbs from a
problem domain as classes and operations. In order to localize changes to the
problem domain, many architectures hide the conceptual model by means of lay-
ers. To design such architectures, Rosenberg and Scott[15] propose to model user
interface screens asinterfacesand user interface flow asservices.Only services are
allowed to accessentities, which are based on the classes in a conceptual model.
Figure2 shows a robustness model (RM[15] ) of the application under study. Note
that the entitySchedulecorresponds to the classSchedulefrom Figure1.

Figure 3 clarifies how the elements from the conceptual modeling diagram
shown in Figure1 relate to a typed and attributed graph in the underlying model
repository. The tree on the left represents the “containment hierarchy view” from
the Meeting Scheduler sample in the MagicDraw UML tool. Noden1 is of type
Modeland represents the UML model that contains both the application examples
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Figure 2. Robustness Model of a Meeting Scheduler application.

and the definitions of the profiles used within these examples. All examples reside
in noden2of typeUmlPackageand with name “Examples”.

Noden3 represents the actual Meeting Scheduler sample. ThisUmlPackage
contains noden4which represents the conceptual model of the Meeting Scheduler.
All its contained classes (likeAttendee, Flexibility, ...) map directly to concepts in
the problem domain. The containment relationship betweenn1, n2, n3 andn4 is
realized by means of linksl1, l2 and l3 with label “ownedElement”. These links
can be traversed in the other direction (from contained element to container) as
well by means of the “namespace” label. Therefore, the underlying graph is not a
directed graph. Moreover, it contains cycles: node n4 (CM, the conceptual model
of the Meeting Scheduler) is decorated with the “Conceptual Model” stereotype by
means of linkl4. This link can be edited by means of the context-sensitive menu
shown in the bottom right corner of Figure3. The “Conceptual Model” stereotype
is defined by noden7 which is contained in noden6, representing the package
defining the robustness modeling profile. Due to space limitations,n7 is not shown
in Figure3. However, the figure does show a node defining another stereotype:
noden5 represents the definition of the “Foreign Key” stereotype from the profile
for physical data modeling.

In the following, it will be shown how the entities in the robustness model can
be created automatically from the classes in the conceptual model by means of the
subgraph copy operator. The idea is to integrate the approach into model editors
such that software engineers can focus on design decisions in the model refinement
process rather than performing low-level copy operations manually.

2 TheCM2RM Transformation

This section discusses the nature of the “Conceptual Model to Robustness Model”
(CM2RM) transformation by presenting a structural and a behavioral model. The
structural model will illustrate how the transformation is related to data from the
input and output repositories. The subsection discussing the behavioral model will
focus on the application of the subgraph copy operator.
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  Node n1.
    Type: Model
    Attribute values: 
      name= "Data"
      ...
    Links:
      l1 (to n2, label "ownedElement")

  Node n4.
    Type: Model
    Attribute values: 
      name= "CM"
      visibility= Public
    Links:
      l4 (to n7, label "stereotype") 

  Node n6.
    Type: UmlPackage
    Attributes values: 
      name= "Robustness Modeling"
    Links:
      l5 (to n7, label     
                     "ownedElement")

  Node n5.
    Type: Stereotype
    Attribute values: 
      name= "Foreign Key"
      baseClass= "Classifier"
      ...

  Node n7.
    Type: Stereotype
    Attributes values: 
      name= "Conceptual Model"
    Links:
 l4 (to n4, label "extendedElement")
 l5 (to n6, label "namespace")

  Node n3.
    Type: UmlPackage
    Attribute values: 
      name= "Meeting Scheduler"
    Links:
      l3 (to n4, label "ownedElement") 
      ...

  Node n2.
    Type: UmlPackage
    Attribute values: 
      name= "Examples"
    Links:
      l2 (to n3, label "ownedElement" )
      l1 (to n1, label "namespace")

Figure 3. Relation between the UML editor and the underlying model graph.

2.1 Structural model of the transformation

As stated in the introduction, the structure of a modern model repository is defined
by an object-oriented model. More specifically, such a“metamodel” represents the
language of the models that can be stored in the repository. Since such metamodels
define the input and output types of model transformations, they are discussed for
the modeling languages used in the running example. Both the conceptual and the
robustness models are expressed in the UML. Since the UML profiles that decorate
the standard diagrams with a domain specific syntax are defined as UML mod-
els as well, the tranformation under discussion only needs to interact with UML
repositories.

Figure4 shows a structural model of theCM2RMtransformation. The interest-
ing fact about this diagram is that one does not have to reason about the distinction
between transformations, models, metamodels and metametamodels (as defined in
[11]) to understand its meaning. It is a traditional class diagram that happens to
be used in the context of model transformations but that does not presume any
knowledge about the platform-specific repository code that is generated from it.

The CM2RM transformation contains a reference to oneModel (defined in
packageorg.omg.uml.modelmanagement) while such aModelcan be transformed
by manyCM2RM transformations. TheModel class, its association to the con-

130



Van Gorp, Schippers and Janssens

CM2RM
(be.ac.ua.fots.transformations)

+applicationName : String

+cmClasses2rmEntities() : Boolean

Model

UMLmodelOfTransformation

+transformation

*

+applicationModel

1

Figure 4. Metamodel defining a repository that allows one to store the CM2RM trans-
formation with a direct reference to the UML model it transforms. The class “Model” is
imported from the UML metamodel.

tained UML Model Elements(UmlClass, UmlPackage, State, ...) and other con-
cepts from the UML are defined in the UML specification [13]. Since the reposi-
tories from popular UML tools are derived from (often evengenerated from) this
specification, the class implementing theModel concept in MagicDraw does not
define a collection ofCM2RMs. Therefore, theUMLmodelOfTransformationasso-
ciation can only be traversed fromCM2RMto Model. In order to apply theCM2RM
transfomation to the example from Section1, theapplicationModelreference needs
to be initialized with the “Data” model (noden1 from Figure3).

The CM2RM transformation can be parameterized with itsapplicationName
attribute. This attribute determines what package inside the UML model will be
looked up in order to transform the classes in its contained conceptual model to en-
tities in its contained robustness model. When theCM2RMtransfomation would be
applied to the example from Section1 thenapplicationModel would be set to node
n1 from Figure3 while applicationNamewould be set to “Meeting Scheduler”.
This would configureCM2RMfor execution onn3.

While theCM2RMtransformation could contain more methods for more com-
plete case studies, this paper requires only one which is called “cmClasses2rm-
Entities”. The method does not take any arguments and returnstrue or falsebased
on the success of the transformation. The complete behavior ofcmClasses2rmEnti-
tieshas already been discussed before [3] but this paper provides a more compre-
hensive discussion of thecopy operationused there.

2.2 Behavioral model of the transformation

The behavior of thecmClasses2rmEntitiesmethod can be modeled in two phases.
Firstly, the transformation needs to look up some meta-information for robustness
modeling in the UML. Secondly, the classes are copied from the conceptual model
to the robustness model and they are marked as entities by decorating them with
the proper meta-information. Each of these steps can be implemented as a primitive
graph transformation while the order between the primitives needs to be enforced
by a controlled graph transformation rule. When using the story diagram syntax,
such controlled graph transformation rules are specified as activity diagrams [6].

Figure5 shows the primitive graph transformation rule for phase two. The rule
is written in the UML profile for Story Driven Modeling (SDM) [16], into which
the new copy operator is integrated. Unlike the Story Diagram syntax in Fujaba,
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wodnApplication : UmlPackage

{motmot.constraint=name.equals(this.getApplicationName())}

<<copy>>

cm: Model

<<onCopy>>+name : String = "RM"

<<bound>>

stereotypeOnCM : Stereotype

<<bound>>

stereotypeOnRM : Stereotype

<<bound>>

entityStereotype : Stereotype

<<bound>>

applicationModel : Model

classInCM : UmlClass a: Attribute

<<create>>

<<onCopy>>

+stereotype*

+ownedElement

0..*

+ownedElement

0..*

<<create>>

<<onCopy>>

+stereotype*

+ownedElement*

<<create>>

<<onCopy>>
+ownedElement*

<<closure>>
+ownedElement*

+stereotype*

Figure 5. Primitive graph transformation rule applying the new copy operator.

the UML profile for SDM is based on class diagrams instead of object diagrams.
This is primarily motivated by syntactical support for the visualization of attribute
assignments. Moreover, using class diagrams to model rewrite rules allows one to
show the cardinalities of link ends. This assists one to identify sources of multiple
matches without looking at the type graph. The following subsections discuss the
meaning of the rule in three steps.

2.2.1 Finding a Match
The nodes and edges that do not have a < <create> > stereotype in a primitive story
specify a pattern that needs to be found in the input model. The pattern on Figure5
starts from a node representingCM2RM’s applicationModelproperty. As stated,
this property represents a handle to the input and output UML model of the dis-
cussed transformation (like noden1 from Figure4). Just like thestereotypeOnCM,
stereotypeOnRMandentityStereotypenodes, theapplicationModelnode is already
bound: in fact, attributes of transformation classes are bound during the construc-
tion of the transformation object while the stereotype nodes are bound by the first
primitive graph transformation rule ofcmClasses2rmEntities.

From theapplicationModelnode, the rule searches for each recursively con-
tained package with its name equal to theapplicationNameproperty ofCM2RM.
Such aUmlPackageis calledwodnApplicationand it represents the application
containing the model that needs to be copied. VariablewodnApplicationwould
be bound to noden3 from Figure4. Note that all nodes and edges are typed and
map directly to the class diagrams defining the UML metamodel. TheUmlPack-
agenodes that can be reached from theapplicationModelby recursively traversing
outgoing links with association end nameownedElementsare only bound to the
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wodnApplicationnode if they in turn contain a specificcmnode in their outgoing
ownedElementlinks. A node is bound tocm if it is of type Modeland contains the
already boundstereotypeOnCMnode in its outgoing stereotype links. By specify-
ing thatcmcontains zero or more nodes of typeUmlClasswith zero or more nodes
of typeAttribute, one does not constrain the search forcmany further.

2.2.2 Copying the Subgraph
Thecmnode needs to be copied since it is decorated with the < <copy> > stereo-
type. Apart from thecmnode, all nodes and links on its outgoing composition path
need to be copied as well. Note that all matches on this path are handled since
the controlled graph transformation rule that executes this primitive rule marks it
as < <loop> >. Without this directive, the primitive rule shown on Figure5 would
copy only one matched class and attribute.

Implicitly, all attributes from a copied node are copied along. For example,
since it is of typeModel, thename, isSpecification, isRoot, isLeaf and isAbstract
attributes of nodeclassInCMare copied implicitly. For the definition of theModel
class, its attributes and superclasses, please refer to the metamodel in the UML 1.5
specification [13].

2.2.3 Using the Copy
When copying a subgraph, one should always store a reference to the copy. Other-
wise, it wouldn’t become a subgraph of the host graph but just a standalone graph
which may be inaccessible in subsequent graph transformations. The undesirable
result would be an output model that would not contain the copy.

Creating a link is a standard graph transformation operation. In the UML profile
for SDM one needs to specify a link between the nodes that need to be connected
and label it with the < <create> > stereotype. Obviously the name of the link and
the name and cardinality of the association ends need to conform to an association
between the types of the node. Otherwise, the resulting graph would not conform
to the output metamodel. In order to create a link from thewodnApplicationnode
to the copy of thecmnode, one needs an explicit notion of node copies in the graph
transformation language.

Instead of representing the copy as a node in the transformation rule, the UML
profile for SDM is extended with an < <onCopy> > stereotype. By specifying it on
theownedElementassociation end of the < <create> > link that connectswodnAp-
plication with cm, one expresses that the link should be created to the copy ofcm
instead of tocm itself. When the < <onCopy> > stereotype would not be specified
on ownedElementend, one would erroneously specify that the conceptual model
needs to be added to the package it already resides in. The robustness model would
be missing from the output model.

The < <onCopy> > instruction is also defined in the context of attribute assign-
ments. This allows one to specify that the name of the robustness model, that is a
copy of thecmnode, needs to be changed to “RM”: the attribute assignment on the
cm node is decorated with the < <onCopy> > stereotype. Without this stereotype
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one would change thenameattribute of the conceptual model.
The < <onCopy> > instruction for < <create> > links is also applied to deco-

rate all classes in the robustness model with the < <entity> > stereotype: the as-
sociation end at theclassInCMside of the stereotypes link is decorated with the
< <onCopy> > stereotype while the association end at theentityStereotypeside is
left undecorated. The class in the robustness model is indeed a part of the copied
subgraph whileentityStereotypeis a node in the original host graph.

The outgoingtype link of nodea (of type UML Attribute) needs to be copied
to the target subgraph as well. A detailed discussion thereof is outside the scope of
this paper. In summary, the rule on Figure5 needs to be extended and an additional
loop story is needed. By using multi-objects in combination with the < <onCopy> >
instruction one can first create and then query the required traceability data.

3 Subgraph Copy operator

This section presents a syntax and an informal semantics for the proposed copy
operator as an extension to the UML profile for Story Diagrams. It also compares
two implementation approaches to motivate the direction of the ongoing effort.

3.1 What

The proposed copy operator consists of the following syntactical constructs:

copy The < <copy> > construct allows one to specify what node represents the
entry point to the subgraph that needs to be copied.

composition Starting from the < <copy> > node one can specify that a particular
match path has composition semantics. Each node and link on this path will be
copied.

onCopy The < <onCopy> > construct can be used to indicate that a particular in-
struction needs to be executed on the copy of an element instead of on the ele-
ment itself. The construct is defined on (1) association ends of < <create> > links
and (2) attribute assignments.
(i) By specifying < <onCopy> > on the source (or target) end of a < <create> >

link, one specifies that the link needs to be created from (or to) the copy of
the node at that association end.

(ii) An assignment on an attribute from a node on the composition path, that is
marked as < <onCopy> >, is executed on the attribute from the copy of this
node instead of on that from the node itself.

Not every application of these directives results in a valid use of the copy operator.
Therefore, the following new well-formedness rules (WFRs) are defined for the
UML profile for SDM:

• At least one link should be created from the host graph to a node from the copied
subgraph. More specifically, at least one link should be created to the < <copy> >
node or a node on its outgoing composition path.
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<<copy>>

a: A

b2: B

b1: B

c: C

ab1 b

*

ab2 b

*

c 1 <<copy>>

d: D

<<copy>>

a: A

b1: B

b2: B c: C

ab

b

*

db

b

*

c

1

<<copy>>

a: A
b: B c: C

ab2
b1

ab1

b*

c

1

Figure 6. From left to right: two valid rewrite rules and an invalid one. In the rightmost
rule, it is unclear whether thec’s contained by theb’s from ab1should be copied, or those
contained by theb’s from ab2, or both. The leftmost rewrite rule illustrates how one can
unambiguously specify that for theb’s from ab2 the containedc’s should be copied while
this is not the case for those fromab1. The middle rewrite rule illustrates that within one
rewrite rule one can use multiple < <copy> > nodes as long as their composition paths do
not overlap.

• The < <onCopy> > instruction should only be applied (1) on attributes inside a
copied node, or (2) on association ends connected to a copied node.

• A node should be part of at most one composition. Otherwise, it would be am-
biguous what should be the container of such nodes’s copy. (see Figure6).

AppendixA formalizes the first WFR in OCL. The specification is defined within
the context of theClassclass from theFoundation::Corepackage of the UML
metamodel. Every instance of that metaclass needs to respect the invariant defined
from line 56 onwards. One can use the OCLE tool [8] to confirm that the “cm:
Model” node from the transformation rule in Figure5 respects this invariant. The
constraint makes use of three OCL helper attributes defined on line 43 to 49 and
50. ThetrfoPkgNodesattribute represents all nodes from the copy transformation
rule under study. ThecopiedNodesandnonCopiedNodesattributes divide this set
of nodes into the nodes that will or will not be copied respectively. These attributes
are defined using the helper operations specified on line 10 and 30. The OCL
specification of the latter two WFRs is left out due to space considerations but can
be obtained from the authors.

3.2 How

Two implementation approaches have been investigated: a direct model-to-code
transformation approach and a model-to-model transformation approach. All re-
lated artifacts are publically available in the MoTMoT project [10]. MoTMoT
(Model driven, Template based Model Transformer) is a “model transformation”
code generator based on the AndroMDA 3.x framework. It uses Freemarker tem-
plates to translate UML models (conforming to the profile for SDM [16]) into Java
code conforming to the JMI standard.

The straightforward approach for adding support for the copy operator is to
extend the Freemarker templates that handle the code generation for existing SDM
constructs. At a very high level of abstraction, the generated code should implement
the following algorithm:

(i) collect all nodes matching the composition path specified in a copy rule,
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(ii) in the case of a complete match: (a) copy these nodes, including all their
attributes, and (b) execute < <onCopy> > attribute assignments,

(iii) maintain a map of traceability links between nodes and their copies,

(iv) use the traceability map to create the composition links between the copies as
soon as all of the copy nodes have been created,

(v) create < <onCopy> > links using the same approach.

In practice, the complexity of the Freemarker templates reached an unacceptable
level after implementing step (iv).

Therefore, current development is focussed on a model-to-model transforma-
tion approach that leaves the code templates unchanged. Story Diagrams are used
to transform models conforming to the profile discussed in Section3.1 into mod-
els conforming to the SDM profile without the copy operator. The generated Story
Diagrams realize the behavior of the copy operator by means of a traceability meta-
model and the introduction of additional stories and control structures. The com-
plete transformation is still complex but thanks to the use of an intermediate layer
and the modularity mechanisms of Story Diagrams, the complexity can be decom-
posed into manageable parts. Apart from the facilities for manageing the transfor-
mation complexity, the model-to-model transformation approach is promising due
to portability opportunities:

• It does not involve a further investment into code specific to the MDR/JMI plat-
form. Migrating the Freemarker templates to platforms such as EMF does not
become harder than before.

• With reasonable effort, it should be possible to deploy the story diagrams that are
generated by the model transformation on other SDM platforms such as Fujaba.

An upcoming article will discuss this model transformation in more detail.

Related Work

Subgraph copying was first investigated in the context ofhierarchicalgraph trans-
formation. This work assumes that one can decompose the transformed graphs into
“frames” where edges are not allowed to cross frame boundaries. Drewes, Hoff-
mann and Plump acknowledge that nested visual languages like the UML require
a more flexible decomposition mechanism but require the assumption for proving
that rewrite rules do not violate grammatical constraints [2].

Although the hierarchical approach presents the interesting idea of automati-
cally copying all edges between the nodes in a frame, it should be extended for
performing copy operations in a more general sense. An < <onCopy> > instruction
such as the one presented in this paper could be defined to specify that, for ex-
ample, the copy of a subgraph should not contain particular edges while including
others that do not originate from the source subgraph. Another limitation of the
hierarchical approach is that frames are not proposed to be defined on a rule by rule
basis. Hoffmann et al. tackled this issue by allowing “shape grammars” to define
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the structure of a frame variable in the scope of a rewrite rule instead of in the scope
of the complete rewriting system [1].

This paper presents a very specific modelrefinementcase study. However, the
copy operator can be used for transforming any typed graph with edge labels and
attributed nodes. More specifically, it can be used for implementingrefactorings.
Van Eetvelde et al. have proposed the use of graph variables and cloning for raising
the abstraction level of graph transformation rules in this context [18]. Applying the
copy operator on thePush Down Methodrefactoring defined on a metamodel for
Java appears to be promising but the validation of this work is still in progress. This
work builds upon the case study from Hoffmann [4] by considering the attributes
and links from syntax nodes within method bodies in more detail. We are evaluating
whether or not the use of control structures such as a Story Diagram < <loop> >
leads to more complex rules than those making use of graph variables.

Conclusion

This paper introduces a graph transformation operator for subgraph copying. The
operator allows one to define refinements on models conforming to UML profiles
in a concise manner. More specifically: copying model elements from one domain
specific model to another one, changing attribute values of copied elements and
attaching links to the copied elements can be done in one rewrite rule. The operator
has been integrated in Story Diagrams, a controlled graph transformation language
with a wide user base. The extension has been implemented in the UML profile for
SDM such that any UML 1.5 compliant editor can be used tomodelmodel transfor-
mations. The implementation effort for the transformation engine is focussed on an
SDM model transformation from the extended SDM profile to the profile version
without the operator. The operator appears to be applicable in the context of model
refactoring as well but more validation is required to get a better understanding of
its applicability and limitations.
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Appendices

A OCL for Well-Formedness Rule

1 context Class
2 -- Return transitive closure of the " ownedElement " links starting from s
3 def: let ownedElementTC(s: Set (ModelElement)): Set (ModelElement)=
4 if s-> includesAll (
5 s-> select (me1|
6 me1. oclIsKindOf (Namespace)
7 )-> collect (me2|
8 me2. oclAsType (Namespace)
9 ).ownedElement-> asSet ()

10 ) then s
11 else ownedElementTC(
12 s-> union (
13 s-> select (me1|
14 me1. oclIsKindOf (Namespace)
15 )-> collect (me2|
16 me2. oclAsType (Namespace)
17 ).ownedElement-> asSet ()
18 )
19 )
20 endif
21

22 -- Return from a primitive story all nodes that will be copied
23 def: let allCopiedNodes(s: Set (Classifier)): Set (Classifier)=
24 s-> select (c| -- Return all classes
25 hasStereotype(c, " copy " ) or -- that have a <<copy >> stereotype
26 c.association->exists(end| -- or connected to
27 end.association.connection->exists(end2| -- an association
28 end2<>end and -- of which the other end
29 end2.aggregation=AggregationKind::composite -- is of type composite .
30 )
31 )
32 )
33 -- Actual WFR: as soon as the <<copy >> instruction is issued , the copied sub -
34 -- graph needs to be connected to the host graph by means of a <<create >> link
35 inv :
36 let trfoPkgNodes: Set (Classifier) =
37 ownedElementTC( Set { self .namespace})-> select (element |
38 element. oclIsKindOf (Classifier)
39 )-> collect (class |
40 class. oclAsType (Classifier)
41 )-> asSet in
42 let copiedNodes: Set (Classifier) = allCopiedNodes(trfoPkgNodes) in
43 let nonCopiedNodes: Set (Classifier) = -- trfoPkgMEs minus copiedNodes
44 trfoPkgNodes-> reject (el|
45 copiedNodes->exists(copiedNode|
46 el=copiedNode -- Reject elements that are copied ( set ’ minus ’).
47 )
48 ) in
49 hasStereotype( self , " copy " ) implies -- When applying the copy instruction ,
50 nonCopiedNodes.association->exists(end| -- the non- copied nodes should be
51 hasStereotype(
52 end.association, -- connected to an association
53 " create " ) and -- representing a <<create >> link
54 end.association.connection-> select (end2| -- and containing
55 end<>end2 -- another end that
56 ).participant->exists(copiedNode| -- is connected to a node
57 copiedNodes-> includes (copiedNode) -- that * is * copied .
58 )
59 )
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Abstract

Informal and abstract user requirement specifications are usually complemented by
formal and detailed system requirement specifications. While user requirements
provide a high level description of what services the system is expected to provide,
system requirements provide a more technical specification of how that services
should be provided by the system. One of the relevant problems that arise during
the Requirement Engineering process is the result of failing to make a clear transition
between different levels of requirements description.

Goal of this paper is to introduce a graphical tool for requirements refinement
which guides software architects while moving from user requirements to (architec-
tural-level) system requirements. The tool makes use of a previous work that gives
a simple but expressive graphical formalism, based on UML2.0 Sequence Diagrams,
for specifying temporal properties.

Key words: Graphical Formalisms; Requirements Definition;
Software Architectures.

1 Introduction

Formal methods can have an important role in developing reliable, effective
computer systems. Verification techniques have been introduced to under-
stand if a system satisfies certain expected properties. These properties are
often informally specified as part of user requirements and tools have been
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proposed to make specification and analysis rigorous and to help software
engineers in their work [2]. Even if much work has been done on this direc-
tion, the application of such techniques and tools into industrial world can be
still very difficult due to some extra requirements and constraints imposed by
industrial needs.

For instance, model checker tools allow for automated checking of system
model compliance to given temporal properties. These properties are typi-
cally specified as linear-time formulae in suitable temporal logics. However, it
is a difficult task to accurately and correctly express properties in these for-
malisms. Properties that are simply captured within the context of interest
and that are described in intuitive way by natural language may result very
hard to specify in temporal logics. In other words, there is a substantial gap
between natural language and temporal logic syntax. As a matter of fact, in-
dustries are not willing to use the above mentioned techniques and tools and
this slows down the transition from “research theory” to “industry practice”.

What is really needed is a semi-formal and easy to learn methodology for
specifying such properties. In addition, the methodology should be time re-
ducing, tool supported (automated tool support is fundamental for strongly
reducing human effort and costs) and based on graphical notations that are
widespread adopted in industrial contexts. For instance, UML [12] (as stan-
dard de-facto for software systems modelling) is one of the most attractive
notations. In our context, scenario based formalisms (such as UML2.0 Se-
quence Diagrams) have been advocated as a means of improving requirements
engineering but yet few methods or software assistant tools exist to support
Sequence Diagrams based Requirements Engineering (RE). Since UML2.0 has
not yet provided a formal semantics for its diagrams and operators, it is am-
biguous and it is very difficult to develop formal techniques based on its nota-
tions. Several approaches have been proposed in the last years trying to give
semantics to UML2.0 Sequence Diagrams [17], to pose constraints on UML
(based on Object Constraint Language) or to develop UML-profiles that solve
the ambiguity problem in particular contexts.

In a previous work we presented a simple and (sufficiently) powerful formal-
ism for specifying temporal properties in a user-friendly fashion. We proposed
a scenario-based visual language that is an extended graphical notation of a
subset of UML2.0 Sequence Diagrams. The language is called Property Se-
quence Chart (PSC). PSC can graphically express a useful set of both liveness
and safety properties in terms of messages exchanged among the components
forming the system. We also presented an algorithm, called Psc2Ba, to trans-
late PSC into Büchi automata 3 [3]. Even thought PSC has an intuitive and
user-friendly graphical notation, it might be still difficult to directly express
properties in this language. In fact, during the early stage of the RE process

3 In our context, a Büchi automata is an operational description of a temporal property
formula. It represents all the system behaviors that respects the logic of the specified
temporal property.
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the requirements are usually too abstract and vague.

One relevant problem that arises during the requirement engineering pro-
cess is the result of failing to make a clear transition between different levels
of requirements description. According to the terminology adopted in [16],
the term “user requirements” is used to mean high-level abstract requirement
descriptions and the term “system requirements” is used to mean detailed and
possibly formal descriptions. Often in practice, stake-holders are able to de-
scribe user requirements in informal way without detailed technical knowledge.
They are rarely willing to use structured notations or formal ones.

Transiting from user requirements to system requirements is an expensive
task, even if required. In fact, we are speaking about decisions made during
this early phase of the software development process, when the system under
development is vague also in the mind of the customer. What we need is
a speculative and tool supported process that facilitates understanding and
structuring requirements. A well recognized instrument by human society for
problems understanding is conversation and discussion. Inspired to the human
nature we think that a “conversational” tool is what we need at this phase.
The tool we are proposing is called W PSC. By means of a set of sentences
(based on expertise in requirements formalization and on a set of well-known
patterns [6] for specifying temporal properties used in practice) and classi-
fied according to temporal properties main keywords, W PSC forces to make
decisions that break the uncertainty and the ambiguity of user requirements.

2 Background

2.1 Our Context

Software Architecture (SA) acts as a bridge between the requirements and
the implementation code (which has to reflect architectural properties) [7].
An SA specification represents a high-level design model and captures the
system structure by identifying architectural components and connectors in
order to assess at an early stage what is the best way to ensure that all key
requirements are satisfied.

Usually, software architects go through informal user requirements, talk
with customers, analyze existent architectural patterns [15] in order to under-
stand which components they need to use, how such components behave and
how they have to be connected. The relationship between requirements and
architectures has recently received increased attention [18].

In this context, while user requirements embody some knowledge of the
problem domain, system requirements describe properties we expect our sys-
tem (structured as a given software architecture) satisfies. While user re-
quirements might be informal and ambiguous, system requirements must be
well formalized and unambiguous, since they will be used to drive the design
and implementation stages and may be used for validating the system model
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conformance to user requirements.

That is, the transition from informal user requirements to formal (architec-
ture-level) system requirements is unavoidable and usually relies on stake-
holders experience. Moreover, this transition spans from the problem space to
the solution space where requirements are described in terms of components,
connectors and their interactions.

2.2 Properties Sequence Charts (PSC)

PSC [1,13] is a simple but expressive graphical formalism for specifying tem-
poral properties. Two are the main requirements of PSC, simplicity and ex-
pressiveness. Remaining close to the graphical notation of UML2.0 Sequence
Diagrams, the requirement of simplicity is satisfied. The PSC expressiveness
is measured with the property specification patterns proposed in [6].

PSC describes interactions between a collection of components that can
be simultaneously executed and that communicate by message passing. PSC

distinguishes among three different types of messages called arrowMSGs (see
Figure 1.a). Regular messages: the labels of such messages are prefixed by
“e:”. They denote messages that constitute the precondition for a desired (or
an undesired) behavior. It is not mandatory for the system to exchange a
Regular message; however, if it happens the precondition for the continua-
tions has been verified. Required messages: are identified by “r:” prefixed to
the labels. It is mandatory for the system to exchange this type of messages.
Fail messages: the labels are prefixed by “f:”. They identify messages that

Fig. 1. PSC graphical notation (a) and the PSC tool (b)

should never be exchanged. Fail messages are used to express undesired in-
teractions. We also define Constraint operators that impose “restrictions” on
the set of messages (called intraMSGs) possibly exchanged between the con-
sidered message and its predecessor or successor (the predecessor of the first
message of a PSC is the startup of the system). Restrictions specify either
a chain of intraMSGs or a boolean formula (over a set of intraMSG labels).
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Parallel, Loop, and Simultaneous operators are introduced with a UML 2.0
like graphical notation. For the sake of brevity, we omit the full description
of PSC features and we entirely refer to [1,13] for it.

2.3 Specification patterns for finite-state verification

Specification patterns [6] are a repository with the intent of collecting patterns
that commonly occur in the property specification of concurrent and reactive
systems. A specification pattern has a scope that defines the range in which the
pattern must hold. By recasting the notion of scope in our context, five basic
kinds of scopes are distinguished: Global (the entire program execution),
Before (the execution up to a given message), After (the execution After a
given message), Between (any part of the execution from one given message
to another one) and After-Until (like between but the designated part of the
execution continues even if the second message does not occur).

One way to classify the patterns is based on the kinds of system behaviors
they describe. A first classification splits the patterns into two main categories:
Occurrence Patterns and Order Patterns. Occurrence Patterns are further
partitioned in Absence, Universality, Existence and Bounded Existence. Order
Patterns are further partitioned in Precedence, Response, Chain Precedence
and Chain Response. For the sake of readability we do not go through a
detailed description of the classification but we refer to [6] for it.

3 The Solution Space

Much effort has been spent in the last years in formalizing requirements and
expressing them in some formalism. Scenarios (such as UML2.0 Sequence Dia-
grams) have been advocated as a means of improving requirements engineering
and they have been confirmed as an important design artifact that can be used
for a variety of purposes. Scenarios are particularly useful for adding details to
an outline requirements description and represent paths of the system behav-
ior representing possible interactions and relationships between participating
components.

Several form of scenarios have been developed, each of which provides
different types of information at different levels of details. While it could be not
difficult to write “high-level” scenarios (e.g., use case scenarios) to document
user requirements, more expressive and formal scenario-based notations are
needed to document architectural system requirements. While it is useful
to keep clear in mind this separation, it is also important to bound the gap
between these different levels and to create a link among them. An informal
and guided decision process should guide developers to move from user to
system requirements.

In this section, a methodological approach for generating a formal specifi-
cation to the user requirements is introduced. We require that the generation
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of the formal specification, corresponding to user requirements, has a method-
ological guidance. Consequently a “conversational” graphical tool, which per-
mits to automate the entire process, should be implemented. In the following
we describe the decision helper tool we have in mind. The tool wants to be
an attempt to bridge the gap between possibly informal requirement specifi-
cations (as found in practice) and formal ones (as needed in formal methods).
The decision helper we are proposing is called W PSC and it drives software

Fig. 2. W PSC overview

architects in making decisions while writing Property Sequence Charts (PSC)
introduced in Section 2.2. Within the PSC language, a property is seen as a
relation on a set of exchanged system messages, with zero or more constraints.
By means of W PSC all the patterns, briefly described in Section 2.3, can be
easily expressed. As already said, each pattern has a scope which is the extent
of the program execution over which the pattern must hold.

W PSC should offer a user-friendly wizard helpful while translating a user
requirements description into PSC scenarios. In Figure 2 we show the W PSC

framework. The first phase comprises three primary steps: (i) Derivation,
(ii) Selection and (iii) Restriction. By taking into account the require-
ments description, the first step concerns the (i) derivation of an SA for the
system in terms of components, their exchanged messages and connectors.
Subsequential, (ii) by selecting one or more user requirements and by identi-
fying an informal property definition within them, the involved components
are distinguished. At this point, the SA can be eventually (iii) “restricted” to
the subset of distinguished components and related connectors.

Note that, an SA can be derived by extracting real world entities from
the requirements description and by mapping these entities into architectural
components [16,18]. Moreover, we are assuming that some simple guidelines
have been followed to minimize misunderstandings. For instance, we are tak-
ing for granted that user requirements, described in the Requirements Docu-
ment (RD), have been written by using language consistently (to distinguish
between mandatory and non-mandatory requirements), by picking out key
parts, by avoiding (as far as possible) the use of computer jargon, and possi-
bly by using dedicated structured cards [14]. In this manner the user chooses
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between W PSC sentences in the user requirements specification.

When the first phase has been accomplished, the W PSC user has in mind
the SA (and a set of possible exchanged messages) to be given as input to
W PSC by means of a user friendly visual interface. Since such an interface
has been already developed for the CHARMY tool [4] and the PSC tool has
been already implemented as its plugin, it is possible to input the architecture
by the same CHARMY interface.

Now the wizard is ready to propose a set of sentences that drive the W PSC

user through the Construction Path while deriving the PSC scenario. The
Construction Path is composed of several steps and at each step it poses
sentences helpful for requirements understanding and for accurately defining
them. The Construction Path is twofold: on one hand, the set of sentences are
dedicated to PSC specific features (PSC Construction Path); on the other
hand it is devoted to the library of property specification patterns (Pattern

Construction Path).

We split the Construction Path in two different paths because, even though
the patterns capture a big variety of common property specifications, we let
the user to whether going through a particular and specific solution (by ex-
ploiting PSC features) or trying to find an already existent elegant solution
(i.e., a pattern). By a series of interactive images, specific text, field and struc-
tured dialog boxes, a set of specific sentences are arranged in a dialog window
tree and a set of window paths can be identified from the root to each leaf.
Dynamically, according to user decisions, a path is generated and the unique
desired PSC scenario is produced.

The wizard engine for supporting the user through the PSC Construction
Path is the PSC Conversational Engine. This engine guides the user
by means of specific sentences that are brought into focus for PSC features.
It might be not easy for a PSC user to choose which type of messages and
possible constraints are needed to properly express the informal property he
has previously identified from user requirements. Thus, through the window
path the user is helped on selecting those messages that are arrowMSGs and
those ones that are intraMSGs (subjected to possible Constraint operators).
For each arrow message a type (i.e., Regular, Required and Fail) must be cho-
sen. For intraMSGs there will be a window for constructing allowed boolean
formulae (through a graphical syntax-directed editor).

The Pattern Conversational Engine supports the user through the
Pattern Construction Path. This engine asks the W PSC user by a set of ad-
hoc sentences focussed on guiding him through the choice of the appropriate
patterns category. By taking into account the “original” pattern descrip-
tions [6] (close to temporal logic jargons), we derive a set of non-technical
sentences that can be easily understood. In other word, the sentences are
formulated as natural language sentences in such a way that the user is able
to quickly identify and select the needed patterns category without any par-
ticular knowledge of the patterns themselves. We also propose the creation
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of a special online help text to answer technical questions for both PSC and
Pattern Construction Paths.

Global
 Before R
 After Q
 Between Q and R
 After Q until R


R
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Fig. 3. Pattern scopes

The last phase concerns the Scope Selection Engine. By following the
same principles of the above described engines, the Scope Selection Engine
exploits window showing interactive images that graphically represent extents
of program execution. In Figure 3 we show the graphical representation of
the scopes by following the one given in [6]. For W PSC we propose images
based on this representation. Acting with these images the user is driven while
selecting the right scope without difficulties.

4 Case Study

In this section we describe how to put into practice the W PSC approach in
a very simple ATM withdrawal case study. Let us suppose that scenarios
for withdrawing cash are described as part of the user requirements into the
RD. A high-level SA description (depicted in Figure 4) of an ATM system
can be derived. It allows users to: buy a refill card for its mobile phone,
check its bank account, and make a withdraw operation. The system has
been designed as the composition of a set of distributed components: a User
Interface, the Phone Company (PC), the Bank DB and a ATM that manages
all the interactions between the user and the other entities.

Fig. 4. ATM Application

The informal description of the selected property is: “The ATM withdrawal
shall provide the service for withdrawing cash; there will be a login and logout
feature; the ATM will be connected to the bank Data-Base (DB) that will be
updated after that a withdraw request has been satisfied”.

The components involved in this property are the User Interface, the Bank
DB and a ATM.

Within such a user requirement description, it is not difficult to capture
a desirable system property that states: “If the withdraw request has been
satisfied, the bank DB must be updated; the withdraw request is allowed only
after the login request and only until the logout request”.
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As already said above, it is a non-trivial task to choose both the needed
type of message and the right scope. For instance, the above property might
be erroneously expressed as an ordered sequence of regular messages login,
withdrawRequest, updateDB, logout among the interested components. While
such a scenario may be correct for scratching a possible system interaction, it
is incorrect for formally specifying our system property. In fact, updateDB is
mandatory and if it is not exchanged, the system will fail.

That is, by using W PSC, the PSC formalization for this property can be
obtained by performing these subsequential steps:

(i) By tacking into account the first part of the property within the above
described property (i.e., “If the withdraw request has been satisfied,”),
the first choice in which the user is guided is recognizing that the with-
drawal request is optional. Thus, between the optional sentences, the
user is asked to select the right W PSC sentence (i.e.: If the message
withdraw request is exchanged then ..., ).

(ii) Considering the following part of the property (i.e., “the bank DB must
be updated;”) the involved message bank DB is recognized as mandatory.
Thus, the user is asked to choose the right sentence between the manda-
tory sentences (i.e.: The message bank DB must be exchanged).

(iii) The last part of the property (i.e. “the withdraw request is allowed only
after the login request and only until the logout request”) it is easily rec-
ognized as a scope. The Scope Selection Engine proposes the different
choices and the user is then guided to choose the “After-Until” scope
(i.e. “After login” and “Until logout” scope) that embraces the withdraw
request and the DB update.

By composing the chosen sentences the property is rewritten as follows:

“After the login message has been exchanged and until the message lo-
gout is not exchanged, if the message withdraw request is exchanged then the
message bank DB must be exchanged.”

This description can be “compared” with the informal property definition
identified within the RD. Obviously, it will be rarely the same, but it will be
simple to understand if the generated property is the wanted one. In other
words we are supposing that the user have in mind the property but he needs
help in making decision: this textual representation helps in this sense thanks
to the given feedback in terms of textual language.

The automatically generated PSC is showed in Figure 1.b. The resulting
PSC is different from a simple sequence of ordered messages. Even though
the previous example is a toy example, it is not difficult to grasp the main
advantage of having such a conversation.
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5 Related Work

Several works have been proposed in the last years attempting to bridge the
gap between informal requirement descriptions to formal ones. For lack of
space, we discuss only those works closest to our approach.

The approach described in [8,10] is able to translate OCL specifications
into natural language by a multilingual syntax-directed editor. Even though
foundations and design principles might be inherited, in a contrary manner
from our approach, they guide the user to transit in the opposite way. In
other words, once formal OCL specifications have been produced, they can
be translated into natural language descriptions that can be understood by
people who do not know OCL.

In [19] authors exploit a software tool that allows system engineers to write
detailed use case descriptions using structured templates. The specification
is guided by use case style guidelines, temporal semantics and an extensive
dictionary of naval domain nouns. Once the use case description phase has
been accomplished, system engineers derive use case specifications and, after
parametrization, corresponding scenarios are automatically generated. Differ-
ently from our proposal, this approach is domain specific and it is dedicated
to software engineers with specific domain expertise that are able to directly
describe and subsequently specify parameterized use case diagrams.

In [9] the authors present STAIRS, a formal approach to the incremental
specification of UML 2.0 interaction for capturing requirements. By referring
to Section 2.2, STAIRS is primarily related to our work about PSC [1,13].
Like us, they can deal with mandatory, forbidden and optional scenarios and
have the notion of refinements. They use the trace semantics of UML 2.0
but, as we pointed out in [1], UML 2.0 has yet again not provided a formal
description of that semantics. Differently from them we provide PSC with
a precise semantics via translation, by means of an algorithm implemented
as a plugin of our Charmy tool [4], into Büchi automata. After translation
PSC diagrams can be directly used by Charmy for model-checking software
architectures. Moreover, as it is showed in [1,13], the expressiveness of PSC has
been validated with respect to well known property specification patterns [6].

In [11] the authors propose an approach called play-in/play-out for speci-
fying and executing behavioral requirements based on LSC [5]. Play-in makes
capturing requirements quite intuitive, based on interactions with a prototype
of the application GUI. Even if the interaction with the GUI seems fashioning,
the user has to choose if the operation performed is mandatory or possible.
This is done by selecting in a checkbox list. Thus, as the authors themselves
point out, to use complex and sophisticated features of LSC requires being
familiar with the LSC language. This aspect represents the more difficult
part. In fact the user can friendly interact with the GUI application but is
not helped in making decisions for selecting the right checkboxes in the list.
On the contrary W PSC aims exactly in guiding the user in making choices
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while exploiting PSC features. Finally the play-in/play-out approach requires
specifying a GUI for the application inside the play engine tool. This appears
a limitation that can reduce the applicability of the approach to complicated
and sophisticated GUI applications.

6 Conclusion and future work

Inspired to the human nature, in this paper we propose a “conversational”
tool called Wizard Property Sequence Charts. By means of posed sentences
W PSC forces to make decisions that break the uncertainty and the ambiguity
of user requirements. Sentences are derived from expertise in requirements
formalization and from the commonly used property specification patterns [6].

W PSC strives to guide developers while moving from user requirements
to (architecture-level) system requirements. The PSC input is an SA and a
set of messages possibly exchanged among the components forming the sys-
tem. At least a non-fine-grained SA can be derived by extracting real world
entities from the requirements description. Then, these entities are mapped
into architectural components [16,18]. Later the SA can be obviously better
refined and all steps we described can be reiterated. As system requirements
specification language the tool makes use of PSC that is a simple but expres-
sive graphical formalism, based on UML2.0 Sequence Diagrams, for specifying
temporal properties.

On the future work side we plan to conclude the ongoing development of
the tool and to actively use it in real industrial contexts in order to empirically
evaluate impact and effort needed to use it.
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1 Introduction

Meta modeling is a wide-spread technique to define visual languages, with
the UML [UML03] being the most prominent one. Despite several advantages
of meta modeling such as ease of use, the meta modeling approach has one
disadvantage: It is not constructive i. e. it does not offer a direct means of
generating instances of the language. This disadvantage poses a severe limi-
tation for certain applications. For example, when developing model transfor-
mations, it is desirable to have a large set of valid instance models available
for large-scale testing. Producing such a large set by hand is tedious. In
the related problem of compiler testing [BS97] a string grammar together
with a simple generation algorithm is typically used to produce words of the
language automatically. Generating instance-generating graph grammars for
creating instances of meta models automatically can overcome the main deficit
of the meta modeling approach for defining languages. The graph grammar
introduced in [EKTW05] ensures cardinality constraints, but OCL constraints
for the meta model are not considered until now. In this paper we present
the main concepts of automatic instance generation based on graph gram-
mars by an example. In addition, we show how restricted OCL constraints
can be translated to equivalent graph constraints. The restricted OCL con-
straints that can be translated can express local constraints like the existence
or non-existence of certain structures (like nodes and edges or subgraphs)
in an instance graph. Positive ones have to be checked after the generation
of a meta model instance, negative graph constraints can be checked during
the generation. They can be transformed into application conditions for the
corresponding rules, as defined in [EEHP04].

We first introduce meta models with OCL constraints in Section 2. Sec-
tion 3 presents the main concepts for automatic generation of instances from
meta models using the graph grammar approach. The generation process
is illustrated at a simplified statechart meta model. We use graph transfor-
mation with node type inheritance [BEdLT04] as underlying approach. In
Section 4 we explain how restricted OCL constraints can be translated into
graph constraints. We conclude by a discussion of related and future work.

2 Meta Models with OCL-Constraints

Visual languages such as the UML [UML03] are commonly defined using a
meta modeling approach. In this approach, a visual language is defined using
a meta model to describe the abstract syntax of the language. A meta model
can be considered as a class diagram on the meta level, i. e. it contains meta
classes, meta associations and cardinality constraints. Further features include
special kinds of associations such as aggregation, composition and inheritance
as well as abstract meta classes which cannot be instantiated.

Each instance of a meta model must conform to the cardinality con-
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straints. In addition, instances of meta models may be further restricted by
the use of additional constraints specified in the Object Constraint Language
(OCL) [Obj05].

Figure 1 shows a slightly simplified statechart meta model (based on
[UML03]) which will be used as running example. A state machine has one top
CompositeState. A CompositeState contains a set of StateVertices where such
a StateVertex can be either an InitialState or a State. Note that StateVertex
and State are modeled as abstract classes. A State can be a SimpleState, a
CompositeState or a FinalState. A Transition connects a source and a target
state. Furthermore, an Event and an Action may be associated to a transition.
Aggregations and compositions have been simplified to an association in our
approach but they could be treated separately as well. For clarity, we hide
association names, but show only role names in Figure 1. The association
names between classes StateVertex and Transition are called source and target
as corresponding role names. The names of all other associations are equal
to their corresponding role names. Since we want to concentrate on the main
concepts of meta models here, we do not consider attributes in our example.

The set of instances of the meta model can be restricted by additional
OCL constraints. For the simplified statecharts example at least the following
OCL constraints are needed:

(i) A final state cannot have any outgoing
transitions:
context FinalState inv:
self.outgoing->size()=0

(ii) A final state has at least one incoming
transition:
context FinalState inv:
self.incoming->size()>=1

(iii) An initial state cannot have any incoming
transitions:
context InitialState inv:
self.incoming->size()=0

(iv) Transitions outgoing InitialStates must al-
ways target a State:
context Transition inv:
self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State) Fig. 1. Meta Model for Statecharts

3 Generating Statechart Instances

In this section, we introduce the idea of an instance-generating graph grammar
that allows one to derive instances of a meta model in a systematic way.
Given an arbitrary meta model, the corresponding instance-generating graph
grammar can be derived by creating specific graph grammar rules, each one
depending on the occurrence of a certain meta model pattern. The idea is
to associate to a specific meta model pattern a graph grammar rule that
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Grammar Rule Example GraphLayer

:StateMachine
createCompositeState1

:StateMachine

Application Conditions

createCompositeState, createInitialState, 
createSimpleState, createTransition, 
createFinalState, createEvent, createAction

:SimpleState

:InitialState

:StateMachine

:Transition

:Transition

1
:Event

:Action

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

2:T

:SV

2:T

1:SV
source source

NAC1 NAC21:StateVertex

source

2:Transition2:Transition

1:StateVertex

InsertStateVertex_source_Transition

source source

2

InsertInitialState_source_TransitionNewObj,
InsertCompositeState_source_TransitionNewObj,
InsertFinalState_source_TransitionNewObj,
InsertSimpleState_source_TransitionNewObj

:Event :Action

:FinalState

:FinalState

Fig. 2. Example Grammar Rules 1

creates an instance of the meta model pattern under certain conditions. An
instance-generating graph grammar also requires a start graph and a type
graph. The start graph will be the empty graph and the type graph is obtained
by converting the meta model class diagram to a type graph. Given a concrete
meta model, assembling the rules derived, the type graph created and the
empty start graph will lead to an instance-generating graph grammar for this
meta model. For a detailed description see [EKTW05]. Overall, we use the
concept of layered graph grammars [EEdL+05] to order rule applications. In
the following, we describe the rules that we derive for the meta model of state
machines (see Figure 1).

First, we will get a create rule for each non-abstract class within the meta
model, allowing us to create an arbitrary number of instances of all non-
abstract classes. The rules of layer 1 are applied arbitrarily often, meaning
that layer 1 does not terminate and has to be interrupted by user interaction
or after a random time period. For the sample meta model we get the rules
createStateMachine, createCompositeState, createSimpleState, createFinalState,
createInitialState, createTransition, createEvent, and createAction in layer 1.

Layer 2 consists of rules for link creation for associations with multiplicity
[1, 1] at one association end. The rules have to be applied as long as possi-
ble. We have rules that create links between existing instances and rules that
create an instance (of a concrete type) and a link to this instance starting
at an instance that is not yet connected to another instance. New instances
can only be created if there are not enough instances in the graph what is
ensured by (negative) application conditions. For the association source be-
tween StateVertex and Transition, we derive four rules: one rule creates a link
source between an existing StateVertex and an existing Transition. Further,
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Grammar Rule Example GraphLayer Application Conditions

1:FinalState

target

2:Transition2:Transition

2 InsertFinalState_target_Transition

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

source sourcetarget

:FinalState
target

InsertInitialState_target_TransitionNewObj,
InsertCompositeState_target_TransitionNewObj,
InsertSimpleState_target_TransitionNewObj,
InsertStateVertex_target_Transition

:Event :Action

1:FinalState

2:T

:SV

2:T

1:SV

NAC1 NAC2

target target

:CS

NAC1:CompositeState

top

1:StateMachine1:StateMachine

2 InsertCompositeState_target_StateMachineNewObj

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition :Transition

top

source sourcetarget

:FinalState
target

:Event :Action

Fig. 3. Example Grammar Rules 2

for each concrete class that inherits from class StateVertex one rule is derived
that creates the StateVertex, an InitialState, a CompositeState, SimpleState or a
FinalState, and the link source. Note that the abstract class StateVertex could
be matched to any of its concrete subclasses InitialState, CompositeState, Fi-
nalState, and SimpleState. For the association target between StateVertex and
Transition, similar rules are derived. For the association top between StateMa-
chine and CompositeState, we derive two rules. One of them is shown in Figure
3, creating a CompositeState to a StateMachine if no CompositeState exists in
the instance graph.

Layer 3 consists of rules creating links for associations with multiplicity
[0, 1] or [0, ∗] at the association ends. The graph grammar derivation rules
in layer 3 can be applied arbitrarily often. The rules in layer 3 are termi-
nating. But in order to generate all possible instances, the rule application
can be interrupted by user interaction or after a random time period. The
rules create links between existing instances, so they have negative application
conditions prohibiting the insertion of more links than allowed by the meta
model cardinalities. For the running example, the rules of layer 3 are shown
in Figure 4.

We further get rules that insert links for the association between Transi-
tion and Action and the association between Transition and Event as well as
association between CompositeState and StateVertex.

The example rules shown in Figures 2 - 4 construct a simple instance
graph consisting of a StateMachine with its top CompositeState containing
three state vertices and two transitions between them. In the application
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Example Grammar Rule Example GraphLayer Application Conditions

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition
:Transition

top

source sourcetarget

:FinalState
target

subVertexsubVertex
subVertex

3 InsertTransition_effect_Action

3 InsertTransition_trigger_Event

:Event :Action

1:Transition

effect

2:Action2:Action

1: Transition

trigger effect

1:T

effect

:A

NAC1 NAC2 NAC3

:T

2:A

1:T

2:A

effect effect

2:SV

:CS

2:SV

1:CS

NAC1 NAC21:CompositeState

subVertex

2:StateVertex2:StateVertex

1:CompositeState

InsertCompositeState_subVertex_StateVertex3

subVertex
subVertex

Fig. 4. Example Grammar Rules 3

conditions shown in Figures 2 - 4 the node types are abbreviated (CS for
CompositeState etc.).

4 Translation of Restricted OCL Constraints into Graph
Constraints

Up to now there is no general way to transform OCL constraints into equiva-
lent graph constraints, which are introduced in [EEHP04]. As a first approach,
we show how restricted OCL constraints can be translated to equivalent graph
constraints. In contrast to the translation of meta models to graph grammars
which was described formally in the previous chapters, we discuss first ideas
for the translation of OCL constraints only and sketch how they can be en-
sured. Besides having one common formalism the motivations for translating
OCL constraints into graph constraints is their later consideration within the
derivation process (sketched below).

We restrict OCL constraints to equality, size, and attribute operations for
navigation expressions, called restricted OCL constraints. In future work, OCL
constraints and graph constraints have to be further compared concerning
their expressiveness.
Graph constraints are properties on graphs which have to be fulfilled. They
are used to express contextual conditions like the existence or non-existence
of certain nodes and edges or certain subgraphs in a given graph. Application
conditions for rules were first introduced in [EEHP04]. They restrict the
capability of rules, e.g. a rule can be applied if certain nodes and edges or
certain subgraphs in the given graph exist or do not exist.

Definition 4.1 [graph constraint] Graph constraints over an object P are
defined inductively as follows: For a graph morphism x : P → C, ∃x is a
(basic) graph constraint over P. For a graph morphism x : P → C and a graph

158



Winkelmann, Taentzer, Ehrig, Küster

1:Transitiontsource=n= ∃ ( Sn ) ∧ ¬ ∃ ( 1:Transition Sn+1 )   ,  

1:Transitionttarget=n= ∃ ( Tn ) ∧ ¬ ∃ ( 1:Transition Tn+1 )   , with  n ≥ 1 and

1:Transition:StateVertex

:StateVertex

source
source

1

.
n. .

1:Transition:StateVertex

:StateVertex

target
target

1

.
n. .

Sn = Tn =

Fig. 5. All Transitions have exactly n source [target] vertices

1:Transition 1:Transition ,∀ (∨n∈N+ (csource=n ∧ ctarget=n ))

Fig. 6. All Transitions have the same number of source and target vertices

constraint c over C, ∀(x, c) and ∃(x, c) are (conditional) graph constraints over
P . For graph constraints c, ci(i ∈ I) [over P ], true, false, ¬c, ∧i∈Ici and ∨i∈Ici

are (Boolean) graph constraints [over P ].

A graph morphism p : P → G satisfies a basic graph constraint ∃x if there
exists a graph morphism q : C → G with q ◦ x = p. A graph morphism
p : P → G satisfies a conditional graph constraint ∀(x, c) [∃(x, c)] if for all
[some] graph morphisms q : C → G with q ◦ x = p, q satisfies c. A graph
morphism p satisfies a Boolean graph constraint ¬c if p does not satisfy c; p
satisfies ∨i∈Ici [∧i∈Ici] if p satisfies all [some] ci with i ∈ I.

A graph morphism p : P → G satisfies a basic graph constraint ∃x if there
exists a graph morphism q : C → G with q ◦ x = p. A graph morphism
p : P → G satisfies a conditional graph constraint ∀(x, c) [∃(x, c)] if for all
[some] graph morphisms q : C → G with q ◦ x = p, q satisfies c. A graph
morphism p satisfies a Boolean graph constraint ¬c if p does not satisfy c; p
satisfies ∨i∈Ici [∧i∈Ici] if p satisfies all [some] ci with i ∈ I.

A graph G satisfies a graph constraint c of the form ∃x, ∃(x, d) [∀(x, d)] if
all [some] graph morphisms p : P → G satisfy c. A graph G satisfies ¬c if G
does not satisfy c and ∨i∈Ici [∧i∈Ici] if it satisfies all [some] ci with i ∈ I.

With this definition of graph constraints the counting of elements is pos-
sible. For the state chart example we can express graph properties like: ”All
Transitions have exactly n source [target] vertices” (Figure 5), or ”All Transi-
tions have the same number of source and target vertices”(Figure 6). Therefore
we define Boolean graph constraints tsource=n and ttarget=n expressing that the
Transition has n source [target] vertices and not n+1 source [target] vertices,
where Sn[Tn] denotes the star with n sources [targets]. In the conditional
graph constraint in Figure 6 we need the basic graph constraint that maps
only a Transition node to a Transition node, since the Transition node in Sn

has to be the same as in Tn.

The restricted OCL constraints that can be translated are divided into
atomic navigation expressions and complex navigation expressions.
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Equivalent Graph ConditionsOCL constraint

self.ass1->size()=1

1:Class1 :Class2ass1
1:Class1

self.ass1->size()>=2

b) Class1 constraint2:

1:Class1

2:Class2

5:ass1

a) Class1 constraint1:

self.ass1=self.ass2.ass3
3:Class3

4:Class2

7:ass3

6:ass2
1:Class1

2,4:Class2

5:ass1

3:Class3
7:ass3

6:ass2

c) Class1 constraint3:

1:Class1 :Class2
ass1

:Class2ass1

1:Class1 1:Class1 :Class2
ass1

:Class2ass1

∃

∃

∃

∃¬

Fig. 7. Examples for Translation of OCL Constraints

Atomic navigation expressions:

Atomic navigation expressions are OCL expressions that

• express equivalent navigations,

• end with operation size() (if the result is compared with constants),

• end with operations isEmpty(), notEmpty() or isUnique(), or

• end with attribute operations (not considered explicitly in the paper).

The navigation expressions contain navigation along association ends or asso-
ciation classes only.

Atomic navigation expressions can be transformed into basic graph con-
straints of the form ∃x or boolean formulae over basic graph constraints.

A navigation expression stating that two navigations have the same result,
like self.ass1=self.ass2.ass3, can be transformed into a graph constraint, see
Figure 7 a). Here the conclusion of the constraint ensures that ass1 and ass3
are connected to the same instance of Class2.

Operation size() can be translated into a Boolean graph constraint that is
composed of two basic graph constraints, see Figure 7 b). The first constraint
ensures that there exist the minimum number (= value of the constant) of
association ends, the second prohibits the existence of more than the con-
stant value association ends. If the comparison operation is ≤ or ≥ the OCL
constraint can be translated into just one graph constraint.

Operations isEmpty() and notEmpty() can be translated back to a size()
operation: self.ass1->isEmpty() is translated back to self.ass1->size()=0,
self.ass1->notEmpty() to self.ass1->size()>=1.

Collection operation isUnique() can be translated into a size() operation,
if the body of the collection operation is a navigation expression ending at an
instance set: self.ass1->isUnique(navexp) is translated back to
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self.ass1.navexp->size()<=1.

Complex navigation expressions:

Definition 4.2 [complex navigation expressions] Atomic navigation expres-
sions are complex navigation expressions. Given complex navigation expres-
sions a, b and c, expressions not(a), a and b, a or b, a implies b, and if a then
b else c are complex navigation expressions.

Complex navigation expressions can be transformed into conditional graph
constraints as described in the following.

An OCL expression of the form a implies b is equivalent to the expression
not(a) or b. So we have to translate not(a) or b into an equivalent conditional
graph constraint. First the expressions a and b are transformed into graph
constraints ca and cb as described above. We have to combine the two graph
constraints ca and cb by the operator ∧, and therefore we have to find the part
that has to be identified in both expressions. So we build the intersection ex-
pression of the premise and the conclusion, that is a navigation part contained
in both expressions (in the example constraint for Transition in Figure 8, the
node of type Transition is in this intersection only). This intersection expres-
sion ie occurs in the left graph of the graph constraints ca and cb. Having ca,
cb and ie, we can build a conditional graph constraint that is equivalent to
the OCL constraints as follows: Build the basic graph constraint b : ie → ie.
Build the conditional graph constraint ∃(b,¬(ca) ∨ (cb)), where the intersec-
tion expression is mapped to the corresponding elements in ca and cb. See the
description of Figure 8 for an example.
OCL constraints of the form if a then b else c can be translated back into two
implies operations: (a implies b) and ((not a) implies c). The implies expres-
sions are translated as described before into two graph constraints which then
are combined by the logical operator (∧) to a new one that is equivalent to
the OCL constraint.

Ensuring of graph constraints:

Ensuring of graph constraints can be done in two ways: One is to check
constraints once the overall derivation of an instance model has terminated
which would also be the approach followed when checking OCL constraints
directly. However, this leads to the generation of a large number of non-valid
instances in between. A more promising approach is to take the constraints
into consideration during the derivation process: For each class in the meta
model the corresponding graph constraints can be identified. For rules of layer
1, constraints are ignored. For rules of layer 2 and 3, negative constraints of
the form ¬∃x, ¬∃(x, c), ¬∀(x, c), where x is a basic graph constraint and
c is a graph constraint, for the participating classes are evaluated before a
possible application of a rule. If the resulting instance violates a constraint, the
previous application of a rule is not executed. Here we use the translation of
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Equivalent Graph ConstraintsOCL constraint

source.oclIsTypeOf(InitialState)
implies
target.oclIsKindOf(State)

Transition:

2:InitialState

1:Transition

3:source

2:StateVertex

1:Transition

3:source

4:State

1:Transition

5:target

4:StateVertex

1:Transition

5:target

1:Transition

¬ ∨

1:Transition ,

∀

∃

incoming->size()>=1 1:FinalState :Transitionincoming
1:FinalState

outgoing->size()=0 :FinalState :Transitionoutgoing

FinalState:

FinalState:

InitialState:
incoming->size()=0 :InitialState :Transitionincoming

∃

∃

∃¬

¬

Fig. 8. Translation of OCL Constraints for Statechart Meta Model

graph constraints to application conditions as presented in [EEHP04]. Positive
constraints of the form ∃x, ∃(x, c), ∀(x, c) are checked after termination of
layer 3. If a positive constraint is violated, the model can be fixed by adding
additional elements required by the positive constraint. It remains to future
work to determine those negative constraints that can be violated by adding
the elements required by a positive constraint and to extend the formalization
in the previous sections to constraints.

Translation of the OCL constraints for the statechart meta model:

Figure 8 shows the translation of the OCL constraints for the simple state-
chart meta model example in Figure 1. The first translates the OCL constraint
context FinalState inv: self.incoming->size()>=1 (that is an atomic navigation
expression) into an equivalent basic graph constraint. This constraint corre-
sponds to the size()-operation constraint shown in Figure 7 c). The second
translates the OCL constraint context FinalState inv: self.outgoing->size()=0
into an equivalent basic graph constraint, corresponding to the graph con-
straints shown in Figure 7 b). Note, that the positive graph constraint is
not needed if size() is compared to 0. The third one is similar. The OCL
constraint context Transition inv: self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State) is a complex navigation expression. It is equiva-
lent to the expression (not(self.source.oclIsTypeOf(InitialState))) or
(self.target.oclIsKindOf(State)), stating that each source instance of a Tran-
sition instance is not an InitialState or the target instance is a State. The two
OCL expressions can be translated into two basic graph constraints shown in
Figure 8 (the lower part of the last graph constraint). We have to combine
the two basic graph constraints by operator ∨ and we have to express that
the Transition instance in one expression is the same as in the other expres-
sion. Therefore we have to build the intersection expression of the premise and
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the conclusion, which contains the Transition only. The complete conditional
graph constraint states: all nodes of type Transition have a source node of type
InitialState or a target node of type State. This is equivalent to: Transitions
outgoing InitialStates must always target a State.

5 Related Work

One of the related problems is the one of automated snapshot generation
for class diagrams for validation and testing purposes, tackled by Gogolla et
al. [GBR05]. In their approach, properties that the snapshot has to fulfill are
specified in OCL. For each class and association, object and link generation
procedures are specified using the language ASSL. In order to fulfill constraints
and invariants, ASSL offers try and select commands which allow the search
for an appropriate object and backtracking if constraints are not fulfilled. The
overall approach allows snapshot generation taking into account invariants but
also requires the explicit encoding of constraints in generation commands. As
such, the problem tackled by automatic snapshot generation is different from
the meta model to graph grammar translation.

Formal methods such as Alloy [All00] can also be used for instance gen-
eration: After translating a class diagram to Alloy one can use the instance
generation within Alloy to generate an instance or to show that no instances
exist. This instance generation relies on the use of SAT solvers and can also
enumerate all possible instances. In contrast to such an approach, our ap-
proach aims at the construction of a grammar for the metamodel and thus
establishes a bridge between metamodel-based and grammar-based definition
of visual languages.

6 Conclusion and Future Work

In this paper we have presented the main concepts for translating a meta
model to an instance generating graph grammar. This translation has been
illustrated by a simple statecharts example. The meta classes and associations
as well as their multiplicities are translated directly to type graph, start graph
and graph rules. To handle also the OCL constraints during the instance gen-
eration process, they are first translated to graph constraints and then partly
to application conditions of rules. In this paper, we discussed this translation
process for restricted OCL constraints. In future work, OCL constraints and
graph constraints have to be further compared concerning their expressive-
ness. Moreover, we started to give OCL a new kind of semantics which has to
be set into relation with other OCL semantics.

Automatic derivation of instances from meta models is a complex task
which needs tool support. So far, we have automated the construction of an
instance generating graph grammar by providing a model transformation that
automatically derives an instance generating graph grammar from a meta
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model. For a complete description of this implementation we refer to the
URL http://tfs.cs.tu-berlin.de/agg/MM2GraGra. Although the current
model transformation does not support all features of meta models yet, it
nevertheless shows the feasibility of our approach. We plan to investigate the
usage of our techniques for systematic testing of model transformations at
different development stages of our generation algorithm.
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Abstract

Freely available experimental transformation languages have begun to stimulate
practical usage of textual transformation notations. The forthcoming QVT trans-
formation languages may provide standardisation or at least interchange capabilities
for these experimental languages. Graphical transformation notations are proving
rather less successful. We identify many disadvantages of the graphical approach,
consider how they can be circumvented and describe changes in the UMLX notation
and tool support to improve usability and QVT compatibility.

Key words: Model Transformation, Transformation Editor,
Graphical Transformation Notation.

1 Introduction

Model transformations are becoming steadily more practical and rigorous with
the advent of better meta-model based tools such as ATL [7] or Tefkat [6]. The
transformation language for each of these tools is proprietary and so inhibits
the wider exploitation of these transformations. The increasingly imminent
QVT standard [8] for a suite of three languages may avoid incompatibility
problems, possibly by rendering the existing languages obsolete, more likely
by defining an interchange point so that transformations for language A may
be transformed to a QVT language and from there to language B.

The current transformation languages and the QVT submission are largely
textual in syntax, which is perhaps surprising given that they operate on meta-
models that are often drawn using a graphical style derived from UML.

A graphical notation can be visually attractive and this provides a signif-
icant advantage over a textual notation. An interesting picture may provoke
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fruitful discussion within a team or with passers by. Program text often has
a more restricted readership.

In this paper we try to understand why graphical transformation notations
are proving less successful and consider when and how this lack of success
should be remedied. We first consider the generic advantages and disadvan-
tages of textual and graphical notations, before examining the reasons why
some graphical notations have proved successful and others have not. In Sec-
tion 2 we examine a variety of graphical transformation notations in greater
detail, noting their similarities with respect to the use of declarative patterns
in principle, but significant differences in practice and even greater differences
with respect to transformation rules. Then in Section 3 we outline the tool
support for UMLX and notational enhancements to improve alignment with
QVT.

1.1 Textual and Graphical Notations and Tools

A textual notation for a language has many advantages over a graphical no-
tation. Tooling requirements are limited and so a wide variety of editors
can be used. Printing or viewing is straightforward and activities such as
searching or comparing pose few challenges. Even when more sophisticated
syntax-sensitive editing is desired, there are a number of customisable editors
to choose from.

A textual notation does not suffer particularly from scalability issues. The
use of multiple source files and hierarchical language constructs enables very
large overall line counts to be managed. Unduly long lines are readily avoided
at the expense of a slightly increased line count.

In contrast, a graphical notation has many disadvantages. Specialised
editors are required often using file formats with limited scope for interchange
with alternative editors. Ancillary tasks such as printing require similarly
specialised tooling that consequently must form part of the editor. The extra
pagination and rendering complexities are not always satisfactorily realised for
an adequate range of print media. Other activities, such as searching also rely
on the specialised editor. With so much reliance on a specialised editor, the
choice of editors is limited, and very limited if significant financial investment
is to be avoided.

Graphical notations may also suffer from scalability; there is a limit to the
amount of zooming that can be tolerated to enable a diagram to fit on a single
sheet of paper. This is a major problem when the notation fails to represent
a reasonably sized and sensibly modularised problem on a single sheet, and a
minor problem if navigation between diagrams is cumbersome.

1.2 Successful Graphical Notations

A graphical notation must offer significant benefits to overcome these major
disadvantages, so it is worth reviewing where and why graphical notations are
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successful.

A textual language often aligns the vertical dimension with a sequential
order, so that earlier lines precede later lines in execution order, or spatial
layout. This suits the procedural style of programming that is so widespread
through the dominance of languages such as C or Java. A critical weakness
in textual languages arises when a more declarative perspective is taken. It is
difficult to identify all uses of a particular concept such as a variable, so it is
necessary to search the code for all occurrences of a name.

A graphical notation imposes no inherent layout constraints. This freedom
allows some very poor diagrams to be drawn when little attention is paid
to ease of understanding. This does not matter for diagrams drawn on the
‘back of an envelope’, or a whiteboard, where the audience is live and the
sole purpose of the diagram is to clarify understanding or intention. These
diagrams should then be destroyed. Diagrams that are to be preserved should
be drawn with much greater discipline, so that a cold audience can easily grasp
their meaning. It is often helpful to observe some form of left to right and/or
top to bottom discipline to ease comprehension by providing the audience with
a starting point. A few well drawn diagrams may provoke useful discussions
about a design approach, whereas textual representations are less amenable
to casual review.

The lack of an inherent layout makes graphics well suited to a declarative
exposition of many interrelated concepts. Each concept is a graph node de-
noted by a symbol, and each interrelationship is a graph edge denoted by a
line. The lines between symbols are easy to identify and so all relationships
involving a particular node are easily determined.

With this insight, it is not surprising that State Machines have been so
successful graphically, since the many peer states can be shown with equal
or weighted import. The presence and absence of transitions between states
is very evident. For similar reasons, Entity Relationship Diagrams or Class
Diagrams are also useful to enable the structural relationship between diverse
data elements to be visualised.

Graphical notations for functional and dynamic relationships are often
less successful. Program Flow Charts were popular in 1970s but are now little
used. The Schlaer-Mellor [9] notation for a Data Flow Diagram involves lines
for flows between processes and stores; this notation has insufficient precision
to be used as more than an overview. On the other hand, the SDL [4] notation
has a rich set of symbols for expressing sequential computations. This notation
can have excessive precision; the graphics appears more complicated than
comparable text.

A variety of forms of Block Diagram have been used for decades in the
Electronics industry. Many of these diagrams have insufficient precision for
code generation but could be given that precision once adequate, quite possibly
MDA-related, tools mature. These diagrams are a declarative exposition of a
variety of potentially concurrent activities with some similarities to the revised
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Activity Diagram in UML2.

The above selection of usages from a variety of fields demonstrates that
graphical notations succeed for declarative problems but fail for procedural
problems. Transformations based on UML-like meta-models might be ex-
pected to continue the graphical tradition of class diagrams and favour a
graphical notation. However the extended functionality for imperative trans-
formation languages is procedural, an area where UML proves less satisfactory.

1.3 Utility

In addition to the handicaps that may arise from the difficulties of providing
a suitable graphical presentation, further difficulties may arise from a poor
notation.

If a notation lacks obvious meaning, the utility of the notation as a stimulus
for informal review and discussion may be impaired, and potential users may
be discouraged by a need for extensive training. For transformation authors,
the learning cost may be ameliorated by good tool support, but for casual
reviewers the notation must be as obvious as possible.

A new notation should offer obvious and genuine advantages over alterna-
tives. Graphical notations can have a clear advantage in appearing at least
superficially attractive and may back this up by providing compact nota-
tion and easy to use tooling. But genuine advantages require a notation to
have as much rigour as possible, so that as many different forms of error are
eliminated by the design, thereby improving the productivity of the notation.
Where possible, this rigour should be hidden from practical programmers who
may be discouraged by the too overt appearance of, for example, set theory.
Although, with OCL 2 becoming an essential part of so many transforma-
tion approaches, it may be that programmers will be forced to extend their
mathematical background.

1.4 Conclusions

From the above we may conclude that a graphical notation can be superior
when it provides a declarative exposition. To satisfy the potential for providing
diagrams for casual review, the notation should be clear, precise, compact and
easy to understand, yet rich enough to express realistic problems.

A graphical notation should provide sufficient precision to ensure that dia-
grams are useful, but should recognise that not everything is sensibly presented
graphically. The notation must therefore co-exist with a textual form so that
users have a free choice to use whichever of textual or graphical expositions is
clearest.

The scalability issues for a graphical notation should be addressed by en-
suring that a diagram can be modularised sufficiently to fit on a page and in
the tool support by providing good navigation between pages.
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Fig. 1. UMLX Composition Definition.

Fig. 2. UMLX Composition Instance.

The underlying principles behind the notation should be rigorous to assist
in provision of portable, reliable, maintainable and re-usable transformations.

The notation should be easy to learn, fun to use and well supported by
tools to provide a pleasant programming environment. Support by free tools
may serve to increase the user base more rapidly.

2 Graphical Transformation Notation

2.1 Relationships and Instances

It is reasonable to assume that anyone using meta-model transformations is
familiar with UML, and so basic UML concepts such as composition require
less learning than their textual counterpart.

Figure 1 3 shows a simple composition in which a Book may contain zero
or more Chapters. A Chapter must be contained by exactly one Book, that
may be accessed as the book property of the chapter.

UML practitioners might also recognise Figure 2 that shows a similar rela-
tionship between two objects rather than two classes. A particular instance of
a Book is identified as aBook and contains an instance of a Chapter identified
as aChapter.

In traditional UML usage, aBook and aChapter are instances whose iden-
tification facilitates exposition of the remainder of the UML design; there is a
single {aBook, aChapter} tuple for the whole design.

In model transformation usage, the object diagram is re-interpreted to de-
fine a pattern, so that wherever the pattern is satisfied, an appropriate trans-
formation rule can be activated. aBook and aChapter are therefore variables
within the pattern that bind to instances in the model to be transformed;
there is a distinct {aBook, aChapter} tuple for each possible rule activation
for the transformation.

The relationship between aBook and aChapter is not shown in a textual
transformation language; it is implicit in the declaration of two variables with

3 The diagrams in this paper are drawn using UMLX, which is based on and follows the
Eclipse/GEF EDiagram example in adding an icon at the top left of symbols.
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types from the meta-model comprising Book and Chapter. This implicit re-
lationship avoids typing, but inhibits casual review by readers who are un-
familiar with the meta-model and may lead to obscure error messages for
programmers who misunderstand it.

2.2 Presentation

Although graphical transformation notations have adopted the style of Fig-
ure 2 there has been some divergence in their presentation and elaboration.

In the revised merged QVT submission [8], the class name underlines and
the line decorations are omitted. Omission of the underline is a minor stylistic
deviation from UML. Omission of the line decorations deprives the reader of
the distinction between composition and association and the disambiguation of
multiple associations involving the same classes. AGG [3] uses a more conven-
tional Graph Transformation notation and so underlines and line decorations
are again omitted, and instance names are replaced by instance numbers.

Gmorph [10] and GRE [2] are much closer to UMLX [12]. Gmorph under-
lines both instance and class name while GRE uses a stereotype notation 4 for
the class name.

2.3 Multiplicity

UML provides three relevant decorations for relationships; the multiplicity,
the property name, and the diamond for composition. The last two of these
can assist in understanding the correspondence between pattern and meta-
model. Re-use of multiplicity in this purpose would be confusing, and so some
graphical notations such as the QVT submission just omit the multiplicity.
Figure 2 therefore denotes the relationship between a single aBook and a single
aChapter.

GRE showed multiplicity in the style of UML but did not exploit it. Its
successor, GReAT, recognised that non-unit multiplicity could support pat-
terns involving sets of objects rather than just objects. The corollaries of this
interpretation are discussed in [1]; a pattern could now specify that its rule was
applicable only to each book containing two or more chapters, rather than just
to each book (that might contain some chapters). However, in GReAT, the
multiplicity was shown as an instance stereotype thereby identifying the ab-
solute size of the set of matched objects for each free variable, rather than the
relative size of the set of matched objects between the ends of the decorated
relationship.

UMLX followed GRE in using the UML presentational style for multiplicity
and used the UML multiobject notation where a set of objects rather than just
an object was bound to a variable. UMLX followed the disciplined principles
of GReAT to define the meanings of these sets. UMLX further recognised

4 Text between angle brackets.
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Fig. 3. UMLX Composition Instance With Zero Multiplicity.

Fig. 4. UMLX Evolution.

that a zero multiplicity signified negation, so that a simple zero as in Figure 3
denotes a pattern that matches each Book that contains no Chapters. Other
notations have introduced a distinct crossing-out symbol for this purpose.

The QVT submission also exploits the UML multiobject to display sets
of objects, however the submission has limited capabilities for patterns that
involve sets of objects. UMLX has a more comprehensive capability defined in
[11]. The GReAT analysis of multiplicity identifies some limitations in its use.
For example, in a complex pattern in which there is a cycle, interpretation
of the cycle clockwise may lead to a different meaning to the anticlockwise
interpretation. This is clearly unacceptable and must be reported as an error.
The problem is analogous to the need for parentheses to impose an intended
meaning on an arbitrary expression involving ‘and’ and ‘not’ operators. The
graphical equivalent of a parenthesis requires an explicit grouping of part of
the cycle so that there is a single relationship between the residual part of the
cycle and the grouped part. Provision and evaluation of this grouping as a
graphical facility is work in progress for UMLX.

2.4 Rules

The principle of using patterns to define the application context of a transfor-
mation rule is common to perhaps all graphical transformation approaches.
The divergence between approaches arises in the relation between input and
output context.

GRE showed separate input and output patterns with creation relation-
ships between them.

UMLX was inspired by GRE but replaced the creation relationship by
declarative preservation and evolution relationships. A preservation relation-
ship keeps the input element for re-use on as an output element. An evolution
relationship may add an output element or elements with respect to an input
element or elements, and may also delete an input element or elements with
respect to an output element or elements. Preservation extends the Keep op-
eration of Graph Theory [5], to support keeping not just a node, but also all
its composed descendants. Evolution combines Add and Delete operations in
a multi-directional relationship that always defines a traceability relationship.

GReAT abandoned the potentially declarative characteristics of GRE to
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Fig. 5. UMLX Composition Instance With Errors.

pursue an imperative approach. This achieves layout economy by overlaying
shared input and objects but the use of colours to distinguish input-only,
output-only and shared objects lacks intuition and cannot be rendered in
black and white. Imperative operators are graphically sequenced to define the
transformation. The result is an unfortunate mix of imperative and declarative
meaning in the same diagram.

The proposed graphical syntax for QVT makes no attempt to relate input
and output patterns visually; each is drawn independently, with the relation-
ship between them defined in a textual region by OCL expressions involving
the names of input and output objects.

Gmorph also relies on text to associate independent input and output
graphics. AGG uses shared instance numbers to associate independent input
and output graphs.

3 UMLX Tooling

We have already described how UMLX attempts to align with the goal of a pro-
viding a declarative and easy to understand notation by re-using the familiar
UML notation for defining patterns, extended semantically by a solid defini-
tion of the meaning of multiplicity and sets of objects. A declarative graphical
extension supports definition of the transformation between the patterns with
the need to resort to text.

In order to fulfil the ease of use criterion, the original implementation of
UMLX based on GME and inflexible Microsoft technologies, has been replaced
by Eclipse plug-ins based upon GEF and more particularly its EDiagram
example that uses EMF for meta-models. This provides a free, portable and
standard integration platform. Sadly, it exchanges GME’s disciplined meta-
modelled approach to defining a graphics editor by the much more flexible but
rather manual code cutting capabilities of GEF, EMF and Java. It is hoped
that GMF may provide the best of both worlds for the next revision.

The Eclipse support for UMLX exploits an Outline view of one or more
meta-models to provide a dynamic palette of Drag and Drop elements that
can be dropped onto a sheet to instantiate, or onto a graphical element to re-
instantiate, a legal design element. Widespread use of the Outline, Drag and
Drop, in-place editing and standard GEF editing interactions enables designs
to be built up with considerable ease.

An editor supporting graphical transformations should assist the user in
drawing transformations that comply with their meta-model, so the deco-
rations are supplied automatically whenever an unambiguous relationship is
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drawn between two classes. When an illegal relationship is drawn, the problem
is shown as in Figure 5 which shows the impact on Figure 2 following dele-
tion of Chapter and the Book to Chapter relationship from the meta-model.
The pattern is still syntactically correct but because the meta-model has been
changed, the pattern is no longer semantically valid. A similar problem arises
in textual languages when a subroutine call is invalidated by a change to its
signature. Each inappropriate graphical element shows a red Eclipse error
marker. These also appear in the Eclipse Problem, Outline and Resource
views, so that the graphical markers behave in a similar way to textual error
markers in the Java editor.

The editor supports partitioning a design into sheets using three different
diagram types. Meta-Model Diagrams support maintenance of Ecore meta-
models, that are instantiated within Transformation Rule Diagrams where
the UMLX transformations are drawn. A further Transformation Context
Diagram supports aggregating many UMLX-defined or QVT-defined rules as
part of a QVT compatible Transformation.

4 Summary

The relative characteristics of textual and graphical notations have been con-
trasted first from a relatively generic point of view and then by contrasting a
number of different graphical transformation notations.

The many advantages of a textual notation suggest that a graphical nota-
tion is most likely to be superior when it uses a declarative style that is easily
understood by casual reviewers. With a graphical notation that is superior in
some contexts, a transformation programmer may then be offered a choice of
notations so that the most appropriate can be chosen for each context.

UMLX complies with these declarative perspectives. It is hoped that the
revised Eclipse-based tooling available from http://www.eclipse.org/gmt will
provide a friendly easy to use and productive environment that will encourage
the use of declarative transformations.
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Abstract

Model-based software development is a hot topic of the software engineering commu-
nity. Most activities in this area including the standardization efforts of the OMG
are targeted towards the development of meta modeling tools, adaptable code gen-
erators, and model transformations tools. The needs for the specification of model
views that simplify the definition of model transformation, abstract from details of
specific modeling languages and tools or support the adaptation of generic model-
ing approaches to a specific domain are usually out of scope. This paper presents,
therefore, a unified approach for the declarative definition of updatable model views.
New interpretations of the well-known concept of triple graph grammars are used for
that purpose which support, for the first time, the construction of non-materialized
views. The adaptation of the presented approach to the world of the Model Driven
Application development standards of the OMG and the recently finalized model
transformation language QVT is under development.

Key words: view creation, meta modeling, triple graph grammars

1 Introduction

Any system engineering process requires the manipulation of development ar-
tifacts at various levels of abstraction. Keeping all these artifacts and their
traceability relationships in a consistent state often turns out to be a night-
mare. This is especially true for model-based software engineering, where often
many modeling tools are used in parallel, e.g. for requirements elicitation pur-
poses, safety and security analysis, and software design. Today available model
integration and transformation approaches offer semi-automatic support for
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preserving the consistency of the data of these tools. They start with the def-
inition of meta models for the regarded modeling languages on a specific level
of abstraction and they add rules for constraint checking and update propa-
gation purposes between instances of different meta models. The specification
of different layers of abstraction as meta model views is usually out of scope.
Future meta modeling and model transformation languages should offer better
support for the views construction purposes for the following reasons:

• So-called view points are a popular software engineering concept that allows
one to look at the same integrated model from different perspectives. These
view-points are just a special case of views that abstract from and hide
irrelevant details of the underlying model.

• Domain-specific or even project-specific modeling approaches are either based
on meta-case tool technology that excludes the usage of standard modeling
tools or resort to the implementation of specific wrappers and add-ons on
top of standard tools. In some cases these wrappers are a special kind of
(meta) model view.

• Furthermore, it is often necessary to decouple the implementation of model
checking and model transformation tools from vendor-specific tool inter-
faces. Again views are a standard technology to standardize the modeling
concepts and interfaces of a family of tools for the same domain and to
simplify the replacement of a specific tool.

These were our motivations for a new line of research that uses the declar-
ative model transformation approach of triple graph grammars (TGGs) as
a starting point. A new variant of TGGs, so-called VTGGs, are introduced
for view specification purposes. Combining TGGs and VTGGs results in a
unified meta-model-based view definition and model transformation approach.

The rest of this paper introduces VTGGs and is structured as follows:
In Section 2 an example of two interdependent meta models is introduced,
where one meta model plays the role of a view onto the other one. A short
discussion of related work concerning the construction of (database) views is
presented in Section 3. The following Section 4 introduces VTGGs, a modified
variant of TGGs used for view specification purposes. Section 5 concludes
this paper, discusses open issues, and future work. Please note that a detailed
presentation of the translation process of VTGG rules into view implementing
graph transformation rules had to be omitted due to lack of space.

2 Running Example

This section introduces the running example that is used throughout the rest
of the paper. The overall scenario we have in mind is related to a model-based
software development process (Fig. 1a). A software engineer uses two different
COTS (commercial of the shelf) tools for requirements elicitation and software
design purposes (like DOORS and Matlab/Simulink). Initially, these tools are
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not related to each other and offer rather generic means as well as APIs for
any kind of software engineering project. Engineers using these tools are faced
with the following problems: they have no means to abstract from the details
of a specific tool’s API, and they are usually running into problems when
domain-specific development data integration and transformation rules have
to be specified. Not only for the last purpose, model transformation languages
are needed that are able to operate on top of model views. In more detail, a
view definition approach is needed that supports

• definition of multiple overlapping views for a single model,

• update propagation from views to models and vice versa,

• synchroneous and asynchroneous propagation of changes,

• manipulation of virtual (non-materialized) views,

• high-level declarative specification of views,

• model-to-view mappings with complex restructuring operations.

TMM::Folder

type
text

TMM::ToolObject

TMM::Link

TMM

super  1

sub  0..*

mainGoal
Specification

SW_FeatureGroup

SW_Feature

name
description

ReqObject

name
ToolElement

hasSubObjects

PMM

{view}

source 0..*

hasLink target 0..*

specification 1

group 0..*

consistsOf

group 1

feature 0..*

hasFeatures

folder 1

object 0..*

hasObjects

target 1

in 0..*

hasTarget
source 1

out 0..*

hasSource

VTGG
{model}

tool data

view view

tool data

e.g. 
requirement tool,...

update

transformation

e.g. 
test case tool, 

sw architecture tool,..

update

a) b)

Fig. 1. a) Range of use of view creation, b) VTGG meta model (schema)

In the sequel, we will first present the example of a project-specific meta
model (view) definition (PMM) together with its related tool-specific meta
model (TMM) using MOF 2.0 as a meta modeling language (cf. Fig. 1b).
The PMM defines some basic concepts for a feature-oriented requirements
engineering process, whereas the TMM reflects to a limited extent the data
models of general purpose requirements engineering tools like DOORS. In
principle, specialization is only with the usage of non-derivable abstract super-
classes possible. Due to lack of space, the correspondences are simplified to
the VTGG package between both meta models.

2.1 Project Meta Model

Fig. 1b) (PMM package) shows the project-specific meta model of our re-
quirements engineering example. The class Specification represents the
root of a two-level hierarchy of features of a regarded software product. Each
project has only one Specification instance (a project is represented by
the PMM). In addition, the Specification has an attribute mainGoal, a
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text block which explains the most important goals of the software develop-
ment project. Furthermore, a specification may have an arbitrary number of
SW_FeatureGroup (software feature group) elements. For the purpose of this
paper we present only one kind of feature group and omit, e.g., a distinction
between system, hardware, and software features. The SW_FeatureGroup as
well as SW_Feature inherit the attributes name and description from the
abstract class ReqObject. The attribute name introduces a short identifier,
the attribute description a text block with a more detailed explanation of
the regarded requirement. Moreover, SW_FeatureGroup is a structural ele-
ment that is used as a container for a group of related software describing
features SW_Feature (cf. association hasFeatures). Each SW_Feature be-
longs to only one SW_FeatureGroup. Finally, the association hasLink) is used
to link related features to each other.

2.2 Tool Meta Model

The tool-specific meta model depicted in Fig. 1b) (TMM package) represents a
cut-out of the data structure of a typical requirements engineering CASE tool.
The class folder is the top-level structural element of this tool. A Folder con-
tains a set of ToolObjects (association hasObjects). Any ToolObject pos-
sesses a type attribute as well as a text block attribute. Additionally, it con-
tains a set of ToolObject instances in turn (cf. association hasSubObjects).
The type attribute is used to clearly distinguish different sorts of requirements
objects stored in the regarded tool; text fragments of (almost) arbitrary length
are assigned to text attributes. Furthermore, two ToolObjects may point to
each other via associations to separate Link class instances (cf. associations
hasSource, hasTarget). All introduced classes of the TMM inherit the at-
tribute name from the abstract class ToolElement.

3 Related Work

In the previous section we have already outlined our requirements for a model
transformation approach that supports definition and manipulation of model
views. When we are looking for tools that offer this kind of support we have
to distinguish two different categories: meta-case tools like Pounamu [17] or
MetaEdit+ [11] mainly use the term “model view” as a short-hand for “vi-
sualization of a model” (Model-View-Controller design pattern). What we
have in mind in this paper is something different: logical model views in the
sense of the database community that are again models and not just visualiza-
tions of models. A majority of the afore-mentioned tools offers rather specific
support for the visualization of models, but no support for the definition of
logical views. Approaches like MViews [5] or view transformations for AHL
nets [3] are borderline cases. They support the definition of logical views, but
presented examples deal with visualizations of models only.
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To the best of our knowledge no meta-case tool or model transformation
approach fulfills our model view definition requirements. This is especially
true for OMG’s QVT (Query, View, and Transformation) [1] language stan-
dard which excludes in its current version explicitly any support for the def-
inition of views. Of course, one may argue that a view of a model is just
another model which is kept consistent with its underlying model using stan-
dard model transformation techniques. ATOM3 is a prominent example of a
meta modeling tool that favors this approach [6]. ATOM3 adopted the pro-
posal made in [13] and uses a special form of triple graph grammars (TGGs)
for the declarative definition of updatable views. These views are mainly used
for visualization purposes and complex restructuring operations like mapping
of view associations onto model objects (or vice versa) are not yet supported.

The main drawback of all view definition solutions based on unmodified
model transformation techniques is that we have to materialize all views in-
stead of using more light-weight software engineering concepts for the con-
struction of abstraction layers. What we would like to achieve is that views
on top of extensionally defined models are implemented as functional API
layers. Therefore, we are looking for an approach that supports the declar-
ative specification of (meta) model views plus the automatic generation of
“light-weight” view API implementations based on standard adapter design
patterns.

The view definition approaches presented in the database management
literature suffer from similar drawbacks. Relational database management
systems like Oracle offer very limited support only for the definition of up-
datable views; traditionally updatable views are restricted to projection of
columns and selection of rows of an underlying base table. More sophisticated
data integration approaches for data warehouses or federated database systems
like AMOS-II [16] often limit their support to queries that are translated and
propagated using so-called mediator concepts. And even database manage-
ment systems like SBQL [9] with their advanced versions of “instead of trigger”
concepts rely on rather low-level procedural implementations of the transla-
tion of basic query and update operations on views into queries and updates
of the underlying databases. The most interesting view definition concepts
have been recently added to federated P2P DBMS. They rely on bidirectional
schema transformations and maybe used to keep a set of databases with a set
of materialized derived views in a consistent state [10]. The basic constructs
of these schema transformations are comparable to the low-level operational
model manipulation constructs of QVT; higher level specification concepts are
not yet available.

To summarize, we are not aware of any higher-level languages and tools
that offer support for an integrated specification of model transformations and
non-materialized updatable views comparable to the modified triple graph
grammar concept presented here.
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4 Triple Graph Grammars

This section describes the basics of our unified model view definition approach
based on triple graph grammars (TGGs). Since the introduction of TGGs
in [14], quite a number of modifications and extension have been published
[2,7,8]. The model view definition approach presented here is based on the
model transformation extensions of [7], where TGGs have been combined with
MOF 2.0. Thus, the meta models of our running example are also MOF 2.0
compliant (Fig. 1b), i.e. MOF 2.0 plays the role of a graph schema definition
language for TGGs.

In principle, a triple graph grammar is a regular graph grammar with the
empty graph as the axiom and a set of graph grammar rules. These rules gen-
erate a language of graphs or, more precisely, the set of all consistent graphs
which is a subset of the set of all schema-compliant graphs. The interesting
point of a TGG is the fact that specified rules consist of three subrules and
generated graphs consist of three related subgraphs. Two components always
represent a pair of related graphs and the third component introduces trace-
ability relationships between the regarded pair of graphs. Furthermore, TGGs
are used as input for a transformation process that yields a set of regular so-
called operational graph transformation rules tailored for a specific purpose
like “forward” model transformation or “backward” propagation of changes.

In the following, we will introduce a new variant of TGGs, called VTGGs
for model view definition purposes. VTGGs introduce a new set of restrictions
for their rules combined with a new way how to translate TGG rules into
regular graph transformations rules.

The following rules demonstrate how to use TGGs for view definition pur-
poses and what modifications have been required for that purpose. The rules
are depicted within the scope of the introduced example in chapter 2. The
mapping relationships from virtually existing PMM objects to really existing
TMM objects are modeled as links between objects combined with the tag
{map} (correspondence node). In all cases elements on the left side of a rule
belong to the virtually existing view computed from the really existing ele-
ments on the right of side of a regarded rule. According to the approach of
[8], the creation of new objects or links are denotated with the {new} tag.
Invariant constraints are denotated as OCL constraints.

4.1 Creating the Initial Model and View Elements

This subsection introduces the initial VTGG rule that matches the empty
axiom graph and creates the top-level object of the underlying model and its
view. The application of a TGG rule to a pair of related model graphs is based
on finding matches for all untagged elements of the rule. In the initial state
of the derivation of a model and its view there are no objects which could be
matched by any pattern.

Fig. 2a shows a simplified version of the first rule of our example, which
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spec : PMM::Specification
name = "Specification"

folder : TMM::Folder
{new}

{new}
{new}

{map}

mainGoal
spec : PMM::Specification

name = "Specification"
folder : TMM::Folder

name = "mainGoal"
text
type = "goal"

toolObject : TMM::ToolObject

{new} {new} {new}

{new}

{new}{spec.mainGoal == toolObject.text}

{map}

a) b)

Fig. 2. Mapping of classes, attributes and attributes to classes

is extracted form the rule in Fig. 2b. It specifies that a new Folder instance
is really created, when we want to create a new Specification instance.
For this purpose both the Specification instance on the PMM side and
the Folder instance on the TMM side carry the tag {new}. All view objects
creating VTGG rules have a similar form. A single instance of a new virtual
view object is mapped onto a single instance of a new real object (often called
“seed object” in the DBMS literature). This seed object maybe linked to
an arbitrary number of new additional helper objects in the general case.
The class name Specification (modeled in the PMM 1b) is assigned to the
attribute name in order to identify the folder as a Specification.

More generally spoken, this view shows the simplest form of a VTGG rule,
an object to object mapping. Furthermore, the rule shows the simplest case of
handling the attributes of virtual (view) and real objects. In contradiction to
the meta model of Fig. 1b we do assume that Specification instances do not
possess any attributes and that they are translated into Folder objects with
the value "Specification" assigned to their attribute name. More complex
relationships between attribute values of view and real objects are explained
later on.

4.2 Creating Isolated Model and View Objects

The following rule shows in addition to the rule above, how to map a virtual
attributed view object onto a set of real attributed objects.

Fig. 2b displays the entire initial VTGG rule for our running example.
Additional to the rule fragment described above (Fig. 2a), this rule maps the
attribute mainGoal of class Specification to an own object toolObject

on TMM side. Furthermore, the two attributes name and type are set to
constant values for identification purposes. The OCL constraint annotation of
the {map} relation specifies that the value of the attribute mainGoal is mapped
to the toolObjects attribute text. For navigation purposes as modeled in
the TMM, a link between the folder and toolObject is created. Of course,
there is no corresponding link on PMM side.

4.3 Creating Context-Dependent Model and View Objeccts

This subsection describes a VTGG rule for creating new objects that are linked
to already existing objects.
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spec : PMM::Specification folder : TMM::Folder

{new}
{new} {new}

name
description

sw_FG : PMM::SW_FeatureGroup
name
text
type = "SW_FeatureGroup"

item : TMM::ToolObject
{new}{new}

{sw_FG.name == item.name
sw_FG.description == item.text}

a)

sw_FG : PMM::SW_FeatureGroup item : TMM::ToolObject

name
description

sw_F1 : PMM::SW_Feature
name
text
type = "SW_Feature"

subItem : TMM::ToolObject

{new}
{new} {new}

{new}
{new}

{sw_F1.name == subItem.name
sw_F1.description == subItem.text}

b)

{map}

{map} {map}

{map}

hasObjectsconsistsOf hasObjectshasFeatures

Fig. 3. Mapping of associated classes

In Fig. 3a the new object sw_FG, which represents an instance of the class
SW_FeatureGroupe, is created with an additional new link to the already ex-
isting Specification. Also sw_FG is mapped to a ToolObject instance item

as a view, like described in the section before. For identification purposes
we assign the constant "SW_FeatureGroup" to the attribute type. Further-
more, the OCL constraint of the rule states that sw_FG.name is mapped onto
item.name and that sw_FG.description is mapped onto item.text. In ad-
dition, the association of the created sw_FG instance with the context object
spec corresponds to the association of the created item instance with the
context object folder. In the same manner the rule in Fig. 3b is modeled.
The creation of a new instance of SW_Feature corresponds to the creation of
a ToolObject instance, subItem. Also the link will be created like described
before. The second rule represents the association of ToolObject to itself as
shown by the TMM (Fig. 1b).

4.4 Mapping of Associations

As an enhancement of the hitherto existing TGGs (dealing with object map-
pings only), this subsection describes a new type of rules that translates a
virtual association between two objects into an arbitrarily complex substruc-
ture of the underlying model graph.

sw_F1 : PMM::SW_Feature

sw_F2 : PMM::SW_Feature

item : TMM::ToolObject

subItem : TMM::ToolObject

{new}  hasLink
name = "hasLink"

link : TMM::Link

{new}
hasTarget

{new}

in

out

{map}

{map}

source

target
{new}
hasSource

Fig. 4. Mapping of an association to a class

As depicted in Fig. 4, the new link hasLink between the two “existing”
instances of SW_Feature corresponds to the new instance of the class Link

together with its two associated links hasTarget and hasSource. These links
are created at the same time as the new Link object and establish the needed
associations to the regarded ToolObject instances. This rule can be used
for creating cross-reference relationships between already existing related re-
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quirement instances. In order to be able to distinguish different kinds of
cross-references the class Link has the attribute name (parallel links are not
possible). The association name "hasLink" as a string, is assigned to this
attribute.

4.5 Interpretations of VTGGs

One goal of using VTGGs is the automatic translation of VTGG rules into
executable Java code. The translation process may associate quite different
operational semantics with a VTGG as follows: in a first step we translate
a VTGG graph schema into a regular graph schema (MOF 2.0 meta model)
and the set of VTGG rules into a set of regular graph transformation rules.
Different translations are under development for maintenance of fully materi-
alized views (as described in [de Lara])“light-weight” views implemented by
a layer of adapter objects (object adapter pattern [4] p. 141), and purely
virtual views which reuse model objects as adapter objects and which do not
create any additional objects or links at all (class adapter pattern [4] p. 141).
The generated rules are then compiled into Java code using the standard
code generator of the graph transformation tool Fujaba [15]. This flexibility
of (V)TGGs in general is one of the main advantages of the presented view
specification approach.

5 Conclusion

In this paper we have introduced a modified version of triple graph grammars
for view specification purposes. These VTGGs differ from regular TGGs in
four ways:

• The view defining side (subrule) of a VTGG rule consists of a single new
object (also with links to already existing objects) or link only; this single
intensionally defined view element is mapped onto an arbitrarily complex
substructure of the extensionally defined underlying model.

• TGG rules used for model integration purposes always add at least one
object to each regarded model, whereas VTGG rules for associations add a
single link to the model view only.

• The translation of a VTGG into a regular Fujaba graph transformation
system does not preserve the involved meta models, but creates a new meta
model by weaving the class hierarchies of the input meta models. (not
presented here due to lack of space)

• Graph transformation rules generated from VTGG rules do not manipulate
two related model instances, but translate read and write operations on the
virtually existing model view into read and write operations of the actually
existing underlying model. (not presented here due to lack of space)

Precise definitions of different variants of VTGGs are under development
as well as an implementation of the (V)TGG approach as a plug-in of the
Fujaba/MOFLON meta modeling environment [12].
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Abstract

In model-based software development, a complete design and analysis process in-
volves designing the system using the design language, converting it into the analysis
language, and performing the verification and analysis on the analysis model. Graph
transformation is increasingly being used to automate this conversion. In such a
scenario, it is very important that the conversion preserves the semantics of the
design model. This paper discusses an approach to verify this semantic equivalence
for each transformation. We will show how to check whether a particular transfor-
mation resulted in an output model that preserves the semantics of the input model
with respect to a particular property.

Key words: Graph Transformation, Verification, Bisimulation.

1 Introduction

Domain specific modeling languages (DSMLs) greatly simplify the task of the
system designer, presenting a higher level of abstraction that is easy to work
with. DSMLs also facilitate analysis by providing an appropriate abstraction.
However, it is not always the case that the same language is suitable for both
design and analysis. For instance, Statecharts are very powerful for designing
concurrent systems, but their analysis is usually not simple. Extended Hybrid
Automata (EHA) were introduced in [3] as an intermediate, simpler language
with a more restricted syntax. Subsequent work [4] has shown that this in-
termediate format can be used to generate verification models that may be
verified using model checking tools such as SPIN [5].

1 The research described in this paper has been supported by a grant from NSF/CSR-EHS,
titled “Software Composition for Embedded Systems using Graph Transformations”, award
number CNS-0509098.
2 Email: ananth@isis.vanderbilt.edu
3 Email: gabor.karsai@vanderbilt.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Narayanan and Karsai

Fig. 1. A sample Statechart model

Graph transformation has been suggested as a powerful and convenient
method for transforming design models into analysis models. The transfor-
mation must ensure that the analysis model preserves the semantics of the
design model, and truthfully represents the design. As a first step towards
this goal, it would be useful to establish that the transformed model is seman-
tically equivalent to the source model, with respect to the property we wish
to verify. In this paper, we study this notion of equivalence between the two
graphs, and a way to check if there exists a bisimulation relation between the
graphs. If it is possible to prove that the analysis model behaves in exactly
the same way as the design model with respect to a certain property, then we
can conclude that checking for the property in the analysis model is equivalent
to checking for the same property in the original design model. In the follow-
ing sections, we will go through the basics of graph transformation principles
and tools, and demonstrate our approach to checking the equivalence using
Statechart models and EHA models.

2 Background

2.1 Model Integrated Computing

Model Integrated Computing (MIC) [1] is an approach to system development
using domain specific models to represent the architecture and behavior of the
system and its environment. The development process involves the creation
of a meta-model that defines the abstract syntax of the domain, from which a
Domain Specific Design Environment (DSDE) is generated. The DSDE can be
used to create domain specific models. These models are usually transformed
to other formats, such as executable code, or to perform analysis. The MIC
tool suite containing GME [6] and GReAT [7] were used in developing the
examples for this paper.

2.2 GReAT

The transformations in this paper will be written in GReAT [7], a language for
specifying graph transformation rules. GReAT belongs to the class of practical
graph transformation systems such as AGG [8], PROGRES [9] and FUJABA
[10]. It uses UML and OCL to specify the domains of the transformation.
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Fig. 2. EHA meta-model in UML

GReAT allows users to compose source and target meta-models by defining
temporary vertex and edge types that can span across multiple domains and
will be used temporarily during the transformation. This enables us to tie
the different domains together to make a larger, heterogeneous domain that
encompasses all the domains and cross-links. This feature plays an important
role in our approach to verifying transformations.

2.3 Statecharts

State machines, based on Harel’s statecharts [11] are used in UML to repre-
sent the reactive behavior of systems. State machines are constructed from
states and transitions. States may be simple, composite or concurrent. States
may be connected by directed edges called transitions. Transitions connecting
states contained in different levels of hierarchy are called inter-level transi-
tions. Figure 1 shows an example of a Statechart. Transitions 2 and 3 in the
figure are inter-level. A state configuration is a maximal set of states that
the system can be active in simultaneously. State configurations are closed
upwards, meaning that if a system is in a state A, then it must also be in A’s
parent state. Some valid state configurations in Figure 1 are {A}, {B, F, H}
and {B, G, I}.

2.4 EHA

Extended Hierarchical Automata (EHA) were introduced as an alternate rep-
resentation to provide formal operational semantics for Statechart diagrams.
EHA offer an alternative simplified hierarchical representation for Statecharts
that helps in correctness proofs [2]. The meta-model for EHA in UML is
shown in Figure 2.

Each Statechart model can be represented by one EHA model. Every com-
pound state in the Statechart model is represented by a Sequential Automaton
in the EHA. There is one top level Sequential Automaton for the EHA, which

187



Narayanan and Karsai

represents the initial automaton. Each state in the Statechart has a corre-
sponding Basic State in the EHA. If a state is compound in the Statechart,
then it is further “refined” into a Sequential Automaton in the EHA, which
will contain Basic States corresponding to all the states within the compound
state in the Statechart. Similarly, these states may be refined further.

Transitions in EHA are always within a single Sequential Automaton, i.e.
there are no inter-level transitions in an EHA. Inter-level transitions in State-
charts are elevated based on the scope of the transition, to the Sequential Au-
tomaton representing the lowest common ancestor of the start and end states
of the transition in the Statechart. EHA transitions have special attributes
called “source restriction” and “target determinator”, which keep track of the
actual source and target of the transition in the Statechart. The conversion
of Statechart models into EHA models will be discussed in detail in the next
section.

3 Verifying graph transformations

Graph transformation systems such as GReAT allow users to transform models
of one meta-model to models of another meta-model using a collection of
pattern matching rules. However, it is not certain whether the output of the
transformation preserves the semantics of the source model that we intend to
analyze. Important semantic information may easily be lost or misinterpreted
in a complex transformation, due to errors in the graph rewriting rules or in
the processing of the transformation. We need a method to verify that the
semantics that we are interested in analyzing are indeed preserved across the
transformation.

We propose an approach to check whether the semantics of the input model
were preserved in the output model of a transformation. We are not trying
to prove the correctness of the graph transformation rules in general, but
check if a particular generated model is a valid representation of a particular
source model, in order to verify a particular property about the source model.
We accomplish this by defining an equivalence relation between objects of the
input and the output model, and use this to check if the two models are similar
in behavior.

3.1 Bisimilarity

Two systems can be said to be bisimilar if they behave in the same way, i.e.
one system simulates the other and vice-versa. A bisimulation relation can be
defined formally as follows.

Definition 3.1 Given a labeled state transition system (S, Λ, →), a bisimu-
lation relation is defined as an equivalence relation R over S, such that for all
p, q ∈ S, if (p, q) is in R, and for all p’ ∈ S and α ∈ Λ, p →α p’ implies that
there exists a q ’ ∈ S such that q →α q ’ and (p’, q ’) is in R, and conversely,
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for all q ’ ∈ S, q →α q ’ implies p →α p’ and (p’, q ’) is in R.

Though this definition is given in terms of a single set S, we can think
of equivalence of two transition systems in terms of a global set containing
both the system’s states. In our approach to verifying whether the seman-
tics are preserved across a transformation, we will check whether there is a
bisimulation relation between the source model and the target model.

3.2 Transforming Statecharts into EHA

The EHA notation for Statecharts can be obtained by a graph transformation
process [2]. The basic steps of the transformation are listed below:

(i) Every Statechart model can be transformed into an EHA model, with
one top level Sequential Automaton in the EHA model.

(ii) For every (primitive or compound) state in the Statechart (except for
regions of concurrent states), a corresponding basic state is created in
the EHA.

(iii) For every composite state in the Statechart model, a Sequential Automa-
ton is created in the EHA model, and a “refinement” link connects the
Basic State in the EHA corresponding to the state in the Statechart, to
the Sequential Automaton in the EHA that it is refined to.

(iv) All the contained states in the composite state are further transformed
by repeating steps (ii) and (iii). The top level states in the Statechart
will go into the top level Sequential Automaton in the EHA.

(v) For every non-interlevel transition in the Statechart model a transition is
created in the EHA between the Basic States corresponding to the start
and end states of the transition in the Statechart model.

(vi) For every inter-level transition in the Statechart model, we trace the scope
of the transition to find the lowest parent state sP that contains both the
source and the target of the transition. A transition is created in the
EHA, in the Sequential Automaton corresponding to sP . The source of
the transition in the EHA is the Basic State corresponding to the highest
parent of the source in the Statechart that is within sP , and the target
in the EHA is the Basic State corresponding to the highest parent of the
target in the Statechart that is within sP . The transition in the EHA
is further annotated, with the “source restriction” attribute set to the
basic state corresponding to the actual source in the Statechart, and the
“target determinator” set to the basic state corresponding to the actual
target in the Statechart.

Figure 3 shows the EHA model obtained by transforming the Statechart
model shown in Figure 1. The table on the top right of the figure shows the
values for the source restriction and target determinator annotations for two
of the transitions.
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Fig. 3. Sample EHA model

3.3 Behavioral equivalence of the Statechart model and the EHA model with
respect to reachability

A “state configuration” in a Statechart is a valid set of states that the system
can be active in. If a state is part of an active configuration, then all its parents
are also part of the active configuration. A transition in the Statechart can
take the system from one state configuration to another state configuration,
where the source and target states of the transition are subsets of the initial
and final state configurations. A state configuration Sf in the Statechart is
said to be “reachable” from a state configuration Si if there exists a series of
valid transitions that can take the system from Si to Sf .

Similarly, a state configuration in an EHA model is a set of Basic States.
If a Basic State is part of an active configuration, and is part of a non-toplevel
Sequential Automaton, then the Basic State that is refined into this Sequential
Automaton is also a part of the active configuration. For instance, B’, F’, I’ is
a valid active configuration in Figure 3. A transition in the EHA can take the
system from one state configuration to another state configuration, where the
union of the source of the transition and its source restriction are a subset of
the initial state configuration, and the union of the target of the transition and
its target determinator are a subset of the final state. A state configuration
Sf in the EHA is said to be “reachable” from a state configuration Si if there
exists a series of valid transitions that can take the system from Si to Sf .

An EHA model truly represents the reachability behavior of a Statechart
model, if every reachable state configuration in the Statechart has an equiva-
lent reachable state configuration in the EHA and vice versa.

For every state s in the Statechart, we have a unique Basic State s ’ in the
EHA. We can specify an equivalence relation R, such that (s, s ’) ∈ R and
say that s ’ is equivalent to s. A state configuration S in the Statechart is
equivalent to a state configuration S ’ in the EHA if for all s ∈ S there is an
equivalent s ’ ∈ S ’, and for all s ’ ∈ S ’, there is an equivalent s ∈ S. Furthermore,
for every transition t in the Statechart, we have a unique transition t ’ in the
EHA. We can specify an equivalence relation Rt, such that (t, t ’) ∈ Rt and
say that t ’ is equivalent to t.

Given the relations R and Rt, we can check if there is a bisimulation relation
between the two models using the following definition.

Definition 3.2 Given a state configuration SA in the Statechart model, and
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its equivalent state configuration SB in the EHA model, the equivalence is a
bisimulation if for each transition t from SA to a state configuration SA’ in the
Statechart, there exists an equivalent transition t ’ in the EHA from SB to a
state configuration SB’, and SB’ is equivalent to SA’ (and vice versa)

If this relation is a bisimulation, then verifying the EHA model for reach-
ability will be equivalent to verifying the Statechart model for reachability. If
the check fails, it means that there was an error in the transformation.

3.4 Checking for bisimilarity by using cross-links to trace equivalence

GReAT allows us to link input model elements to target model elements using
special associations that belong to a composite meta-model, and we call them
cross-links. These cross-links are maintained throughout the transformation,
and used to trace the equivalence relations R and Rt.

When a transformation creates the Basic States and the transitions in the
target EHA model, it is known to which states and transitions they correspond
to in the Statechart model. What is not certain is whether all states in the
Statechart are transformed correctly, all composite states are refined correctly,
all transitions are transformed correctly, and all transitions connect the correct
sets of states. When a rule matches a state or a transition in the Statechart
and creates the equivalent Basic State or transition in the EHA, a cross-link
association called “equivalentTo” is created between the Statechart object
and its corresponding EHA object. When the transformation completes, the
relations R and Rt can be traced using these associations.

Rather than checking for all possible state configurations in the Statechart,
it would be more efficient to consider every transition in the Statechart and its
minimal required source configuration. Any superset of this state configura-
tion will be a valid starting configuration, and will not have to be investigated
further. For every transition t in the Statechart model, and its equivalent
transition t ’ in the EHA model, if their start state configurations SA and SB

are equivalent, and also their end state configurations SA’ and SB’ are equiv-
alent, then there exists a bisimulation for this particular instance, according
to our definition.

The implementation follows straightforwardly from the discussion. At the
end of the transformation, we have access to the source model graph, the
output model graph, and also the cross-links between the two. We collect the
set of all the transitions from the source graph. For each transition in this set,
we find the equivalent transition in the EHA by following the “equivalentTo”
cross-link. Now we can compute the minimal source state configuration SA for
the transition in the Statechart model, and the source state configuration SB

for the EHA model. We check the equivalence of SA and SB by taking every
state s in SA, finding its equivalent state s ’ form the EHA, and checking if
s ’ is in SB, and vice versa. The target states are also checked similarly. If
this check succeeds for all transitions in the Statechart, and there are no more
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transitions in the EHA, then the two systems can be said to be bisimilar with
respect to checking reachability. In other words, we can conclude reachability
in the Statechart model by verifying it in the EHA model. If this check fails,
then there may be errors in the transformation, and the generated EHA model
does not truly represent the input Statechart model.

The final step is checking the reachability in the EHA model. [4] provide
ways to generate a Promela model from an EHA model, which can be checked
using the SPIN model checker. To check the reachability of a certain state
configuration, a claim can be attached to the SPIN model that verifies whether
that configuration is reachable in the model. Alternately, a claim can be made
in SPIN that says that the state is not reachable. If it is indeed reachable, the
SPIN verifier refutes this claim and presents a counter-example, as a trace that
leads to this state configuration. This represents a valid series of transitions
in the EHA that leads to the specified state configuration. As a corollary,
we may use the cross-links created during the transformation, to reproduce
this trace in the Statechart model. In this way, reachability in the Statechart
model can be verified by verifying it in the EHA model.

It should be noted that the technique described above is not an attempt
to prove the correctness of the graph transformation rules in general. This is
a method to verify if a particular instance of a transformation is valid, and
must be executed for each transformation individually. We also do not try to
prove the general semantic equivalence of models. We identify the equivalence
relations with respect to a specific property and test if there is a bisimulation.
The complexity of the transformation is not increased significantly by this
method. As the cross-links are created every time the objects of the output
model are created, and as we directly trace these cross-links during checking,
the complexity of the check is proportional to the size of the model, and not
the state space of the model. In other words, we can perform this check
without actually having to execute the models.

4 Related work

We now discuss some related work in the area of automatic verification using
model checking, graph transformations and other types of proofs.

4.1 Verifying properties by converting models into an intermediate format

[2] [3] convert Statechart models into EHA models. [4] create Promela models
from the EHA models, which can be verified using the SPIN model checker.
Our approach will be useful in these instances, to provide a certificate that
the intermediate formats truly preserve the property we wish to verify using
them. An interesting research problem is whether our approach can be used
to check whether the generated Promela model (which is code in plain text)
truly represents the EHA model it was generated from.
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4.2 Operational semantics using graph transformations

[12] [13] [14] are some works on using graph transformation rules to specify
the dynamic behavior of systems. [14] presents a meta-level analysis technique
where the semantics of a modeling language are defined using graph transfor-
mation rules. A transition system is generated for each instance model, which
can be verified using a model checker. [15] verifies if a transformation preserves
certain dynamic consistency properties by model checking the source and tar-
get models for properties p and q, where property p in the source language is
transformed into property q in the target language. This transformation re-
quires validation by a human expert. Our method does not check whether the
models themselves satisfy a property, but automatically does check whether
the models are equivalent with respect to that property.

4.3 Certifiable program generation

[16] considers the problem of verification of generated code by focusing on
each individual generated program, instead of verifying the program generator
itself. The generator is extended such that it produces all logical annotations
that are required for formal safety proofs in a Hoare-style framework. These
proofs certify that the program does not violate certain conditions during its
execution. While the proofs in this case are not related to semantic correctness,
the idea of providing an instance level certificate of correctness instead of
proving the correctness of the generator has been a great motivation for our
ideas.

5 Summary

We have described a method for checking if a certain execution of a transfor-
mation produced an output model that preserved the semantics of the input
model. This check is important when the output model is used for verifica-
tion and analysis, as errors in the transformation may result in an output
model that does not truly represent the input model. We are studying how
such an equivalence can be established when the target model abstracts away
a lot of detail in the source model. Our method does not attempt to prove
the correctness of the transformation itself, but checks whether a particular
execution produced a correct result. This check does not adversely affect the
complexity of the transformation.
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Abstract

We describe the design and the present state of the verification tool Augur 2

which is currently being developed. It is based on Augur 1, a tool which can
analyze graph transformation systems by approximating them by Petri nets. The
main reason for the new development was to create an open, flexible and extensible
verification environment. Also, compared to the previous version, Augur 2 will
include more functionality and new analysis techniques.

1 Introduction

In the last few years we have developed the verification tool Augur 1 (or
simply Augur) [12] which analyzes graph transformation systems (GTSs)
by approximating them with Petri nets. Using this tool we have conducted
several case studies, verifying, for instance, a mobile system with a firewall
[4], a mutual exclusion protocol [10] and the insertion of elements into red-
black trees [2]. Other examples of systems for which our technique is suitable
are dynamic pointer structures on a program heap, object graphs and re-
configurable networks with mobile processes. The tool can be obtained from
http://www.fmi.uni-stuttgart.de/szs/tools/augur/.

We started with a small tool that reads GTXL files and produces GXL
files (GXL respectively GTXL are XML standards for the encoding of graphs
and graph transformation systems [14]). Afterwards we faced the constant
necessity of adding new features and new functionality. More specifically,
we added analysis algorithms for Petri nets [20] based on coverability graphs
[15] and backward reachability [1]. Furthermore we established an interface to
Graphviz 1 for visualization purposes. We also added the possibility to specify
forbidden paths in graphs using regular expressions [16], we implemented the

? Research supported by DFG project SANDS.
1 http://www.graphviz.org/
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finite complete prefix technique for graph transformation systems [5,8] and
we started to extend the tool in order to use it for the purpose of test case
generation [11]. Probably the most extensive addition was to add support for
counterexample-guided abstraction refinement [13].

The architecture of Augur 1 was strongly oriented towards the concrete
task of approximated unfolding of GTSs. This made all changes mentioned
above hard to implement and led to several versions of the tool, each with a
different functionality. Hence the new version of Augur (called Augur 2)
will have a more general and extensible software architecture and will have
more functionality concerning analysis and visualization methods.

Another new feature of Augur 2 will be the possibility to work with
attributed graphs, i.e., graphs with (integer and string) attributes assigned
to nodes and edges. As a future research topic we plan to extend existing
analysis techniques accordingly. Support for input and output will also be
extended, for instance we are currently working on an interface to Agg [19].
Also, we plan to have a simple pointer-manipulating programming language,
which can be translated into graph rewriting, as an additional means of input.

The kernel part of the tool is already developed and has successfully passed
through a number of tests. At the moment the tool is being extended with
various visualization and analysis methods.

2 Graph Transformation Systems and Verification Tech-

niques

We use hypergraph rewriting where left-hand and right-hand sides can be
(almost) arbitrary hypergraphs. Compared to the double-pushout approach
our GTSs have to observe some restrictions: especially, the interface graph of
a rule must be discrete, no nodes can be deleted and rules must be consuming,
i.e., at least one edge is deleted. While the last two restrictions are essential
for the unfolding-based approach we are following, the first restriction (the
interface is discrete) will be lifted in Augur 2.

In order to illustrate the basic ideas behind the tool, we will start with
a simple example. Fig. 1 shows a GTS, which models a network consisting
of connections, private servers, internal and external processes, where the
network is constantly extended during runtime. Furthermore processes may
cross connections. The property we want to verify is that no external process
will ever visit a private server. We reduce this property to “no Error edge will
be created” by adding a rule creating an edge labelled “Error” as soon as the
forbidden situation has been detected.

Since GTSs are in general Turing-powerful over-approximation techniques
are needed for their analysis. In our case we abstract GTSs by Petri nets,
which are a conceptually simpler formalism and for which several verification
techniques have already been developed. More specifically, the tool is based on
an approximated unfolding technique for GTSs, presented in [3]. Compared to
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Fig. 1. Example graph transformation system.

a standard unfolding technique we are additionally using folding steps which
over-approximate, but guarantee a finite approximation. The tool constructs
an over-approximation, which is a so-called Petri graph (i.e., a hypergraph
with a Petri net structure over it, see [3]). The hyperedges are at the same
time the places of the net. Fig. 2 depicts the coarsest over-approximation for
the example GTS in Fig. 1.

Internal
Process

Connection

Crosses Connection
Internal Process

1

Process
External

Private
Server

1
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12
Crosses Connection
External Process

Error

Error

Create Connection

Fig. 2. Petri graph approximating the GTS (first approximation).

The Petri graph is an over-approximation in the following sense: (i) every
reachable graph can be mapped to its hypergraph component via a (usually
non-injective) graph morphism and (ii) the multi-set image of its edges corre-
sponds to a reachable marking of the net. For instance the five edges of the
initial graph correspond to the five tokens of the initial marking of the net.
More generally there exists a simulation relation between the reachable graphs
and the reachable markings of the net, obtained by firing enabled transitions.
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More details can be found in [3,6].

If the over-approximation is too coarse and does not allow to verify the
property, techniques for refining the approximation are available. One such
technique is counterexample-guided abstraction refinement [13] which starts
from a concrete counterexample found by coverability checking on the Petri
net. Another possibility is to use depth-based refinement [6] which con-
structs an over-approximation exact up to a pre-defined depth in the unfold-
ing. Counterexample-guided abstraction refinement usually results in smaller
approximations and faster verification.

The edge “Error” of the Petri graph in Fig. 2 can be covered by firing
transition “Error”. This means that either the property does not hold or the
over-approximation is too coarse. One can show that the run is spurious,
i.e., it has no counterpart in the original GTS, which indicates that we have
approximated too much. Applying abstraction refinement gives us a refined
Petri graph, which is depicted in Fig. 3. There exists no edge labelled “Error”,
i.e., such an edge can also not be covered by any reachable marking. So, from
the correspondence between reachable graphs and markings it follows that the
property has been successfully verified.

Connection
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Server
PrivateInternal

Process

ConnectionInternal
Process

1

External
Process

Crosses Connection
Internal Process 1

1

Create Connection

Internal Process
Crosses Connection Crosses Connection

External Process

1 11 11 2

Create Connection

Fig. 3. Petri graph after counterexample-guided abstraction refinement.

3 Software Design

In this section we will present the main ideas behind the new implementation,
which lead to an open and flexible new verification tool.

The central part of the software design is the concept of algorithms, which
are implemented as classes. Each program module working with the common
data structures should be realized as an algorithm and new algorithms can be
added during the whole life time of the system. As examples of algorithms
we mention here different operations on Petri graphs (firing of transitions,
building the coverability graph, searching for matches of left-hand sides, per-
forming folding/unfolding steps, etc.) and input/output operations (readers
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and writers from/to different data formats).

All algorithms work with the same data structures which makes it possible
to use some algorithms as sub-operations inside others and to assemble new
algorithms out of existing ones. A scenario is a special algorithm which uses
as input and output only the external data sources, such as XML files (Fig. 4).
Scenarios are at the top level of the system and call other algorithms. A typical
example for a scenario is the approximated unfolding algorithm which reads
a graph transformation system and outputs a Petri graph.

All algorithms and scenarios are managed in a central database system (see
Fig. 4). The database consists of several tables, the most important being the
algorithm table, which is shown in Table 1.

Calling Algorithm Label Algorithm To Call History Path

main a unfold ∅

unfold a findMatch2 (*,*)(a, findMatch1)(*,*)

unfold a findMatch1 ∅

unfold b findMatch3 ∅

Table 1
Example for the algorithm table in the database system.

Call

Work with DS

Communicate with DB

Input / OutputData Structures

A1 A2 A3 A4 A5

A3’ A4’

Database

Scenario

.....

A2_1
OutputInput

Fig. 4. Schematic depiction of a scenario.

The first column of the table represents the name of the algorithm calling
another algorithm as a sub-operation. The second column is the label of the
place where the sub-operation is being called. Labels are used by algorithms
in order to indicate which kind of other algorithms they intend to call. Then,
the information in the database determines which of the several available
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algorithms for this task is chosen. This information, i.e., the name of the
algorithm, is given in the third column. Finally, the fourth column is a regular
expression representing the history path or the call stack of the algorithm in
the first column. Depending on this history different algorithms can be called
from the same place in the code. We use the information of the first matching
entry in the table. Hence, this table makes it easy to exchange a sub-operation
by another sub-operation performing basically the same function in a different
way (optimized for the concrete situation).

Table 1 represents a typical example—the control of the match finder algo-
rithm, which searches for matches of left-hand sides in a (large) hypergraph.
This operation is one of the critical parts in the calculation of the approximat-
ing unfolding and there are different ways to implement it [23,18,22]. We call
three different match finder algorithms depending on the place in the unfolding
algorithm where the match finder is called and on the local history of calls. At
the place labelled ‘b’ we will always call “findMatch3”. If at the place labelled
‘a’ the algorithm “findMatch1” has already been called, “findMatch2” will be
called next. This is very similar to what happens in our implementation since
in different situations matches have to be located in slightly different ways.
For instance for a folding step two matches have to be found instead of one.

Another example is coverability checking for Petri nets, for which we cur-
rently use two different algorithms: computation of coverability graphs and
backward reachability. The current layout of the tool also makes it easy to
replace an old inefficient version of an algorithm by a more efficient one and
to use different versions of an algorithm in different situations.

Besides the algorithm table there exists some other information needed to
manage the behavior of algorithms. For example, there is a table describing
the reusability of algorithms, i.e., which says whether a new object should be
created when a new algorithm is requested or if a previously created object can
be reused. Also, there exist protocols governing the communication between
algorithms. For example algorithms can notify each other about changes in
the data structures (validation protocol).

4 System Architecture

After presenting the general ideas behind Augur 2, we will now describe the
architecture behind this tool (see Fig. 5).

We will explain Fig. 5 in roughly chronological order, starting with the
input (a graph transformation system and a specification of the property to
be verified) and ending with the final output, which says whether the property
holds. The system starts by reading the graph transformation system from an
external source. At the moment we consider the following three possibilities:

• Read the GTS from a file in GTXL-format (implemented).

• Use Agg as an input source in order to draw graph transformation systems
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Fig. 5. Schematic representation of Augur 2.

(under development).

• Write a program in a simple pointer-manipulating language, which is then
converted automatically to a graph transformation system (under develop-
ment).

After reading the GTS from an input source and converting it to the inter-
nal data structures it can be visualized using Graphviz and abstracted using,
for instance, the approximated unfolding algorithm aunfold. A different
possibility is to calculate the finite complete prefix of the unfolding of the
system (which—in the case of finite-state systems—represents all reachable
graphs in a partially ordered structure).

Apart from the graph transformation system, we require the property
which has to be verified as additional input. For this purpose we consider
in Augur 2 the following two possibilities:

• Specify a regular expression with the set of hyperedge labels as the alphabet.
This regular expression describes forbidden paths which should not occur
in any reachable graph (implemented).

• Monadic second-order logic for hypergraphs (under development, for the
underlying theory see [7]).

These specification languages have to be translated into properties on Petri
net markings, since the analysis has to be done directly on the Petri net
structure underlying the Petri graph. The coverability of these markings can
then be checked using various algorithms (described above). We also plan to
implement an (approximative) reachability checker for Petri nets.
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If the property does not hold, a counterexample for the net is generated.
In the case of spurious counterexamples one of the refinement algorithms is
used to obtain a more exact approximation. This procedure can be iterated.

Whenever a non-spurious counterexample is found, we have detected an
error in the GTS, i.e., the property to be verified does not hold.

5 Conclusion

Several tools are available for the analysis of graph transformation systems.
While some groups [21,9] pursue the idea of translating graph transformation
systems into the input language of a model checker, others attempt to develop
new specialized methods for graph rewriting. Work from our side goes in this
latter direction, as well as [17], which led to the tool GROOVE for verifying
finite-state GTS. Properties different from reachability (such as termination
and confluence via critical pair analysis) can be analyzed using Agg [19].

In this paper we have summarized our plans for the development of Au-

gur 2, a new version of an analysis and verification tool based on unfolding
techniques. Some functionality is already present in the current version Au-

gur 1, furthermore the core part of Augur 2, including the database man-
agement, has already been implemented. This tool will enable us to conduct
further case studies, which will give us valuable stimulations for the future
development of the verification techniques.

Among other ideas our future plans are to implement in Augur 2 the
possibility to use and analyze attributed graph transformation systems.

Finally, we recently concluded the implementation of a graphical user in-
terface. A screenshot, together with windows visualizing the graph and net
components of a Petri graph, is shown in Fig. 6.

Acknowledgements: We want to thank all students who helped us with
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Abstract

The urgent need for reliable business applications demands the emergence of a
powerful yet easy-to-use language for business property reasoning. The Business
Property Specification Language (BPSL) and its supporting tool (BPSL modeler)
are presented to address the issue. BPSL modeler facilitates the specification and
understanding of business properties by simplifying the expression of complex logics
and common behaviors in business processes and exploiting intuitive notations for
property representation. It also serves as a key component of our method for model
checking business processes. Important ideas and features of BPSL modeler are
provided in this paper to help understand its effectiveness.

Key words: Business Property Specification Language, Temporal
Logic, Business Property Template, Formal Verification

1 Introduction

Driven by the growth of complexity in existing business systems and the ur-
gent need for ensuring reliable business applications, it has been recognized
to be a promising approach to integrate formal verification techniques like
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Fig. 1. Business Process for Sofa Manufacturing

Fig. 2. LTL Specification of ReportGeneration Property

model checking [4] into business domains to help efficiently verify their busi-
ness processes [13]. Specifying user desired properties is a critical step in the
application of model checking. These properties, as expressed in formulas
such as temporal logics [4] of CTL or LTL, captures specific user requirements
on business processes and are thus called business properties (in short, BP).
However, the complexity and rigidness of logical formulas is a serious obstacle
for business analysts to write and understand their desired properties since
most of them are not logical experts. Therefore, tool support for intuitive and
easy specification of business properties, automatic generation of their logical
formulas are critical for the application of model checking business processes.

Take the following real scenario as an example. Figure 1 illustrates a
partial model of a sofa manufacturing process in UML activity diagram. In
the process, the factory director delegates manufacturing orders to different
workshops. The assembly workshop assembles the semi-finished products and
checks their qualities. In order to ensure the correctness of such a complex
process design, an even more complex property may need to be specified with
which the process model is supposed to comply. For example: ”Without con-
sidering the situation of Out Of Stock(OOS), whenever an urgent order is
received a product must eventually be packaged if it is re-processed less than
three times. However, a failure report must to be generated after its second sent
back for re-precessing and before the product is re-precessed the third time”.
This property can be captured with LTL as shown in figure 2.

The complexity of business properties in traditional temporal logics can
be easily understood from the example. Therefore, the primary contribution
of this work is the proposal of an easy-to-use visual notation language called
BPSL and its supporting tool BPSL modeler that are tailored for the applica-
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tion in business domains. BPSL modeler enjoys the advantage of maintaining
good usability and understandability for specifying business properties while
still preserving their strict formal semantics to support the formal verification.
These advantages are enabled by tailoring BPSL for specifying common be-
haviors in business processes and absorbing existing business knowledge into
the language. As a comparison, we will illustrate in section 3 how the above
property can be more intuitively specified with BPSL modeler.

2 Related Works

An important working direction for facilitating temporal property specifica-
tion is to provide visual extensions for existing logics [3][5][11]. This benefits
users by helping understand different semantics of temporal operators with
their visualized formalisms. On the other hand the Property Specification
Language(PSL) [6], an IEEE standard in digital circuit community, focuses
on reducing the complexity in property specification by providing a more flexi-
ble choice of temporal operators. When taking a close investigation in business
domain, in REALM (Regulations Expressed as Logical Models) [7], an exten-
sion of propositional temporal logics is contained to specify compliance rules
in business models. A domain specific model checking language tuned for busi-
ness applications named Strix is proposed in [1]. The property specification
in Strix directly uses CTL connectives to explore the business process model.

However, the above works still suffer from the following deficiencies: (1)
When plural property is considered (e.g. the one in figure 2), providing visual
notations alone is not enough for making a specification language easy-to-use
and a property intuitive to understand; (2) Existing knowledge in specifying
different business entities ( e.g. activity, resource) and their relations (e.g. re-
sponse, exclusion) are not fully exploited to facilitate business property spec-
ification and understanding; (3) It lacks the tool support for automatically
generating formal semantics from intuitive business property representations
so as to enable the quick integration between business process modelers and
formal verification tools.

The visual notation language of BPSL is extended from PSL by specifically
tuning it for business domains. Distinct features of BPSL modeler include:
(1) BPSL provides an intuitive representation of business properties such that
business people can easily understand them with their existing knowledge and
experience; (2) By categorizing frequently used business property templates
and providing the ”push button” generation of their BPSL definitions, BPSL
modeler absorbs existing business knowledge and facilitates business property
specification; (3) BPSL modeler supports the auto-generation of underlying
formal semantics of each property based on both the logic of CTL and LTL.
Consequently, it not only ensures the preciseness of BPSL, but also facilitates
the reasoning of business models with existing formal verification tools.

The rest of the paper is organized as follows. In section 2 the framework
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Fig. 3. Framework of BPSL Modeler

and basic concepts in BPSL modeler are introduced to help understand its
ideas. In section 4, the features of BPSL modeler are explained in detail
together with the analysis of corresponding characteristics in business property
specification. Section 5 illustrates how BPSL modeler plays the role in our
method of model checking business processes. Section 6 concludes the paper.

3 BPSL Modeler - Framework and Basic Concepts

To better understand the ideas in BPSL modeler for business property specifi-
cation, figure 3 illustrates its framework. BPSL consists of a Boolean layer and
a temporal layer. In Boolean Layer, Boolean Blocks (in short, BB) are basic
elements for capturing the attributes of different business entities (e.g. activ-
ity, resource) and form a basic concept model for specific business domain. In
temporal layer, Temporal Sequence (in short, TS ) is the visual representation
that specifies the logical relations between different business entities and the
temporal constraints on specific business models. Above the two layers, BPSL
modeler concludes frequently used business properties or patterns from busi-
ness experiences in the form of Business Property Templates. BPSL modeler
supports the push button generation of the BPSL definition for each template
and in turn the CTL/LTL definition for each BP as its formal semantics. Con-
sequently, a benefit of the framework is that property specifications in BPSL
modeler can be easily reorganized to form reusable BPSL packages for property
generation in different business application domains. Besides, the CTL/LTL
formal foundation also facilitates the integration of business property specifi-
cation with existing formal verification techniques since the reasoning of the
two temporal logics have a wide tool support such as RuleBase [2], etc. A full
syntax, semantics and visual notations of BPSL can be found in [14].

To better understand BPSL, figure 4 illustrates the BPSL implementation
for the previous ”ReportGeneration” property. The auto-generated formal
semantics of this specification with BPSL modeler coincides exactly with the
one in figure 2. We will explain the details of the specification in the incoming
two sections by investigating the basic concepts and advanced features of
BPSL modeler involved in this example.

• Boolean Block(BB): Represented by an octagon, a BB is a three-tuple
consists of its name (e.g. Report), stereotype (e.g. Activity) and a set of
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Fig. 4. Re-specify ReportGeneration property in BPSL Modeler

atomic attributes (e.g. whether it is finished). It can thus be used to identify
specific business entities that are qualified by the pre-defined conditions in
BB. For example, the above BB of Report indicates a Report activity that
has already been finished.

• Simple Temporal Sequence (STS): A STS specifies the temporal rela-
tion among a sequence of BBs or business properties along paths were time
advances monotonically. As can be found in [14], BPSL supports 14 stereo-
types of Sequential Temporal Operators (STOs) with different semantics to
specify these relations in different situations. While some of the STOs have
a direct mapping to basic temporal operators (e.g. Next 1 for X, AllWithin
Infinity for G, PossiblyLeadsto BeforeInfinity for EF, etc), others can be
used to express rather complex temporal relations in a simple and compact
manner. For example, the property in figure 4 is itself a STS. The STO of
MultiWithin OnEvt specifies that when an Urgent order is Received, a Re-
port should be finished for once between the second and the third occurrence
of event Send Back.

• Compound Temporal Sequence (CTS): Different from STS, a CTS
specifies the different logical relations (e.g. And, Or, Not, Imply, IFF )
and predefined temporal relations (e.g. Before for the weak Until operator
W [10], After for F, Until for U ) between two STS s with corresponding
Compound Temporal Operators (CTO).

• LTL and CTL Flavor: In order to enhance the expressiveness of BPSL
and obtain a wider tool support for formal verification, Temporal Sequence
(TS s) in BPSL can be interpreted in either LTL or CTL flavor. TS s in
different flavors possess different available temporal operators in BPSL in
order to avoid the confusion of their semantics. For example, the temporal
sequence of the above ReportGeneration is a LTL flavored specification. As
can be found in [14], different STOs are associated with different notations
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Fig. 5. Temporal Sequence Composition and Grouping

so as to distinguish their semantics in the context of CTL and LTL (e.g.
Within, MultiWithinOnEvent, etc in LTL flavor and CertainlyLeadsTo, Pos-
siblyLeadsToBeforeEvent, etc in CTL flavor). It is then BPSL modeler’s job
to automatically generate the logical formalisms for each property according
to its semantics in different flavors and hide the complexity from users.

• Global Temporal Operator (GTO): Four types of GTOs are supported:
”(Possible) Always” for G and AG(EG), ”(Possible) Eventually” for F and
AF(EF), ”Repeat” and ”Never”. ”Repeat” and ”Never” guarantees that
the TS must hold at least n times or never holds in the business process.

• Abortion: The abortion condition in a TS indicates the circumstance in
which the evaluation of a TS should be forced to stop (e.g. by an exter-
nal cancel event). In the above case, the question mark indicates that no
abortion condition is explicitly specified.

• Postcondition: A postcondition can be associated with BBs in TS. It
specifies whether the rest of the TS after a BB is necessary to be further
evaluated. For example, the postcondition ”urgent” associated with ”Re-
ceiveOrder” in the example indicates that only when the received order is
urgent should the occurrence of report activity be evaluated.

4 Features of BPSL and BPSL Modeler

This section introduces the advanced features in BPSL modeler in accordance
with the analysis of some characteristics in business property specification.

4.1 Sequence Composition and Grouping

Business people may not be familiar with logical reasoning, but most of them
are familiar with popular process modeling techniques like UML Activity Di-
agram. Therefore, in order to make property visualization in BPSL more
acceptable to business people by exploiting their existing experience, BPSL
properties are also presented in a ”process” oriented form. That is, Temporal
Sequence (TS s) in BPSL not only specifies the temporal relations between two
BBs or BPs, but can actually be composed to form a long chain of property
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sequence with And-Fork, Or-Fork and Join relations. Figure 5 illustrates such
an example. The fork, join operators specify the different and/or relations
when evaluating each branch in the TS. Besides, in BPSL the grouping of a
partial TS is also supported which corresponds to the concept of sub-process in
business process model. In figure 5 the details ”subSTS” are hidden by group-
ing the corresponding parts in the original STS. Sequence composition and
grouping enables the abbreviation of complex business property specifications
in BPSL and flexibly adjusting the granularity of property representation.

4.2 Property Compensation

Traditional logical operators often have their relaxed versions to answer the
question of ”whether a property is still satisfied if certain condition does not
hold”. For example, ”P W Q” is the relaxation of ”P U Q” in that the weak
until operator W does not order that Q must occur in the model while U does.
In BPSL, such conditions like Q, which decide whether a property is satisfied
strongly or weakly, are called Compensation Conditions (CC s). BPSL further
generates the idea of property relaxation by enabling the flexible association
of Compensation Properties (CPs) with the CC that each STO and CTO in
BPSL may have. More specifically, a process model PM satisfies a business
property BP with (CC, CP) iff PM | = BP or PM | = G(¬CC) ∧ CP . As a
result, a strongly/weakly held property BP is a special case for property com-
pensation in BPSL when its CP is False(as denoted by a rectangle)/True(as
denoted by a diamond). For example, in figure 4 the CC for MultiWithin
OnEvt operator is that there must be a third occurrence of event Send Back in
the process. Consequently, the property of ”AutoGenerateGlobalExistence”
which serves as its CP (as denoted by a circle) further specifies the rest of
the semantics for ReportGeneration property that in case there is never a
third occurrence of Send Back, a Package activity will be eventually exe-
cuted. Compensation mechanism in BPSL effectively allows business analysts
to specify their requirements by connecting different properties in their fa-
miliar ”if..then..else” fashion. A reference of predefined CC s with temporal
operators in BPSL can be found in [14].

4.3 Filtering and Fairness

Business processes can be rather complex so as to provide a full view of the
daily businesses in an enterprise. Therefore when reasoning a business process
it is often desired that redundant information (e.g. exception handling) which
may not be the primary concern for business analysts can be neglected to avoid
reaching wrong conclusions. Thus it will be of great help if the granularity of
business reasoning can be flexibly controlled in the step of business property
specification. BPSL provides this mechanism by supporting filter and fairness
conditions. Borrowed from model checking [4], the fairness condition specifies
that the evaluation of business property will only be done on process execution
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Fig. 6. Business Property Templates and Implementation Example

paths where it can hold infinitely often. On the contrary, the filter condition
specifies that all the execution paths in the business process along which the
filter condition may be satisfied will be neglected in the property evaluation.
For example, while the example in figure 4 does not contain any fairness
condition, its filter condition implies that the ReportGeneration property will
not be evaluated in unusual cases where Out Of Stock may happen.

4.4 Business Property Templates

Years of practices and researches in business domain form a considerable ac-
cumulation of relevant experiences. BPSL modeler provides the capability
of capturing these existing knowledge in the form of business property tem-
plates to facilitate both property specification and understanding. Four pre-
defined common categories of business property templates (Soundness Tem-
plates, General Temporal Templates, Business Bug Templates and Functional
Templates) are concluded in BPSL modeler based on which frequently used
business patterns can be automatically generated and reused. The defini-
tion of these business property templates can be automatically implemented
within the expressiveness of BPSL and can in turn be formally interpreted in
CTL/LTL with BPSL modeler. With the size limitation, figure 6 illustrates
several examples of these templates and their implementations.

Soundness template concludes the common workflow soundness [8] defi-
nitions that each business process may satisfy; General temporal template
implements the general temporal patterns based on the survey result in [9]
and their semantic mapping [10] on CTL/LTL; Business bug template corre-
sponds to traditional workflow patterns [12]. Each bug template is used to
falsify a true realization of a specific workflow pattern in the business process
model; Functional template captures some useful functional requirements in
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Fig. 7. BPSL Modeler as a Component for OPAL Toolkit

business processes. For example, ResourceAtomicity can be used to impose
constraints on the process such that ”for certain kind of resource (like money),
it should never be created or destroyed in the process”.

5 BPSL Modeler as a Component for Model Checking

BPSL Modeler is a key component of our OPAL (Open Process AnaLyzer)
toolkit for model checking business processes (figure 7). In OPAL, business
processes in different modeling techniques are formalized with Milner’s Pi
Calculus through standard Formalizer Interfaces. On the other hand, a set
of GUI Interfaces are provided to connect property specification in BPSL
modeler with process modelers. For example, in our current implementa-
tion, the GUI/Formalizer interface for Websphere Business Integrator (WBI)
is provided such that not only the semantics of business processes modeled
with WBI can be automatically formalized, but also Boolean Blocks in BPSL
can be directly generated by drag-and-dropping different WBI elements into
BPSL modeler. These Boolean Blocks are then synchronized with correspond-
ing elements in WBI so that they are always referencing to the same business
entities. The relations between Boolean Blocks can either be generated from
templates, or built directly with Temporal Sequences. In BPSL Modeler, a
Package Designer is further implemented to store and edit user customized
business properties and templates as a knowledge base for their later reuse.
Available model checkers can thus be integrated with OPAL by transform-
ing he auto-deduced transition system for process models and the LTL/CTL
formulas into the format they accept through Model Checker Adapters.

6 Summary

Business property specification is a major step in reasoning business process
models and ensuring its reliability. In this paper, the visual notation language
of BPSL and its supporting tool BPSL modeler are proposed to enable the
intuitive specification of business properties and facilitate the reasoning of
business process models. BPSL modeler simplifies the complexity of business
property specification by taking different business characteristics into consid-
eration, e.g. the visual representation, property compensation and filtering,
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etc. It exploits existing knowledge in the practices and researches in business
domain to make property specification of minimum efforts. In BPSL modeler,
both the logics of LTL and CTL are supported and formal semantics can be
auto-generated for each business property template and business property so
as to ease the integration between BPSL modeler and existing formal verifi-
cation tools. Our future work will include extending the application of BPSL
modeler into more real cases to enlarge its values.
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Abstract

We present a framework for the simulation and formal analysis of workflow models.
We discuss (i) how a workflow model, implemented in the BPEL language, can be
transformed into a dataflow network model, (ii) how potentially incorrect execution
paths can be incorporated, and (iii) how the properties of a workflow can be formally
verified using the SPIN model checker. For the several model transformation steps
from workflow to analysis models, we use graph transformations.
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1 Introduction

In the past data was kept on paper. A piece of paper, containing information,
could be interpreted as sort of a token flowing through the basic activities.
This kind of a paper is called the work item. The colleagues carry out activ-

ities on work items. The workflow comprises all the activities. As such, the
workflow defines the order in which the activities have to be carried out.

Today offices have significant IT infrastructure to enhance the efficiency
and productivity often using computer aided business process coordination.
There are several languages that allow a very high-level, executable descrip-
tion of workflows, for instance, BPEL (Business Process Execution Language)
[11] or XPDL (XML Process Definition Language) [13]. The complexity of
workflows is close to that of regular programming languages. Therefore, new
problems arise with electronic business process execution.
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Computer-based workflow execution involves communication between loose-
ly coupled information systems. This makes the testing of distributed work-
flows very difficult as data taken from several databases is often required to be
manipulated. Moreover, the side effects of the transactions generated in a test
phase need to be undone. Another choice is to establish the entire test envi-
ronment with multiple servers and databases containing the test data. Both
solutions are time consuming and expensive.

As a consequence, there are several semantic requirements that a workflow
has to meet before enactment, such as:

• There must not be any deadlock. In case of a deadlock the workflow execu-
tion would come to a halt.

• All activities have to be reachable. In case of unreachable activities there
might be unused resources in the company, which is far from desirable.

• Each variable has to be written before being read. Reading an uninitialized
variable could lead to an unpredictable result.

The most important contribution of the framework is the ability to check
the last requirement of those above mentioned. There are other solutions to
verify the first two [1,7].

Fig. 1. The workflow analysis method

In this paper we discuss a method to formally verify the above mentioned
properties of a BPEL model. As Fig. 1 illustrates the high level description of
workflows, such as BPEL, needs to be transformed into a low level mathemat-
ical notation which can be verified automatically. We have chosen dataflow
networks [2] for this purpose.

The formalism of dataflow networks is meant to model complex, distributed
computing systems with well defined semantics. The abstraction level of
this formalism is between the BPEL model and the verification model, the
PROMELA implementation. It combines the state based description of finite
state automata, and the data (token) flow of Petri nets. A further advantage
of modeling with dataflow networks is that with additional rules and states of
nodes, fault simulation can also be performed.

Workflows can be checked against requirements such as mentioned above.
The properties of the process that are to be checked need to be formulated as
linear temporal logical expressions (LTL), regarding the PROMELA (Process
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Meta Language) [12] implementation of the dataflow network representation
of the workflow. The SPIN model checker [12] will evaluate these LTL expres-
sions.

2 From workflow models to dataflow networks

2.1 Workflows

Workflow description languages resemble very much to regular structured pro-
gramming languages. The structural elements of workflows are the sequence,
selection, iteration and parallel execution constructs.

Activities have input and output parameters. These data elements are
called messages that are passed between different computers running in a
distributed environment.

In BPEL data is maintained using variables. The value of variables may
be sent and received as messages, and the control flow may be determined by
them. The manipulation of the variables is called data handling.

We assume that the workflow to be checked is implemented in BPEL, using
only a subset of the language. The transformation deals with the basic and
structured activities of BPEL - like those in Fig. 2 - and data handling but all
kinds of event handling is ignored.

Fig. 2. Workflow concepts and corresponding BPEL keywords

A small fragment of the workflow in an insurance company is shown in
Fig. 2. First, the client reports the damage which is recorded. Then the type of
the damage is established. Next the insurance company has to decide whether
to compensate the damage or not. This needs two independent activities that
can be executed simultaneously. Finally a letter is sent to the client containing
information about the decision.

2.2 Dataflow networks

Dataflow networks are designed to model distributed communicating systems.
A dataflow network consists of data processing nodes interconnected with
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channels. Channels transmit tokens between nodes. A channel does not con-
tain the token queue. In contrast of the original [2] dataflow network formal-
ism, we define ports which contain the token queue. A port is the connection
between a node and a channel. A token remains in the input port until it is
not removed during the application of a firing. A port can potentially contain
an infinite number of tokens. A token is an atomic abstract data unit repre-
sented by its color. Each node is a finite state automaton that has states, and
state transition rules. A rule consists of two parts. The first defines the firing

condition, the second declares the action that should be performed in case of
a firing. During the transition the node removes the tokens according to the
condition, changes the state, and puts several tokens to the output ports.

2.3 Mapping workflows to dataflow networks

In the dataflow network model the control flow is represented by tokens of a
special color: the control tokens. The number of control tokens in the network
corresponds to the number of activities executed in parallel.

The execution order of activities can be defined by the structured activities:
sequence, selection, iteration and parallel execution. In the dataflow network
model they are represented by at least two nodes. The one at the beginning
distributes the control tokens, the final one collects them representing the
synchronization of the branches. The control constructs - that perform a
selection - need additional nodes to represent the evaluation of the conditional
expressions.

Fig. 3. Mapping the workflow in Fig. 2 to dataflow network

Applying the transformation rules on the workflow in Fig. 2 results in a
dataflow network illustrated in Fig. 3. The rules are summarized in the table
below.
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workflow pattern dataflow network pattern

variable a node with appropriate state space (see
Fig. 4)

basic activity two nodes if the activity has in and out pa-
rameters, otherwise one node

sequence two extra nodes, one at the beginning and
one at the end

parallel execution one start node multiplying the control flow,
and one end node restoring the single control
flow

selection (switch) one node at the beginning and one at the end,
the cases linked to each other according to the
order of condition evaluation

a case in a selection a node for each variable in the expression of
the condition

iteration (while) a modified selection with two branches: one
leading to the activity being iterated and
then back to the condition, the other lead-
ing to the next activity in the workflow

The transformation does not preserve the concrete values of variables. We
only use an abstract state space to check the order of the variables being
initialized, read, and written.

3 Fault simulation

A workflow execution engine can coordinate the work of many people, and
it is usually connected to multiple computers of independent organizations.
These computers are loosely coupled with no guarantee on their availability.
Thus failures have to be considered. It is reasonable to add some redundancy
to the workflow and then to check whether the planned fault tolerance was
reached.

Error propagation [8] in the control flow is modeled with tokens of a specific
color: the faulty control tokens. The abstract state of variables (i.e. “Written”,
“Written and read”, etc.) is represented by the states of nodes.

3.1 Simulation of dataflow errors

In this case the error is only spreading across the variables but it does not
have an effect on the control flow.

Fault injector activities are needed which write faulty data to their output
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regardless of the input and the color of the control token they received. We
assume that healthy nodes always write healthy data to their output unless
the control or the input is erroneous. This way the error confinement region
of a fault injector variable can be determined.

Fig. 4. Fault spreading

In Fig. 4 a small fragment of the dataflow network representation of the
insurance company’s workflow is shown. Variable 1 contains faulty data. The
red nodes are involved with spreading the error among variables, the green
nodes deal with control flow infection.

1. In the first step “Policy read” receives a control token in its input port.
Changes the state “Control” to “Data” and sends a token of color reading

to its input variable.

2. The reading token is received by the node representing the input variable
(Variable 1). Now we assume that the variable contained faulty data i.e.
the input variable’s state was either “Fault written” or “Fault written and
read”. The state is switched to “Fault written and read” and a faulty
control token is placed on the output port.

3. A faulty control token is received from Variable 1. The state is switched
from “Data” to “Control” and a token of color faulty write is put on the
output port towards the second node of the activity.

4. “Policy write” receives the faulty write token from its control port, switches
the state from “Control” to “Data” and sends a faulty write token to its
output variable.

5. “Variable 2” switches to “Fault written” state and sends back a control
token to the second node of the activity.

6. The second activity node receives the control token from the output vari-
able, switches its state to “Control” and sends a control token to its
output port.
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3.2 Simulation of control flow errors

If a branching condition is evaluated using a faulty variable, the fault of the
condition variable infects the control flow. This is illustrated by node “If” in
Fig. 4.

1. The node called “If” is part of all the nodes of the switch construct. It
receives a control token, then it changes the state from Control to Data
and sends a reading token to the node called “Variable 1”.

2. The state of the node representing a variable is changed from “Faulty
written” to “Faulty written and read” and a faulty control token is sent
back to the node of the selection construct.

3. The faulty control token is received by node called “If”. It chooses non-
deterministically whether to pass the token to the activity called Accept,
or to the next condition.

At this point the control token is changed to faulty control, all the
activities that receive the faulty control token write faulty data and pass
on faulty control token. Let us suppose that the faulty control token is
sent to activity Accept.

4. The faulty control token is received by Accept, faulty data is written as
it is shown in Section 3.1, and the faulty control token is passed on.

4 Verification of workflow models

As usually in structured programming languages, in PROMELA too we can
use variables and subroutines called proctype. The types of variables are
subsets of integer in order to guarantee that the program has finite state
space.

The PROMELA provides a further type of variables, the FIFO channels.
This way the channels of dataflow networks do not have to be implemented.

The SPIN is capable of exhaustive state space examination of a PROME-
LA program evaluating system requirements in the form of LTL expressions.
This way the dynamic properties of a dataflow network can be verified.

The transformations are property preserving in a sence that every execu-
tion path of the BPEL process can be found in the PROMELA program too.
If a property is valid, concerning the PROMELA model, then it holds for the
BPEL process as well.

4.1 From dataflow network models to PROMELA implementation

Dataflow network constructs are mapped into PROMELA language patterns.

• Channels in the dataflow network are mapped into the channels of the PRO-
MELA language. This can be done since there is always at most one token
in a channel.
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• Tokens are mapped into symbolic constants.

• State variables of a node are mapped into global integer type variables.

• Each node is mapped into a proctype construct. The initial state is set
by the first instruction. The state transition rules are implemented by
an infinite iteration containing the rules as conditional atomic sequence of
instructions.

• A state transition rule of a node is mapped into an atomic sequence of
instructions.

4.2 The verification

In Fig. 3 the activities called Premium and Policy are executed simultaneously.
An interesting question is, whether the fault of one activity effects the other.
The requirement needs to be formulated as LTL formula, the logical variables
that take part in the formula have to be defined in form of C style define
macros. Using the PROMELA source and the logical variable definitions the
SPIN evaluates the LTL formula.

Example 4.1 Here we demonstrate how to formulate the requirement which
states that the fault of activity “Policy out” should have no effect on “Policy
in” regarding the model illustrated in Fig. 3.

#define Policy_out state_Policy_output!=Fault_written

#define Premium_in state_Premium_input!=Fault_written

G(!Policy_out -> Premium_in)

The first two lines define the meaning of the logical variables contributing to
the value of the logical expression in the third line. Variable “Policy out” is
true, if and only if the value of the PROMELA variable “state Policy output”
is “Fault written”. The meaning of “Premium in” is defined analogously. The
LTL formula of the requirement is shown in the third line. It states that at any
state along the discrete time-line where “Policy out” is false, “Premium in”
is true.

The evaluation of a formula, such as the one shown in Example 4.1, can
result in positive and negative answers. The positive result guarantees that
the PROMELA model meets the requirement. The negative may be a good
test case of the BPEL process. However, because of the concrete values of
BPEL variables, the process may not be able to run into the faulty execution
path.

5 Related work

There is much research done about the formal verification of workflows imple-
mented in several languages. In [9] a BPEL process is directly transformed
into PROMELA code, the requirements are verified by SPIN. This approach
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is similar to ours. The major difference is that we use an intermediate for-
mal model of workflows, dataflow networks. This allows us to implement the
workflow - PROMELA transformation in two steps, each a smaller step in
abstraction level.

In [1] the formal semantics of workflow models are defined by Petri nets.
This approach focuses on the syntactic properties of workflows but the inser-
tion of structural flaws, such as hanging paths resulting in unnecessary tasks
is prevented by the XML validation of the above mentioned languages. The
authors of [7] discuss a design procedure to transform a business model of the
workflow into the IT model that requires the decisions of engineers. The IT
model is represented by Communicating Nondeterministic Automata that can
be analyzed with NuSMV [5] model checker. As it is shown in [10] colored
Petri nets can also be used as a formal model of workflows. When model-
ing with dataflow networks, we also have the advantage of the formalism’s
compositionality.

Another approach is presented by [3] to enhance the quality of a workflow
by runtime monitoring. This technique could be successfully applied in a
business environment with services and processes changing frequently. Our
verification method is meant to be used at design time but could also be
helpful to verify the implementation of a small change in an already enacted
business process.

6 Conclusion

In this paper we proposed a method to check correctness properties of work-
flows implemented in BPEL. Dataflow networks are used to define the formal
semantics of the workflow. The BPEL model is mapped into dataflow network,
the dataflow network is mapped into a PROMELA model.

The model transformations, creating the dataflow network model of the
workflow and generating the PROMELA code, are implemented as graph
transformations executed within the VIATRA2 (Visual Automated Trans-
formations) framework [14]. The VIATRA2 combines the procedural and
declarative programming paradigms, enabling the efficient formulation of the
implementation of model transformations.

The source of the transformation illustrated in Fig. 3 contains 42 graph
patterns and several ASM rules. There is a graph transformation rule for
each important construct of the BPEL language. The dataflow network -
PROMELA transformation consists of 32 graph patterns.

In the future we plan to support the automated generation of LTL expres-
sions from the requirements formulated in the BPEL domain. Furthermore,
the automatic back annotation of the counterexample, presented by the SPIN
in case of a negative result, is also a future goal.
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Abstract

We introduce the York Abstract Machine (YAM) for implementing the graph program-
ming language GP and, potentially, other graph transformation languages. The advantages
of an abstract machine over a direct interpreter for graph transformation rules are better
efficiency, use as a common target for compiling both future versions of GP and other
languages, and portability of GP programs to different platforms.

Key words: Graph transformation; GP; abstract machines;
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1 Introduction

The graph programming language GP [6] consists in its core of just three con-
structs: application of a set of conditional rule schemata either (1) in a single step
or (2) as long as possible, and (3) sequential composition of programs. This lan-
guage is computationally complete (see [5]) and has a simple formal semantics. In
this paper, we present a low-level abstract machine for graph transformation—the
York Abstract Machine (YAM)—that will be used to implement GP.

A major advantage of a low-level abstract machine over a high-level interpreter
for graph transformation rules is higher speed. The instructions of the abstract ma-
chine are typically simple stack operations which, after a GP program has been
compiled, need not analyse the left- and right-hand graphs of a rule over and over
again. Instead, the analysis of rules is performed once and for all when GP pro-
grams are translated into YAM bytecode.

The YAM can also serve as a common target for compilers of both future ver-
sions of GP—a language still under development—and, potentially, other graph
transformation languages. Moreover, the YAM will support the portability of GP
programs because they can be compiled to bytecode with any available compiler
and then executed on every platform on which a YAM implementation exists.
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2 Email: det@cs.york.ac.uk
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To give an example of YAM code, consider the GP program VertexColour-
ing of Figure 1. The program labels all nodes of an input graph with colours
(integers) such that any adjacent nodes have different colours. To achieve this, first
the rule Init is applied as long as possible in order to label all nodes with colour
1. Then the Inc-rules nondeterministically increment colours until any adjacent
nodes are differently coloured.

VertexColouring = Init ↓; Inc ↓

Init :















1

x =⇒
1

1

where x 6= 1

Inc :



















i i

1 2
z

i i

1 2
z

=⇒

=⇒

i + 1 i

1 2
z

i i + 1

1 2
z

Fig. 1. GP program VertexColouring

A full version of (hand-compiled) YAM code for this program is presented in
the appendix. Here we only consider the code for the conditional rule Init:

NA
Dup Get_node_label ATOI 1 Equals Not Assert
"1" Relabel_node

The purpose of these instructions can be described as follows: “Find any node,
check its label is not 1, and relabel it to 1”.

The first instruction, NA, pushes a node identifier onto the stack. If some later
instruction fails and the machine starts backtracking, this instruction will subse-
quently retry with the next node (for some, usually random, ordering of nodes)
until all nodes have been tried. The sequence from Dup to Assert checks that
the label is not 1, in the following manner: Dup duplicates the top of stack; 3

Get node label pops a node identifier from the top of stack and pushes the
label of that node (a string); ATOI converts the top of stack from a string to an
integer; 1 pushes the integer value 1 onto the stack; Equals pops two values from
the stack and pushes 1 if they are equal, 0 otherwise; Not pops the top of stack and
pushes 1 if it is 0, 0 otherwise; and Assert pops the top of stack and starts back-

3 Since stack instructions are almost always destructive, it is often necessary to save values by
duplicating them.
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tracking if it is 0. The final sequence, "1" Relabel node, relabels the node
with the string “1”. (The identifier of the node to relabel is still on the stack, thanks
to the earlier Dup.)

The next section describes the YAM language and its execution. Section 3
further discusses the compilation of GP to YAM Code. In Section 4 we explain
the graph data-structure used to implement the YAM, Section 5 focuses on the
three stacks the machine is based on. Section 6 briefly addresses the relation of the
YAM to graph transformation languages other than GP, and Section 7 gives some
concluding remarks and a few topics for future work.

2 The YAM language

A program in the YAM language (the assembly) is, at its most basic, a sequence of
instructions separated by whitespace. It is also possible to use labels and macros,
as discussed below.

A program label is declared in the form LabelName: — the name of the label
followed by a colon. Whenever it is found in the source code, the integer value of
the program counter at the definition is pushed onto the data stack. This value is
typically then used to jump control to that program counter (via a Jump, ALAP or
Choice instruction).

YAM code can also contain macros which are simply named sequences of in-
structions. An example of a macro definition can be found in the code for Vertex-
Colouring:

:EXXA NA Dup Get node label Swap EILA ;.

This is a macro named EXXAwhich finds an edge between two nodes with the same
label as follows: Find any node, find its label, then find an edge from that node to
a node with that label. Whenever a macro call is found in the code, it is replaced
verbatim with the body of the macro (macro expansion). The prelude is a useful
collection of macros.

The YAM instructions alter the state of the machine, which consists of a sin-
gle graph, three stacks—data stack, choice stack and graph change stack, several
integer values—current program counter (PC), current step, current try 4 —and a
flag to control the behaviour of backtracking (explained later in this section). For
example, Figure 2 shows a YAM state in the middle of a computation. There have
been two changes to the graph since the machine started, represented by two frames
on the graph change stack. Also, there have been two decisions made, represented
by the two frames on the choice stack. The top two elements on the stack are the
string “Label” and the integer 1. The next instruction for this machine might be to
relabel node 1 from ‘a’ to ‘Label’.

The graphs which the YAM uses are directed, labelled graphs. The labels of
edges and nodes are strings. Parallel edges are permitted, as are self loops.

4 The try number is the number of times the current instruction has been attempted.
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Fig. 2. An example of a YAM state

There are currently three types of data that can go on the data stack: strings,
integers and boolean values. Booleans are represented by integers: non-zero inte-
gers represent logical ‘true’ and zero represents ‘false’. Strings can be converted to
integers and integers to strings using the instructions ATOI and ITOA, respectively.

There are currently about 70 instructions which the YAM can execute. 5 They
fall into four main categories:

(i) Data stack-only instructions such as Add, Multiply, Swap and Duplicate.

(ii) Control instructions, which delimit rules, explicitly represent choices or mark
deterministic sections of code, such as ALAP, Once and Cut.

(iii) Graph query instructions such as NA, EILL and Get edge start.

(iv) Graph modification instructions such as Add node and Del edge.

Data stack-only instructions manipulate the data stack in a simple way, having no
effect on the other stacks or the current graph. Control instructions influence the
choice stack or the program counter. Graph query instructions modify the choice
stack where they have returned one of many answers, and push their answer onto
the top of the data stack. Graph modification instructions modify the graph change
stack (recording data so that the graph change can be undone) and the current graph.

The YAM provides backtracking to implement the nondeterminism of graph
transformation programs. Certain instructions involve the machine choosing which
answer of several to return. If the machine gets the answer wrong in that some
later part of the program fails, then the choice needs to be revisited and a different
answer chosen. Stacks are used to remember these choices so that they can later be
reconsidered.

There are two different types of backtracking. Matching backtracking is con-
cerned with making the right choices of nodes and edges to find an individual match
for a rule. Program backtracking deals with choosing the right rule to apply from
a set, and determining when an as-long-as-possible operator has finished. The
program-backtracking boolean flag in the YAM state is to record which type of
backtracking is currently running.

5 The full list of YAM instructions is available at
http://www-users.cs.york.ac.uk/˜gm/YAM/instructions.html
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The YAM currently has two modes of operation: one-result and all-results. In
either case, the machine runs until the first result is found. If it is in one-result mode
then it terminates, if it is in all-results mode then it imposes a failure and finds the
next result. It continues in this way until it finally backtracks past the first choice.
In such a manner, the machine will find all results in the search space, so long as
there are no infinite computation paths. If there are infinite computation paths then
the machine will enter such a path at some point, possibly before producing all
results or any result at all.

3 Compiling GP to YAM code

Although a compiler is still under development, we can make a few general remarks
about the process of compiling GP to YAM code. First, individual rules need to be
translated into fragments of YAM code. These fragments can then be put together
with appropriate control instructions between them to mark them as sets of rules
and iterated or single-step applications.

Compiled GP programs are executed using a depth-first strategy. In order to
compute a result, rules must be matched and applied until the end of the program
is reached. To apply each rule, an instance of the left-hand side must be found in
the current graph (this is the subgraph isomorphism problem), and any conditions
of the rule must be checked. At GP to YAM compile time, this problem is bro-
ken down into smaller problems of finding individual nodes and edges with certain
characteristics (such as “a node with label l” or “an edge from node 3”), and assert-
ing conditions (such as “the label is not 1”). The correct choices (if any exist) for
each of these small decisions will lead to a result for the program and current input
graph. The correct choices are found by means of backtracking, in a manner very
similar to that of the implementation of Prolog by the Warren Abstract Machine
[1]. Failure and backtracking occurs when an instruction runs out of answers, or an
Delete node 6 or Assert instruction fails. The machine then revisits the pre-
vious choice made and resumes execution with the next option for the most recent
choice.

In general, individual graph transformation rules are implemented by the fol-
lowing pattern of YAM instructions:

(i) Find some nodes or edges from the left-hand side of the rule.

(ii) Check they fulfill any conditions.

(iii) If a full left-hand side has not yet been found then goto (i).

(iv) Execute the changes specified by the rule.

Assert instructions in the condition checks make sure that only nodes and edges
are selected that match the rule. Any other selection will trigger backtracking.

6 Nodes can only be deleted if there are no edges incident to them.
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4 Implementing the YAM

In our implementation of the YAM, we only store the current graph. It is the pur-
pose of the graph change stack to recover older versions of the graph. Each frame
on the graph change stack describes one change that has been made to the graph in
such a way that it is possible to undo that change. When backtracking occurs, the
choice stack and graph change stack can be unwound in parallel, recovering older
graphs as older choices are revisited. It would be infeasible to store entire graphs
for choice points, given the number of choices involved in a typical program.

The YAM calls for a graph data-structure with very quick query operations be-
cause these will typically be used many more times than update operations. Our
implementation achieves this by a quite complex representation of graphs, involv-
ing node and edge structures, hashtables and ordered lists.

An edge structure consists of an identifier (a unique integer), the label of the
edge, and the identifiers of the start and end node of the edge.

A node structure contains an identifier and the node’s label, the indegree and
outdegree of the node, and four hashtables, viz. the inedges and outedges indexed
by node label and edge label. 7 In these hashtables, the keys are labels and the values
are ordered lists of integers (edge identifiers). Because they are ordered, taking
the intersection of two lists is a very quick operation. (For example, taking the
intersection of those outedges where the target node is labelled “n” and the edge is
labelled “e”.)

The graph data-structure has two integer-valued functions, next unused node
identifier and next unused edge identifier, which provide fresh identifiers. The
structure also has four hashtables. Two tables are the actual stores for nodes and
edges, they have identifiers as keys and node or edge pointers as values. The other
two tables are mappings from labels to ordered lists of identifiers for nodes and
edges (similar to those in the nodes).

Using this structure, graph updates are quite slow—the slowest operation is re-
labelling a node, which requires time proportional to the size of the neighbourhood
of the node being relabelled. But instructions which query the structure of the graph
are very quick, and instructions with multiple answers return their results in a fixed
order for a given graph. It is possible to compute the i

th result of the instruction
“A node with label n”, or “An edge from node 1 with label e” quickly: the first ex-
ample requires one hash lookup, and then i steps down the ordered list; the second
requires two hash lookups (one to find the node pointer, and one to find the ordered
list of edges) and then i steps down the ordered list.

7 That is, inedges by node label, inedges by edge label, outedges by node label and outedges by
edge label.
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5 Stacks

All components of a YAM state other than the current graph, the program counter
and the try and step numbers are maintained in stacks. There are three distinct
stacks, although the data stack gets copied and saved as part of the backtracking
algorithm.

5.1 Data Stack

In a manner very similar to that of the Forth language [2], the abstract machine
utilises a data stack for the storage and later retrieval of simple data (integers and
strings). Nearly all of the instructions operate on the data stack in some way. There
are simple integer operations, such as Add and Divide (which work on the top
two items of the data stack), stack manipulation operations such as Pick and Drop
(which rotate, copy or destroy parts of the stack), and the graph query operations
N? and E??? 8 (which search the graph for particular structures). All of these
operations have some effect on the data stack, they usually pop their arguments
and push their results. In operation the data stack does not get very big and it
is normally possible to determine its maximal size statically. This is because the
only instructions with a variable effect on the stack are Pick, Roll and UnRoll
which pop some integer i and then copy up the ith item of the stack, rotate the top
i items “forwards”, or rotate the top i items “backwards”, respectively. These three
instructions are almost always preceded with an integer (PushI) which controls
their behaviour.

5.2 Choice Stack

Backtracking is implemented using a choice stack. Whenever an instruction returns
only one of a number of possible results (such as in the NA “Any Node” instruction),
a frame is pushed onto the choice stack describing the current state of the system.
The frame contains a copy of the current data stack, the program counter, the step
number and the try number. Later, if the choice needs reconsidering, the state of
the machine can be restored and the next choice tried.

5.3 Graph Change Stack

The state stored in a frame on the choice stack does not save the current state of the
graph. To copy and store the entire graph whenever a choice is made or reconsid-
ered would quickly exceed the memory available to any implementation. For this
reason there is the graph change stack. Whenever a graph-modifying instruction
is executed, a new frame is pushed onto the graph change stack. This new frame
describes exactly how to undo the changes made to the graph. When backtracking
occurs, in addition to restoring program counter, data stack and try number, frames

8 In these instructions, ? is a wildcard for L, A, or I. For example the instruction EILA is short for
“An Edge from Node with Identifier i to Label j via Any edge.”
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are popped off the graph stack (and the appropriate changes made to the working
graph) until the step number of the top of the graph change stack is smaller than the
step number of the state being restored. Hence the graph will have been restored
correctly at this point in the execution history.

6 Related work

This section briefly discusses the relation of the YAM to graph transformation lan-
guages other than GP.

AGG [3] is a Java-based system for graph transformation. A distinctive feature
of AGG are rules with negative application conditions, which specify a graph that
must not be in the current graph in order for the rule to match. Such a forbidden
subgraph can be expressed in YAM code. More challenging are AGG’s attributes
imported from Java which are not present in the YAM language (as they are incom-
patible with our leitmotiv of semantic simplicity).

A similar remark applies to the attributes imported from C in PROGRES [7]—a
complex graph transformation languages with some involved features. Whilst some
of PROGRES’ constructs will be easily expressible in YAM code, many will not.
For example, the language’s type system with graph schemata and path expressions
has currently no counterpart in the YAM. According to [7,8], PROGRES is com-
piled to bytecode of an abstract machine—but we are not aware of a description of
this machine.

The FUJABA language [4] is grown from PROGRES but abandons backtrack-
ing because “extensive experiences have shown that it is seldom used”. Backtrack-
ing is needed in the YAM, however, to implement GP’s nondeterministic semantics
(given in [6]).

7 Conclusion and future work

The implementation of GP [6] will be based on the YAM. A compiler for converting
GP programs into YAM code is under development. Experiments show that the
machine executes programs much quicker than earlier GP implementation attempts,
which took an interpreter approach. This is because most of the rule analysis (such
as determining which nodes and edges in a rule get added, deleted or renamed) is
done at compile time whereas at run time, the YAM doesn’t need to do any analysis.

The current implementation of the YAM is written in about 3000 lines of C
code. C was chosen because it is relatively low-level and efficient, and allows
to control memory management completely. As an indication of execution be-
haviour, running the VertexColouring program on a 100 node, 300 edge ran-
dom graph 9 takes approximately 145000 single instruction executions (including
backtracking) and 464 graph changes (all of them node renamings), and involves
1658 choice points. On a 2.4 GHz PC with 512 Mb of memory this execution takes

9 Obtained by creating 100 nodes and adding an edge between two random nodes 300 times.
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less than 0.1 seconds. Running VertexColouring on a 1000 node, 3000 edge
random graph requires approximately 10.7 million steps and 4350 graph changes,
involves 15402 choice points, and takes about 11 seconds.

The YAM makes a useful abstraction. For example, the machine was not de-
signed with GP’s while-loop in mind. However the machine needs no modification
to accomodate it, as the behaviour of the while construct can be captured at compile
time. We expect this to be the case for some other constructs that will be added to
GP, too.

Future versions of the YAM will provide support for recursive procedures and
a type system for graphs because these features will be incorporated in GP. It will
also be useful to equip the YAM with a user-friendly interface and to couple the
machine with an animation component showing one or all possible executions of a
given program.

There is also scope for static analysis of the YAM code: each decision point
can be found, and the number of choices to make at any given point can be related
to the size of the current graph. Hence, if the number of iterations of rules and
while-loops can be estimated or calculated, then it is possible to give time bounds
for programs in terms of the size of the input graph.

In the spirit of GP having a simple semantics, it is also the topic of future work
to produce a simple, formal semantics for all elements of the YAM.
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Appendix: Hand-compiled code for VertexColouring

//a macro to find an edge with start and end
//node labels identical.
:EXXA NA Dup Get_node_label Swap EILA ;
Init!: InitEnd ALAP
NA
Dup Get_node_label ATOI 1 Equals Not Assert
1 ITOA Relabel_node
Init! Jump
InitEnd: Init! Cut
Inc!: End ALAP
Inc1: Inc2 Choice
EXXA
Dup Is_loop Not Assert
Get_edge_end Dup Get_node_label ATOI 1 Add ITOA Relabel_node
Inc! Jump
Inc2:
EXXA
Dup Is_loop Not Assert
Get_edge_start Dup Get_node_label ATOI 1 Add ITOA Relabel_node
Inc! Jump
End:
NoOperation
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Abstract

Graphical notations are already popular for the design of software, as witnessed by
the success of the Uniform Modeling Languages (UML). In this paper, we advocate
the use of graphs and graph transformation for programming graph-based systems.
Our case study, the flattening of hierarchical statecharts, reveals that cloning, a
recently proposed transformation concept, makes graph transformation rules (in
the double-pushout approach) more expressive. Thus programming becomes easier,
and gets along with simpler control conditions in particular.

Key words: Statecharts, Graph transformation, Clones

1 Introduction

Visual notations have always been popular for designing software, even more
since the appearance of the Unified Modeling Language (UML), a family of
mostly graph-like diagram languages. On the contrary, visual programming
with graphs is still far less popular, although graphs are a convenient data
structure and the computational model of graph transformation is well devel-
oped. We suspect that this is because graph transformation rules alone are
not enough. For programming, transformations have to be extended by con-
trol conditions (Grace [1]), by control programs (Progres [6]), by control
diagrams (Fujaba [3]), or by control predicates (DiaPlan [2], GReAT [5]),
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and control mechanisms force the user to program in a way that is very similar
to conventional languages. Graph transformation only simplifies the descrip-
tion of a program’s basic operations, but writing down an algorithm that
applies these operations in a controlled way is hardly improved by current
programming languages based on graph transformation.

This paper tries to improve graph-transformation-based programming by
simplifying its control mechanisms. This requires that basic graph transfor-
mation steps become more expressive. We are adopting the concept of cloning
graph transformation rules that has been proposed recently [4]. Cloning al-
lows to express basic program steps with a single transformation rule (scheme)
which would otherwise require complicated loops and alternatives. Yet, cloning
is a natural approach that does not imply additional efforts to the program-
mer. This is demonstrated by a case study, the flattening of hierarchical state-
charts, i.e., transforming statecharts containing compound states (and-states
and or-states) into flat statecharts without them.

The following section briefly introduces the idea of graph transformation
with cloning before the problem of flattening statecharts is described in Sect. 3.
Sect. 4 shows the proposed approach of applying graph transformation with
cloning to solve this problem. The last section concludes the paper.

2 Graph transformation with cloning

This section gives only an informal overview of graph transformation with
cloning. Details can be found in [4]. The idea is to specify rule schemes which
represent an in general infinite number of rule instances by cloning certain
subgraphs. Before describing the rule schemes, we describe the graphs that
constitute their left-hand sides and right-hand sides.

A pattern is a graph G wherein some nodes are annotated by cardinality
variables. Each cardinality variable y determines a subgraph Gy which consists
of the nodes annotated with y (the y-fold nodes), their incident edges, and
their adjacent nodes (the border nodes). A y-clone of pattern G is obtained
by binding y to an integer value k ≥ 0, removing all y-fold nodes and their
incident edges from G, and gluing k disjoint copies of Gy to the border nodes.
A pattern gets instantiated by binding each cardinality variable to a non-
negative integer value and creating y-clones for each variable y. The order in
which variables are cloned does not matter as cloning is commutative [4].

A rule scheme is a double-pushout rule where left-hand side (lhs), interface,
and right-hand side (rhs) are patterns, and which uses pattern morphisms as
a straight-forward extension of graph morphisms. Cardinality variables of the
rhs have to occur in the lhs also. A rule instance is again a double-pushout
rule. A rule is obtained by binding variables of the rhs to the same values as
the ones of the lhs and instantiating lhs, interface, and rhs.

As usual, we will omit the interface when drawing a rule scheme, but
indicate images of interface nodes by integer numbers. As an example, consider
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Fig. 2. A statechart diagram with an and-state (a), an equivalent statechart diagram
where the and-state has been transformed into an or-state (b), and an equivalent,
flat statechart diagram (c).

Fig. 6a which is shown as lhs/rhs. Interface nodes are the ones with the same
number, i.e., nodes ‘1,‘2, ‘3, and ‘4 of the lhs resp. 1’, 2’, 3’, and 4’ of the rhs.
The rule scheme is annotated with cardinality variable x. x-fold nodes are
visualized as a stack of nodes with an inscribed x. Fig. 1 shows an instance
of this rule after creating x-clones with x bound to 3.

3 Statecharts

Statecharts are a visual language for describing behavior; under the name
state diagrams, it is one of the graph-like languages of the UML. Statechart
diagrams are an extension of finite state machines where transitions are an-
notated by events, firing conditions, and actions that have to be evaluated
when a transition “fires”. Hierarchical states can be used to simplify the de-
scription of complex behavior. There are two kinds of hierarchical states: An
or-state contains a complete statechart diagram. When the or-state is active,
then one of its contained states is active. Fig. 2b shows a statechart diagram
with the or-state B. An and-state consists of several and-compartments that
are separated by dashed lines. Each compartment contains a complete state-
chart diagram, like an or-state. When an and-state is active, all statecharts
contained in its compartments are active in parallel. Fig. 2a shows a state-
chart diagram with such an and-state B. In order to fit the description of
the flattening algorithm into this paper, we are using simplified statechart di-
agrams in the following. Simplified statecharts consist of a collection of plain
states, and-states, or-states, and initial pseudo states. Initial pseudo states
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cannot be active; as soon as a statechart is activated, its initial pseudo state
is entered and immediately left again via its only and non-annotated transi-
tion entering its connected state. Final states and history states are not used
here. The annotation of transitions is also simplified: It may consist of events
only; firing conditions and actions are not considered here. Also, transitions
are not allowed to cross the borders of and-states and or-states. Finally, we
simplify handling of conflicting transitions. UML statecharts give transitions
firing from higher levels priority over those firing from lower levels. We ignore
priorities and assume non-determinism for simplicity.

Fig. 3 defines the metamodel of the considered statechart diagram lan-
guage as a class diagram. States are either initial pseudo states or real states,
i.e., plain states, or-states, or and-states. Or-states are also containers which
contain the states of the contained state diagram. And-states consist of and-
compartments (And Comp in Fig. 3) which are also containers with contained
states. Initial pseudo states are associated to their connected state, and tran-
sitions are associated to their connected states by from and to associations.
Transitions have an annotation attribute that contains the string-valued event
for this transition. Based on this metamodel, each statechart diagram can be
represented as a graph. Fig. 4 shows the graph representation of the statechart
diagram in Fig. 2a.

A transition fires if the state at the transition’s source is active and the
event is the transition’s annotation. If more than one state is active within
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an and-state, all outgoing transitions with corresponding annotations fire. An
active state whose outgoing transition fires gets inactive, and an inactive state
whose incoming transition fires gets active. If an or-state gets active, the state
that is connected with the or-state’s initial pseudo state gets active, too. For
and-states, all of its compartments get active like or-states. Or-states and
and-states of our simplified language can be left from any contained state.
State B of Fig. 2a, e.g., is left as soon as a y event occurs where any of the
contained states C, D, E, or F may be active.

Based on this semantics of transition firing, we can “flatten” a hierarchical
statechart diagram by replacing and-states and or-states by equivalent sub-
statechart diagrams. Fig. 2 shows this process: All and-states are first replaced
by equivalent or-states (b), and finally, all or-states are removed (c).

Replacing an and-state is the more complicated step. The idea of this step
is to turn any combination of active contained states into new states. This
is similar to building product automata of finite automata. Therefore, we
build the cross product of state sets for any and-compartment. 3 In Fig. 2, the
contents of and-state B are replaced by the cross product {C, D} × {E, F}.
Transitions are considered next. This step is different from building product
automata because a statechart drops an event if the event cannot be consumed
by a firing transition. If more than one statechart is active in an and-state,
an event can be consumed by some statecharts, but dropped by the others
depending on the currently active states and their outgoing transitions. This
defines the transitions that have to be created: Let (s1, . . . , sn) be a state
from the cross product. If it is active and an event e occurs, there are some
and-compartments’ statecharts which consume e by a transition si

e→ ti, and
the other compartments’ statecharts drop e, i.e., they stay in their state si =
ti. Therefore, the equivalent or-state replacing the and-state must contain a
transition (s1, . . . , sn)

e→ (t1, . . . , tn). Fig. 2b shows the result.

Removing an or-state is actually simple. As one of the contained state is
active iff the or-state is active, we can simply drop the or-state frame, but
must take care of the transitions from and to the or-state. Transitions to the
or-state are redirected to the contained state that is connected to the or-state’s
initial pseudo state. And as the or-state can be always left by a transition
from the or-state, each transition from the or-state has to be replaced by
copies from each of the contained states. Fig. 2c shows the result.

The previous paragraphs have outlined the algorithm of flattening hier-
archical statecharts rather coarsely. A precise algorithm in a textual or a
common graph-transformation-based language would make use of an abstract
representation like the one shown in Fig. 4, and one can imagine that writing
it down requires several nested loops and complicated transformations. In the
next section, we define the algorithm based on rule schemes that need only a
very simple control structure.

3 This is an expensive operation. A more efficient solution, e.g., is discussed in [7].
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1 while the graph contains And State or Or State nodes do
2 // remove a bottom level and-state
3 if possible mark bottom level and;
4 for all matches and create cross product;
5 if possible and create init;
6 for all matches and create trans;
7 as long as possible and clean up;
8 // remove all or-states
9 as long as possible or move outgoing trans;

10 as long as possible or remove
11 done

Fig. 5. Control program for flattening statecharts

4 Flattening Statecharts by graph transformation

Sect. 2 introduced rule schemes which shall here be used for specifying the
single transformation steps. They have to be combined with a control program
in order to present a complete algorithm for flattening hierarchical statecharts.
We do not present the control program in some existing language, but use a
rather informal notation as we focus on rule schemes and how they make
programming with graph transformations easier. Fig. 5 shows this control
structure which calls several operations that make use of a single rule scheme.
The control program, its constructs, and the rule schemes are explained in
the following. Graph transformations require statecharts to be represented as
graphs according to the metamodel in Fig. 3.

The control program consists of an outer loop that is repeated as long
as there are still hierarchical states. The loop body consists of two parts.
The first one (line 3–7) transforms a single and-state which does not contain
any hierarchical sub-states (a so-called bottom level and-state) into an or-
state. This or-state, together with all other or-states, is flattened in the second
part (line 9 and 10). This procedure has to be repeated because the graph
may contain several and-states, and and-states can be nested, i.e., and-states
are flattened from the inside out. The operations follow the overview of the
algorithm given in Sect. 3.

Lines 3–7 operate on an and-state that does not contain any hierarchical
states. Rule mark bottom level and arbitrarily selects one of them by adding a
Work node 4 to the graph and connecting it with the corresponding And State
node. Negative application conditions make sure that this and-state does not
contain any and- or or-state. This elementary rule is not shown here for space
restrictions. The control if possible tries to apply rule mark bottom level and,
but simply continues if the rule fails, i.e., if there is no bottom level and-state.

Fig. 6a shows the rule scheme of the operation and create cross product

4 Please note that the new Work node actually violates the metamodel shown in Fig. 3.
A possible solution would be relaxing the metamodel while transforming the graph or ex-
tending the metamodel accordingly.
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(b).

that creates the cross product of the state sets of all and-compartments. This
rule scheme can be applied to the and-state that has been selected by the
previous rule. The idea of the rule scheme is to match an and-state node
together with all of its and-compartments and one contained state of each
compartment by a rule instantiation. Fig. 1 shows an instance of this rule
scheme when binding x to 3, i.e., when the and-state has 3 and-compartments.

By applying the rule instance, a new plain state node 5’ is added. Node 5’
becomes a new contained node of the and-state (which later will become an
or-state by operation and clean up). Moreover, 5’ gets connected by ori edges
to the original state nodes of the different and-compartments. That way, 5’
represents the tuple of state nodes from the different and-compartments. How-
ever this requires that cardinality variable x is always bound to the maximum
possible value when instantiating the rule. By applying this rule scheme for
any possible match for the maximum value being bound to x, this rule scheme
creates the complete cross product of the state sets of all and-compartments
for the selected and-state. This behavior is specified by the loop control for all
matches. Please note that this control does not repeat applying the specified
rule scheme as long as possible. As the rule scheme’s right-hand side contains
the left-hand side, this would specify a non-terminating transformation. The
loop control rather has to find for the maximum x-value all possible matches
and consecutively apply the corresponding rule instance to these matches.

The previous rule instance sets up the cross product of state sets which is
the new or-state’s set of contained states. However, the initial pseudo state has
not yet been created. This is done by operation and create init (Fig. 6b). Its
left-hand side is the same as the right-hand side of the previous rule scheme,
but with an additional Init State node and with init edge. Therefore, the in-
stantiation of the left-hand side, matches the tuple of all initial pseudo states,
their connected real states and the new tuple state node that has been cre-
ated by operation and create cross product. The original initial pseudo states
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get removed, and a new initial pseudo state gets created. Again, cardinality
variable x must be bound to the maximum possible value. The control if
possible is needed as this rule fails if there is no bottom level and-state.

The next operation has to create transitions between the new states. Fig. 7
shows the corresponding rule scheme. The left-hand side represents two tuple
states ‘4 and ‘6 that represent the states ‘1 and ‘5, resp. ‘3 and ‘5. Cloned
nodes ‘1 and ‘3 together with ‘2 are those states si resp. ti together with their
connecting transition that – as described in Sect. 3 – consume an event by
firing the corresponding transitions. As a consequence, this rule scheme has to
require as an application condition that the transitions that are matched by
the instance of the left-hand side must have the same value of their annotation
attribute. 5 Node ‘5 represents the states of those and-compartments that do
not consume the corresponding event. Again, cardinality variable n has to
be bound to the maximum possible value such that the application condition
is satisfied. Afterwards, m has to be bound to the maximum possible value.
This requirement is specified by introducing an ordering on the cardinality
variables, here n ≺ m, telling whose value has to be maximized first. When
applying an instance of this rule, a new transition is added between the tuple
states 4’ and 6’. This new transition has to get the same annotation value as
the one of all matched transitions of the left-hand side. The loop control for
all matches takes care of creating all possible transitions.

The “internals” of the new or-state have been completely created by line 4–
6. However, the remaining and-compartments, the original transitions and
state nodes as well as the connection edges together with the Work node have
to be removed. The And State node, moreover, has to be replaced by an
Or State node. This is performed by the operation and clean up in line 7.
And clean up is actually a set of three straight-forward rule schemes that has
been omitted here for space restrictions.

5 This application condition in Fig. 7 uses card as a function that obtains the set cardinality
of the multiset of all ‘2.annotation values. The action uses select which selects a value from
a multiset.
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The remaining two operations with loop controls (Fig. 5) flatten all or-
states of the graph. This applies in particular to the or-state that just has
been created from a bottom level and-state. As described in Sect. 3, we have
to add copies of transitions leaving an or-state to each of the contained states.
This is done by the rule scheme shown in Fig. 8 which is applied with maximum
p value to each match of the left-hand side. Please note that as many copies
of transition ‘4 are created as there are states contained in the or-state. All of
these new transitions have to get assigned the same annotation values as the
match of ‘4 (c.f. the action in Fig. 8).

Fig. 9 shows the final rule scheme which redirects all incoming transitions
to the state that has been connected to the or-state’s initial pseudo state,
removes this pseudo state and the or-state frame, and uses the containing
state – if any – of the previous or-state as the container of the states that have
been contained by the or-state. Node ‘5 with cardinality variable q represents
a potential initial pseudo state that has been connected to the or-state. This
transition has to be redirected, too.

Please note that the graph does not contain any Or State nodes after
processing line 10. However, new Or State nodes are created in the next loops
if there are still And State nodes in the graph.

5 Conclusions

In this paper, we have considered the flattening of hierarchical statecharts as
a case study for programming based on graph transformation. Space restric-
tions did only allow to treat simplified statecharts. The missing concepts, like
history states, final states, firing conditions, and transition actions as well as
enter and exit actions of hierarchical states, can be added in a straight-forward
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way. A complete specification will be provided in the future.

The case study revealed that instantiation of rule schemes by cloning makes
graph transformation more expressive; it simplifies programming by graph
transformation as control programs become simpler. We hope that this con-
cept will support graph transformations to be better accepted for program-
ming tasks in the future.

The expansion of variables to graphs proposed in [4] makes graph trans-
formation still more expressive. But this is beyond the scope of this paper.

Control programs have been presented quite informally in this paper.
We are currently combining rule instantiation by cloning with the proposed
graph-transformation-based programming language DiaPlan [2] (which al-
ready supports variable expansion) and its control structures. This will allow
to discuss control structures more thoroughly.
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Abstract

In this paper an integrated modelling approach for object-oriented systems is pro-
posed. The integrated language consists of three layers. On the first layer UML
class diagrams are used to define the structure of the modelled systems and OCL
expressions specify queries, which do not modify the object configuration. On the
second layer transformation rules model local state modifications of the system. On
the third layer Nassi-Shneiderman diagrams describe complex control flows built
over the rules and queries on the lower layers. The proposed integrated language is
evaluated by a running example on modelling doubly linked lists and the mergesort
algorithm.

Key words: Rule-Based Transformation, Nassi-Shneiderman
Diagrams, UML, Integration

1 Introduction and Related Work

The Unified Modeling Language (UML) [10] has become the pre-dominant
modelling language in object-oriented software development. The behavioural
techniques provided by the UML, however, do not contain a method for
the declarative, rule-based specification of modifications on object structures.
Moreover, the interconnection between different behavioural techniques is
treated rather superficially in the UML specification, because the UML tries
to permit as many usage and interconnection scenarios as possible.

In this paper an integrated modelling approach is proposed, which tries to
eliminate these deficiencies by giving a layered collection of specification tech-
niques with a clear separation of concerns and well-defined interconnections.
The proposed integrated language is organised in three constitutive layers.

On the first layer UML class diagrams are used to specify the structure
of the system. Expressions of the Object Constraint Language (OCL) [9]
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specify the behaviour of query operations, which do not change the object
configuration of the system. This layer is introduced in Sect. 2.

On the second layer local state changes are modelled using a variant of
single-pushout graph transformation rules [1] tailored to the UML on this
layer. This layer is described in Sect. 3. Object-Based Graph Grammars [11]
and Object-Oriented Graph Grammars [7,6] are other approaches using graph
transformation rules to specify the behaviour of object-oriented systems. They
are, however, designed as self-contained specification techniques without rela-
tion to the UML.

On the third layer the assembly of the queries and rules from the previous
layers into complex control flows is achieved by structured flowcharts [8], which
are also known as Nassi-Shneiderman diagrams. The third layer is explored in
Sect. 4. Structured flowcharts are favoured over e. g. UML activity diagrams
in this paper, because we believe that they provide a viable alternative for
the visual modelling of control flows. On the one hand, they are close to the
structure of the constructs in most contemporary, imperative programming
languages, which could lead to a broader acceptance among programmers and
software designers. On the other hand, the separation of concerns realised by
the layered, integrated language facilitates the compactness and comprehen-
sibility of the flowcharts making them easier to grasp than the source code of
a programming language. Different approaches to control the application of
graph transformation systems are proposed in the literature. Transformation
Units [4] are one of the most prominent examples. They provide an abstract
framework for the definition of control structures over transformation rules,
where the structured flowcharts of this paper could probably be integrated into
that framework as a sophisticated specification language for control structures.

These layers are integrated in the sense that the interconnections between
the different layers are precisely defined: The queries on Layer 1 are only
allowed to call other queries on Layer 1. The transformation rules on Layer 2
may use OCL expressions on Layer 1 in their attribute specifications. The
structured flowcharts on Layer 3 can use OCL experessions on Layer 1 and
call arbitrary other operations, which may be specified by transformation rules
on Layer 2 or other flowcharts on Layer 3. The integrated language is intended
to be constructive in the sense that the behaviour of a system can (and should
be) completely described using the sublanguages on the appropriate layers.

The Fujaba Tool Suite [3] uses Story Diagrams [2], which are a combi-
nation of activity and collaboration diagrams, to specify transformations on
object-oriented systems. The Fujaba approach is very similar to the one pro-
posed in this paper. In contrast to Fujaba, which employs Java source code
for the specification of low-level expressions, we use OCL expressions, which
are on the one hand already integrated into the UML family of languages,
on the other hand they aid in keeping the approach platform independent.
Another difference is the strict separation of concerns with transformation
rules and flowcharts specified in self-contained diagrams, respectively, where

246



Braatz

Fujaba uses the integrated Story Diagrams. The separation of concerns eases
the reuse of transformation rules in different flowcharts and of flowcharts in
other flowcharts. The choice of visualisation techniques for rules and control
flow is the last main difference. Fujaba uses collaboration diagrams to visualise
rules, while in this paper a seperate visualisation of left- and right-hand-side
is chosen, because the collaboration visualisation cannot adequately capture
the change of attribute values and the specification of negative application
conditions. In Fujaba UML activity diagrams are used for the control flow,
where our reasons for choosing structured flowcharts have already been given
above.

The semantics of the UML languages is – sometimes deliberately – left
ambiguous and only given in natural language. In order to allow features like
precise reasoning and code generation, a more restricted and formal approach
has to be considered. Therefore, the integrated modelling language proposed
in this paper is designed to allow the definition of a precise semantics.

It is possible to use graph transformation systems also as the semantic
domain of object-oriented modelling techniques. This is done in [13,5], where
UML class, object, state, collaboration, and use case diagrams are translated
into graph transformation systems. This approach is complementary to the
one in this paper, where graph transformations are used as an additional
modelling technique on the syntactical level.

2 UML Foundations

In this paper we use UML class diagrams [10] to specify the class structure of
the modelled system. Additionally, the behaviour of query operations, which
do not change the object configuration of the system, is specified by OCL con-
straints [9], which are guaranteed to have no side effects on the system state.
Note, that we do not employ OCL invariants and pre-post-conditions in this
paper. Those constraints will be considered in future work on verification,
shortly discussed in Sect. 5, where they will play the role of descriptive spec-
ifications against which the constructive models defined in this paper should
be checked.

The two subsequent layers will be designed to closely match and reuse
the concepts of class diagrams and OCL constraints. For example, the self
and return parameters of OCL have counterparts in both rules and flowcharts.
Additionally, rules and flowcharts also require OCL expressions in various
locations.

As a running example we specify doubly linked lists, whose elements con-
tain an integer as key and a string as data content. The class diagram of the
example is depicted in Fig. 1. The abstract class ListItem is used as an abstrac-
tion of the common characteristics of lists and the elements in the lists. The
objects of the List class serve as sentinels for the list, such that the next item
is the first element of the list and the previous is the last one. This approach
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next

pkg Lists

context
body: if next.oclIsKindOf(Element) and

next<>self
then

then

endif
else

if key<=next.key
next.sorted()
false

else true
endif

Lists::Element.sorted():Boolean

moveFirstTo(other:List)
append(new:Element)
create():List

length:Integer

create(i:Integer,s:String):Element

data:String
key:Integer

ElementList

ListItem

mergeSort()
merge(first:List,second:List):List
sorted():Boolean {query}
moveTo(other:List)

sorted():Boolean {query}

context
body: if next.oclIsKindOf(Element)

then next.sorted()
else true
endif

Lists::List.sorted():Boolean

prev

Fig. 1. Class diagram of the example

ensures that we do not have to deal with undefined pointers. Moreover, it
allows to check if a list is non-empty and if an element has another successor
by calls to the builtin OCL property oclIsKindOf(Element) on the next link.
Note, that this class diagram would also allow object structures with multiple
instances of List in a list, but the operations – namely the structure modifica-
tions specified by the rules in the next section – do not allow the creation of
such senseless structures.

The underlined operations List.create, Element.create, and List.merge are
static operations, which are called in the context of the class instead of a
particular object of the class. The operations List.sorted and Element.sorted
are annotated with a query property string expressing that they are not allowed
to change the configuration of objects and attributes in the system.

The sorted queries are specified by the OCL constraints in Fig. 1. The
List.sorted query returns true for an empty list and calls the Element.sorted
query on its first element otherwise. The Element.sorted query returns true if
the element is the last in the list, i. e. the next link points to the containing
instance of List and not to another instance of Element, or the element is not
contained in a list at all, i. e. the next link points to the element itself. If there
is another element in the list, the keys are compared and false is returned if
they are not in the correct order. Otherwise the query is called recursively on
the next element.

3 Transformation Rules

On the second layer of the integrated modelling approach we will use trans-
formation rules to describe local state changes in object configurations. These
rules are a variant of single-pushout graph transformation rules [1].

A rule is given by a left- and a right-hand-side consisting of instance speci-
fications. The left-hand-side (LHS) is connected to the right-hand-side (RHS)
by a partial, injective mapping. Since the application of a rule should be de-
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termined by the parameters given to the operation, we require the LHS to be
uniquely navigable from the instance specifications representing the parame-
ters, whose type is a class. A special parameter self is available in non-static
operations to denote the object on which the operation is called. If the op-
eration has a return parameter, the special parameter return has to be used
on the RHS to designate the output of the rule. For attributes the instance
specifications on the LHS may declare OCL constraints, which have to hold
for the rule to be applicable. The instance specifications on the RHS may then
specify the new values of attributes by OCL constraints, which may similarly
to post-conditions use the @pre operator to access the attribute values before
the rule application. The OCL attribute constraints may also use any data
type parameters given to the operation.

Given a match of the LHS in an object configuration, the application of the
rule can be constructed by removing the parts of the LHS not mapped to the
RHS and adding the parts of the RHS, which do not have a preimage in the
LHS. Since we assume an execution environment with garbage collection, we
will use only rules, which are non-deleting on objects. Matches may in general
be non-injective, but if there are contradicting attribute constraints for objects
identified by the match, then the rule is not applicable. Operation invocations
leading to a non-applicable rule should result in some kind of error handling,
e. g. by throwing an exception, but the integration of exception handling is
outside the scope of this paper and is left as future work.

In addition to the LHS and RHS, negative application conditions (NAC)
may be defined for a rule. Such conditions are defined as non-injective ex-
tensions of the LHS, where non-injectivity is used to forbid the identification
of certain elements by the match and extensions are used to forbid auxiliary
object structures. If the NAC can be matched compatibly with the match of
the LHS, then the rule is not applicable.

It may be argued that rules, which are allowed to manipulate all struc-
tures navigable from the called object and the call’s parameters, contradict
the object-oriented paradigm of encapsulation of object behaviour, but for the
modelling of complex structure changes it seems appropriate to specify them
as a rule operating under the control of one of the participating objects rather
than dividing the operation, which logically belongs together, into operations
on the different objects. In a more elaborated framework, which takes into
account visibility and accessibility constraints to facilitate object encapsula-
tion, these visibilities and accessibilities would of course have to be respected
by the rules.

For our running example, the transformation rules in Fig. 2 can be used
to create lists and elements. The List.create rule in Fig. 2(a) creates an empty
list, while the Element.create rule in Fig. 2(b) creates an element containing
the given integer as the key and the given string as the data content. The
created element is not contained in a list, which is expressed by the next and
previous links pointing to the element itself. Since these operations are both
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prev
rule Lists::List.create():List

return:List

length=0 next

(a) Creating a List

prev
rule Lists::Element.create(i:Integer,s:String):Element

return:Element

key=i
data=s

next

(b) Creating an Element

Fig. 2. Transformation rules for creating instances of ListItem

prev

self:List 1:ListItem

new:Element

length=length@pre+1

self:List
1:ListItem new:Element

rule Lists::List.append(new:Element)

next prev

next
prev

next

next

prev

(a) Appending an Element

prev

self:List 1:Element 2:ListItem length=length@pre−1

self:List
2:ListItem

length=length@pre+1

other:Listother:List 3:ListItem 3:ListItem 1:Element

rule Lists::List.moveFirstTo(other:List)

next prev
next

prev

next next next

next

prev prev prev

(b) Moving the first Element

prev

rule Lists::List.moveTo(other:List)

NAC:

next prev

next

prev

next

next

1:ListItemself:List
self:List

length=0
2:ListItem

other:List

length=length@pre+
self.length@pre

3:ListItem
next

1:ListItem 2:ListItem3:ListItemother:List

self,1.2:List

other:List 3:ListItem

prev
next

next

prev

prev

next

prev

prev

(c) Moving the whole List

Fig. 3. Transformation rules for modifying a List

static, there is no self instance in the LHS. The return parameter is used to
transmit the created instances as operation results to the caller.

The rules in Fig. 3 modify a given list. The List.append rule in Fig. 3(a)
appends a given element to the end of the list. The rule is not applicapble if
new is already contained in another list, because the previous and next links
are required to point to new itself. The List.moveFirstTo rule in Fig. 3(b) moves
the first element of a list to the end of another list. This rule is not applicable
if the self list is empty, because then there is no match for 1:Element, and
if the caller tries to move to the same list, because the conflicting attribute
specifications for self and other prohibit their identification. The List.moveTo
rule in Fig. 3(c) moves a whole list to another empty list. Again, the rule
is not applicable, when self and other refer to the same object, because of
the conflicting attribute specifications. Additionally, the given NAC forbids
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var:Type

Block

(a) Declaration

var:=expr

(b) Assignment
obj.op(par)

(c) Operation
call

BlockBlock

(d) Parallelism

cond

Block Block

(e) Decision

cond

Block

(f) Iteration
with pre-
condition

Block

cond

(g) Iteration
with post-
condition

Fig. 4. Symbols used in flowcharts

the application on an empty list, because the application would lead to an
ill-formed object configuration with the self list contained in the other list.

4 Structured Flowcharts

In this section we use structured flowcharts [8] as defined by Nassi and Shnei-
derman to describe control flows. The flowcharts are built over the queries and
rules defined in the previous sections. Because the details of state changes are
delegated to the rule-based operation specifications, the control flows remain
concise and comprehensible.

Flowcharts are constructed using the block symbols in Fig. 4, where these
blocks can be sequentially composed and recursively inserted for the Block
nonterminals. A variable declaration shown in Fig. 4(a) consists of a previously
undeclared variable var and a type Type. The scope of the variable is the
contained block. Values can be assigned to variables by an assignment as
shown in Fig. 4(b), where the variable var can be a previously declared variable
or the special variable result. Note that neither the parameters of the operation
including self, nor attributes may appear on the left side of an assignment,
because modifications of the object structure should be specified by rules not
by direct assignments. The expression expr with corresponding return type
is constructed similar to OCL expressions, but it is, in contrast to OCL,
also allowed to contain calls to non-query operations. Operations without
return parameter can be called with the block in Fig. 4(c), where obj is a
navigation path from a parameter or variable to an object, op is an operation
of the class of that object, and par are parameters for the operation. Control
flows, which can be executed parallely independent, can be expressed by the
block in Fig. 4(d). A decision as in Fig. 4(e) is given by an OCL expression
cond with Boolean return type, which is constructed over the parameters and
previously declared and defined variables. If the query evaluates to true, the
left block is executed, if it evaluates to false, the right block is chosen. The
iteration with precondition in Fig. 4(f) corresponds to a while-loop in common
programming languages. While the Boolean query cond evaluates to true, the
block is executed. Conversely, the iteration with postcondition in Fig. 4(g)
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second.next.oclIsKindOf(Element)

flow Lists::List.merge(first:List,second:List):List

return:=List.create()

and

first.moveFirstTo(return) second.moveFirstTo(return)

first.moveFirstTo(return)

second.moveFirstTo(return)

first.next.key<=second.next.key

first.next.oclIsKindOf(Element) second.next.oclIsKindOf(Element)

first.next.oclIsKindOf(Element)

Fig. 5. Flowchart of merging two sorted lists

work[0].moveTo(self)

flow Lists::List.mergeSort()

work:List[length]
number:Integer

number:=0

next.oclIsKindOf(Element)

work[number]:=List.create()

moveFirstTo(work[number])

next.oclIsKindOf(Element)

moveFirstTo(work[number])

number:=number+1

number>1

i:Integer
j:Integer

next.oclIsKindOf(Element)

work[number].prev.key<=next.keyand

i:=0

i:=i+1

work[i]:=merge(work[j],work[j+1]) work[i]:=work[j]

j+1<number

j<number

j:=0

j:=j+2

number:=(number+1)/2

Fig. 6. Flowchart of the Natural Mergesort algorithm

corresponds to a repeat-loop, where cond is evaluated for the first time after
the first iteration.

For our example of doubly linked lists, we will specify the Natural Merge-
sort algorithm [12], which utilises sublists that are already sorted to optimise
the performance of the sorting procedure. In Fig. 5 we first specify an auxiliary
operation for merging two already sorted lists. As long as both lists contain
elements, the first elements are compared and the smaller one is moved to the
resulting list. When one of the lists becomes empty, the rest of the other one
is moved to the result and the operation terminates.

The Natural Mergesort algorithm itself is specified in Fig. 6. If the list is
empty, nothing is done, otherwise the main part of the algorithm is started,
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which consists of two parts. First, the list is broken up into already sorted
sublists, which are stored in the work array of lists, where this array is declared
to contain at most length lists. The actual number of sorted lists is stored in
the number variable. Then, these lists are merged pairwise, which halves the
number of sorted lists in each pass. This is done until only one list remains
and this list is moved to the self list.

5 Summary and Future Work

In this paper an integrated modelling approach for object-oriented systems
has been developed, which is organised in three constitutive layers. The first
layer employs OCL to yield a functional description of query operations with-
out side effects. On the second layer transformation rules are used to define
the behaviour of operations, which change the object configuration locally.
Finally, structured flowcharts are used on the third layer to specify complex
control flows.

Interesting lines of future work include the extension of the presented ap-
proach with respect to further structural and behavioural aspects of the UML,
like multiplicities, visibilities, signal and exception handling, and redefinition.
The presented languages should be aligned with the UML metamodel by giv-
ing metamodels for the three layers. The definition of the abstract syntax by a
graph grammar could complement the metamodel, where this also permits the
use of graph transformation rules for refinement, refactoring, code generation,
and other model transformations.

One of the main motivations for the work in this paper is to define a fully
formalized object-oriented modelling technique. Hence, the languages will also
be given an integrated formal semantics, which will then be used to facilitate
formal verification. For the purpose of verification the constructive modelling
techniques presented here will be complemented by descriptive specification
techniques like OCL invariants and pre- and post-conditions or UML sequence
diagrams. The system described by the constructive techniques can then be
verified against the properties required by the descriptive techniques using a
variety of verification methods.
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Abstract

According to the UML Standard 2.0 class and sequence diagrams are defined in
a descriptive way by a MOF meta-model and semi-formal constraints. This pa-
per presents a formal and constructive definition of the abstract syntax of UML
class and sequence diagrams based on the well-defined theory of typed attributed
graph transformation with inheritance and application conditions. The generated
language covers all important features of these parts of UML diagrams and is shown
to satisfy all of the corresponding constraints by construction. An explicit model
transformation demonstrates the close correspondence between the graph grammar
and the MOF definition of UML class and sequence diagrams. The graph grammar
is validated by well-established benchmarks showing that all important features of
the MOF definition of UML are covered.

This formal constructive syntax definition of UML class and sequence diagrams
is the basis for syntax directed editing, formal analysis, formal operational and
denotational semantics and correctness of model transformations.

Key words: graph transformation, typed, attributed, inheritance,
UML, sequence diagrams, class diagrams, abstract syntax

1 Introduction

Meta-modeling of visual languages, particularly the UML [10] defined by MOF
[9], facilitates the definition of general structure elements and relations on
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the one hand and the implementation of specific properties by constraints
restricting the amount of valid instances on the other hand.

Due to the non-constructive nature of the MOF approach, i.e. there is no
systematic method to generate all language elements, there exist well-known
limitations, which are avoided by a constructive approach. Using typed at-
tributed graph transformation with node type inheritance and application
conditions as in [6] and [7] for defining a visual language allows the construc-
tion of elements of the language by applying rules of the corresponding graph
grammar. The concept of inheritance allows creating an abstract rule, which
defines an equivalent set of concrete rules, and therefore notably reduces the
total amount of rules. The graph grammar GGCSD for class and sequence
diagrams, defined in [12], additionally uses a simple version of transformation
units in the sense of [16] allowing to specify the construction of complex el-
ements. This constructive definition shall not replace the original one, but
build up a formal basis for certain applications.

Proving the correctness of GGCSD relating the original specification of
UML is not possible, because most of the constraints of the original definition
of sequence diagrams are only informal. In contrast the formal definition
eliminates some problems in the original definition (see 3.4). The explicit
model transformation in Subsection 3.2 demonstrates the close correspondence
to UML defined with MOF. Restrictions by multiplicities and constraints are
already followed and argued at the corresponding rules.

A related approach for defining visual languages constructively is realized
in [17] via an EBNF grammar. The application to UML is shortly sketched but
not executed till now to our knowledge. In contrast to our visual specification
this textual form includes many similarities to Java code as even the authors
mention (p. 140). Previous applications of graph transformation describing
the abstract syntax of UML diagrams used very simplified and restricted ver-
sions of the diagram types. The correspondence between the meta model for
class diagrams and an implicit type graph is sketched in [15], but does not
take advantage of a graph grammar to create the example diagrams needed
for the described transformation. GGCSD supports all important features of
the current UML specification for class and sequence diagrams. Moreover an
extension of the graph grammar to state machines was finalized in December
2005.

While UML class diagrams are widely known, the current version of UML
sequence diagrams, which are special UML interactions and correspond to Life
Sequence Charts as in [3], contain new and revolutionary features. Combined
fragments as in Figure 1 offer the possibility to use control structures for
managing the message flow in a sequence diagram. This leads to a compact
notation for complex behaviors. The shown example specifies that a student
is assigned to a class, if all previous costs were paid by him. Therefore the
two scenarios of having a balanced account or having an unbalanced one are
covered in one diagram by using the operator “opt” with its condition. Ad-
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register : RegisterOffice ar : AccountsReceivable drama : Class

getPastDueBalance(studentID)

pastDueBalance

sd newStudent

opt
[pastDueBalance=0] addStudent(studentId)

getCostOfClass()

classCost

chargeForClass()

Fig. 1. Example of an UML Sequence Diagram (in [2] p. 9 fig. 9)

ditionally a variety of other operators together with multiple operands are
available offering for example to specify parallel or alternative operands. A
further new feature is the reuse of existing sequence diagrams in other se-
quence diagrams. Messages may cross the border of a used sequence diagram
and lead into the using one. More details on sequence diagrams can be found
in Chapter 14 of [10].

Implemented features of the grammar are validated by benchmarks as de-
scribed in Subsection 3.3. Example diagrams in concrete syntax, originating
from the IBM Rational Library [2] as shown in Figure 1, were recreated by ap-
plying the necessary rules leading to a graph representing the abstract syntax
of the diagrams.

In a further step transformations into semantic domains shall be possible
including operational and denotational semantics. These semantic representa-
tions may allow detecting internal and viewpoint conflicts as well as simulat-
ing the modeled system. Alternatively to sequence diagrams a specification by
message sequence diagrams (MSCs) describes sequences of messages between
objects. A formal semantics for MSCs was defined by Petri nets in [13] and al-
lows simulation as well as analysis. Simulation and analysis of the graph gram-
mar GGCSD is possible using AGG (URL: http://tfs.cs.tu-berlin.de/
agg/), a development environment for graph transformation systems, where
transformation units can be simulated by using the command line input.

2 Graph Grammar for Class and Sequence Diagrams

The graph grammar GGCSD for class and sequence diagrams generates in-
stances of the corresponding parts of UML. It is defined by typed attributed
graphs in the sense of [7], which integrate the graph structure and the at-
tributes, which are elements of an algebra. Graph morphisms deliver the
basis for typing and the definition of rules and transformations. All graphs
of a language are typed over a given type graph via a type morphism. Rules
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(r : L ← K → R) are specified using the double pushout approach, where
L defines the pattern, that shall be found in a graph, K shows all remaining
elements after deleting some elements of L, and finally R contains all pre-
served plus added elements. Application conditions in positive, negative, and
general form restrict the application of a rule to graphs, which either have to
contain a demanded pattern or are not allowed to. A rule is applicable, if the
match from L to the graph G fulfills the gluing condition and all application
conditions. The type graph includes an inheritance graph, which defines all
generalization relations between the node types. This leads to a more compact
definition of rules, as one abstract rule specifies a set of corresponding rules
for all specialized node types. A language Lang is then defined by a type
graph TG with inheritance, a start graph S ∈ Lang, and a set of abstract
rules. Its elements are generated by applying rules to S and the relationship
between graph grammar languages with abstract rules and inheritance on the
one hand and with concrete rules on the other hand is used in the sense of [1].
Using transformation units [16] for creating complex language elements by a
graph grammar is defined as controlled graph grammar in [12] and replaces
the set of rules by a set of transformation units and the start graph by a set
of start graphs.

2.1 Class Diagrams

The general structure of class and sequence diagrams is defined by the type
graph TGCSD. Figure 2 shows the important parts of it for class diagrams
containing classes, their features, associations and inheritance relations. The
gray marked node ConnectableElement connects this type graph component
with the main part for sequence diagrams in Figure 5. A simple version of

Generalization

DataType

Class

Classifier

AssociationClass

AssociationEnd

Association
Attribute

Operation

Parameter

parent

child

feature

feature

type

participant
connection

parameter

general

ConnectableElement

role

TypedElement

Signal

parameter

Fig. 2. Part of the type graph TGCSD: main elements of class diagrams

transformation units of [16] combines different rules and imported units with
the control structures ”;” for sequential application and ”!” to demand, that
a rule or unit has to be applied as long as possible. For example the simple
transformation unit ”InsertGeneralization()” specifies, that a class transmits
its features to another class and is shown in Figure 3. It imports the rules
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”Generalization()” and ”General()”. After creating a new generalization the
second rule is applied as long as possible to achieve again a transitive closed
structure.

RHSLHS

2 : Classifier

1 : Classifier

Generalization()

 : Generalization

child

parent

2 : Classifier

1 : Classifier

2 : Classifier

1 : Classifier

general
NAC2

1,2 : Classifier

NAC1=
RHS

NAC3

stu InsertGeneralization()

Generalization();
!( General() )

name : string = n
isRoot : bool = r
isLeaf : bool = false
isAbstract : bool = a

1 : Classifier

PAC

Fig. 3. Simple transformation unit for inserting a generalization

The node type Generalization connects a parent node with its child and is
created via the rule ”Generalization()” in Figure 3. As the inheritance relation
shall be acyclic, a generalization relation in the opposite direction is strictly
prohibited by the negative application condition NAC3, where application
conditions are used in the sense of [5]. The positive application condition
PAC ensures, that the super class is not a leaf - a class, which is not allowed
to transmit to further classes. Prevention of a double defined connection or a
generalization link from one class to itself is handled by the other conditions
NAC1 and NAC2. As Classifier is a generalization of Class, Datatype, and
Signal this abstract rule implies nine concrete rules for each combination of
the specializations.

Edges of type general supply the transitive generalization relation of all
inheritance connections. These edges are created via the rule ”General()” in
Figure 4, where the positive application condition PAC2 is used for inserting
transitive links. Parallel edges are prevented by NAC and the condition PC
allows to generate an edge because of a direct connection or a transitive one.

PAC1
RHSLHS

2 : Classifier

1 : Classifier

General()

 : Generalization

child

parent

2 : Classifier

1 : Classifier

2 : Classifier

1 : Classifier

general

PAC2

2 : Classifier

1 : Classifier

 : Classifier

general

general

PC= 
PAC1 xor
PAC2

NAC=
RHS

Fig. 4. Rule for creating transitive generalization relations

The simple transformation unit ”InsertGeneralization()” in Figure 3 com-
bines the two rules and allows multiple inheritance without cycles. The acyclic
structure is demanded by the following constraint for Classifiers in the UML
specification. It is mentioned exemplary to show how we argue that our graph
grammar generates well-formed instances only.
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[2] Generalization hierarchies must be directed and acyclic.
A classifier cannot be both a transitively general and transitively
specific classifier of the same classifier.
not self.allParents()->includes(self)

2.2 Sequence Diagrams

The main part of the type graph for sequence diagrams is shown in Figure 5,
where arrows with closed arrow heads define inheritance realtions. Interacting
objects are specified as ConnectableElements, which are already contained in
the previous shown type graph component for class diagrams in Figure 2, and
represents a role of a Classifier. A Lifeline is connected to anchor points of
type OccurrenceSpecification on which elements like Messages can be attached.
CombinedFragments are container structures to define control structures, like
alternatives, loops, and parallel regions. Their content is structured in Inter-
actionOperands, whose choice may be restricted by Constraints.

Lifeline

Interaction

messageKind : MessageKind
messagSort : MessageSort

Message

sendEvent

receiveEvent

covered

interactionOperator : InteractionOperator
CombinedFragment

isPrimary : bool
InteractionOperand

InteractionConstraint

expression : string
ValueSpecification

m
essage

lifeline

fragment

operand

guard

minint maxint

next

InteractionFragment

GeneralOrdering

before

OccurrenceSpecification

after

fragment

represents ConnectableElement

eventorder

Event

MessageOccurenceSpecification

specification

Constraint

MessageEnd Gate

Synchronization
begin

end

InteractionUse

refersTo

actualGate

1

Fig. 5. Part of the type graph TGCSD: main elements of sequence diagrams

Messages of sequence diagrams may be sent synchronously implying that
the sender is not allowed to send other messages before receiving a reply.
But the UML specification for interactions does not define a relation between
these two message types. For this reason the language LCSD additionally
includes the node type Synchronization, which marks the beginning and the
end of a synchronized interval. InteracitionUses allow to reuse existing sequence
diagrams.

GGCSD is fully presented by the two components GGCD and GGSD in [12]
and contains more than 70 rules. Figure 6 shows a simple rule, which creates
a Lifeline for an object and connects it to the ConnectableElement specifying
the role this object executes in the interaction. Additionally it is linked to
the enclosing interaction and a first anchor point is inserted. The negative

260



Hermann, Ehrig, and Taentzer

createLifeline(objectName:string)

RHSLHS

1 : Interaction

represents2 : Class

1 : Interaction

name : string = objectName
 : ConnectableElement : Lifeline

lifeline

 : OccurrenceSpecification

covered

fra
gm

en
t

2 : Class

role

NAC1

1 : Interaction

 : InteractionUse

refersTo

NAC2

1 : Interaction

 : InteractionUse

fragment

293647796

Fig. 6. Rule for creating a lifeline

application conditions NAC1 and NAC2 prevent an application of the rule, if
the interaction is connected to an interaction use. They ensure, that hierar-
chical structured interactions remain consistent. This restriction in the order
of the editing steps could be eliminated by a transformation unit including
more complex rules.

3 Validation of the Graph Grammar

3.1 Testifying Multiplicity, OCL and General Constraints

Multiplicity constraints are respected by the rules of the graph grammar,
which is argued at each relevant part of the UML meta-model in Chapter
3 of [12]. The implementation of the multiplicities into the rules is handled
mainly by application conditions and well-formedness rules are also argued to
be valid, independently of their formulation by natural language only or OCL.

3.2 Model Transformation: LCSD → UML

The abstract syntax of class and sequence diagrams is defined by GGCSD and
strongly corresponds to the definition of UML. As the rules of the graph gram-
mar follow the UML well-formdeness rules, which was described before, the
model transformation from each element of LCSD to the corresponding dia-
gram in UML syntax is simple and short. Some additional elements are deleted
and bidirectional edges, which are redundant in their grade of information, are
added and it is shown, that the transformation terminates and is confluent.
The validation of the existing OCL constraints by a formal transformation
and check will be available in the future.

3.3 Validation by Benchmarks

To show the coverage of UML features by GGCSD common examples have
been selected and its abstract syntax was generated by the grammar. The
examples mainly belong to a paper of the IBM Rational Library [2] and are
therefore independent benchmarks. They are concretely presented in Chapter
7 of [12] including the shown example in Figure 1 and the sequence of applied
rules leading to the instance is given for every diagram. Covered features are
for instance InteractionUses to reuse existing sequence diagrams an concurrent
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ExecutionSpecifications for defining that an object calls a method which calls
a subroutine. Scenarios with parallel or alternatively occuring fragments are
other examples.

3.4 Eliminated Problems

The UML specification contains some inconsistencies and mistaken definitions.
For example the following constraint occurring on page 476 in [10] is equivalent
to true:

[2] The selector for a Lifeline must only be specified if the referenced
Part is multivalued.
(self.selector->isEmpty() implies not self.represents.isMultivalued()) or
(not self.selector->isEmpty() implies self.represents.isMultivalued())

Instead of the junction ”or” it should contain ”and”. Furthermore the speci-
fication of arguments for messages and interaction uses in the meta model is
inconsistent. On the one hand a ”ValueSpecification” is possible, on the other
hand an ”Action”. GGCSD defines typed Elements as possible argument for
both, including the specializations: ”ValueSpecification”, ”Parameter”, and
”Attribute”. A last example is the gap of information for the relation of a
synchronous message and its reply mentioned in Subsection 2.2. All detected
problems are solved in the graph grammar. Besides changing the text of OCL
constraints also some connections and nodes in the meta-model had to be
rearranged or inserted to cover the information of a diagram correctly.

4 Future Work and Conclusion

The abstract syntax of a visual model specifies all its semantic relevant prop-
erties in a very granular structured way leaving out all layout information.
LCSD with its non-descriptive but constructive definition GGCSD offers pos-
sibilities to generate well defined specifications of UML in abstract syntax,
which can be used directly in the following ways.

4.1 Model Transformation

The generated graphs by GGCSD provide a formal basis to define transfor-
mations from LCSD to some target language L2 using graph transformations
as described in [4]. As the source elements were created constructively no
constraints have to be checked to ensure the syntactic correctness. Therefore
the grammar can also be used for automatic generation of test cases used for
model transformations from sequence diagrams.

4.2 Semantics, Simulation, and Animation

A formal semantics of LCSD is planned to be applied, for example using Object-
Oriented Transformation Systems (OOTS), where OOTS are an object-oriented
variant of transformation systems of [11,14]. Simulation of a specification can
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be realized by a transformation to an operational semantics, which also allows
animation. All or a selection of possible sequences, defined by sequence dia-
grams, can be tested to show on the one hand the behavior of the modeled
component and on the other hand liveliness, safety, and security properties.

4.3 Editor

In a next step the grammar shall be extended to deliver enough editing rules
to automatically generate a syntax directed editor. The TIGER project [8] de-
velops an Eclipse plug-in, which allows defining a graph grammar, connecting
the abstract syntax with concrete layout information and generating a syntax
directed editor for the language as new Eclipse plug-in. This editor can be used
for modeling in the common concrete syntax but generating automatically the
precise structured abstract syntax.
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